Ursolic Acid and Solasodine as Potent Anti-Mycobacterial Agents for Combating Paratuberculosis: An Anti-Inflammatory and In Silico Analysis
Abstract
:1. Introduction
2. Results
2.1. Effect of the Bioactive Compounds on Membrane Stabilization Assay
2.2. Determination of Anti-MAP Activity with MIC Using REMA
2.3. Docking Simulation and Ramachandran Plot Analysis
2.4. Drug-Likeness Properties
2.5. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME/T) Test
2.5.1. Absorption
2.5.2. Distribution
2.5.3. Metabolism
2.5.4. Excretion
2.5.5. Toxicity
2.6. Pharmacophore Modelling
2.7. Prediction of Activity Spectra for Substances (PASS) Prediction Study
3. Discussion
4. Materials and Methods
4.1. Membrane Stabilization Assay
4.1.1. Erythrocyte Suspension Preparation
4.1.2. Heat-Induced Hemolysis (HIH)
4.2. Preparation of Mycobacterium avium Subspecies Paratuberculosis Suspension
Resazurin Micro-Titerassay (REMA)
4.3. Preparation of Protein
4.4. Preparation of Ligand and Receptor Grid Generation
4.5. Pharmacophore Modeling
4.6. PASS (Prediction of Activity Spectra for Substances) Prediction Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bo, M.; Niegowska, M.; Frau, J.; Sechi, G.; Arru, G.; Cocco, E.; Sechi, L.A. IL-2 and Mycobacterial Lipoarabinomannan as Targets of Immune Responses in Multiple Sclerosis Patients. Microorganisms 2020, 8, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cossu, D.; Mameli, G.; Galleri, G.; Cocco, E.; Masala, S.; Frau, J.; Marrosu, M.G.; Manetti, R.; Sechi, L.A. Human interferon regulatory factor 5 homologous epitopes of Epstein-Barr virus and Mycobacterium avium subsp. paratuberculosis induce a specific humoral and cellular immune response in multiple sclerosis patients. Mult. Scler. J. 2015, 21, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.T.; Sechi, L.A. Cows get Crohn’s disease and they’re giving us diabetes. Microorganisms 2019, 7, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masala, S.; Cossu, D.; Piccinini, S.; Rapini, N.; Mameli, G.; Manca Bitti, M.L.; Sechi, L.A. Proinsulin and MAP3865c homologous epitopes are a target of antibody response in new-onset type 1 diabetes children from continental Italy. Pediatr. Diabetes 2015, 16, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Bo, M.; Erre, G.L.; Bach, H.; Slavin, Y.N.; Manchia, P.A.; Passiu, G.; Sechi, L.A. PtpA and PknG proteins secreted by Mycobacterium avium subsp. Paratuberculosis are recognized by sera from patients with rheumatoid arthritis: A case–Control study. J. Inflamm. Res. 2019, 12, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Minardi, L.M.; Kuenstner, J.T.; Zhang, S.T.; Zekan, S.M.; Kruzelock, R. Serological Testing for Mycobacterial Heat Shock Protein Hsp65 Antibody in Health and Diseases. Microorganisms 2019, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Niegowska, M.; Paccagnini, D.; Burrai, C.; Palermo, M.; Sechi, L.A. Antibodies against proinsulin and homologous MAP epitopes are detectable in Hashimoto’s thyroiditis Sardinian patients, an additional link of association. PLoS ONE 2015, 10, 0133497. [Google Scholar] [CrossRef]
- Euesden, J.; Danese, A.; Lewis, C.M.; Maughan, B. A bidirectional relationship between depression and the autoimmune disorders—New perspectives from the National Child Development Study. PLoS ONE 2017, 12, e0173015. [Google Scholar] [CrossRef] [Green Version]
- Pierce, E.S. How did Lou Gehrig get Lou Gehrig’s disease? Mycobacterium avium subspecies paratuberculosis in manure, soil, dirt, dust and grass and amyotrophic lateral sclerosis (motor neurone disease) clusters in football, rugby and soccer players. Med. Hypotheses 2018, 119, 1–5. [Google Scholar] [CrossRef]
- Lin, T.-M.; Chen, W.-S.; Sheu, J.-J.; Chen, Y.-H.; Chen, J.-H.; Chang, C.-C. Autoimmune rheumatic diseases increase dementia risk in middle-aged patients: A nationwide cohort study. PLoS ONE 2018, 13, e0186475. [Google Scholar] [CrossRef]
- Arru, G.; Caggiu, E.; Paulus, K.; Sechi, G.P.; Mameli, G.; Sechi, L.A. Is there a role for Mycobacterium avium subspecies paratuberculosis in Parkinson’s disease? J. Neuroimmunol. 2016, 293, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.V.; Singh, P.K.; Singh, A.V.; Sohal, J.S.; Kumar, N.; Chaubey, K.K.; Gupta, S.; Rawat, K.D.; Kumar, A.; Bhatia, A.K.; et al. ‘Bio-Load’and Bio-Type Profiles of Mycobacterium avium subspecies paratuberculosis Infection in the Domestic Livestock Population Endemic for Johne’s Disease: A Survey of 28 years (1985–2013) in India. Transbound. Emerg. Dis. 2014, 61, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, S.; Singh, P.; Sohal, J.; Maitra, A.; Singh, A. Wildlife (Boselaphus tragocamelus)–small ruminant (goat and sheep) interface in the transmission of ‘Bison type’ genotype of Mycobacterium avium subspecies paratuberculosis in India. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, K.K.; Singh, S.V.; Gupta, S.; Singh, M.; Sohal, J.S.; Kumar, N.; Singh, M.K.; Bhatia, A.K.; Dhama, K. Mycobacterium avium subspecies paratuberculosis—An important food borne pathogen of high public health significance with special reference to India: An update. Vet. Q. 2017, 37, 282–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borody, T.J.; Leis, S.; Warren, E.F.; Surace, R. Treatment of severe Crohn’s disease using antimycobacterial triple therapy—Approaching a cure? Dig. Liver Dis. 2002, 34, 29–38. [Google Scholar] [CrossRef]
- Marcus, G.F.; Davis, E. Still searching for principles: A response to Goodman et al. Psychol. Sci. 2015, 26, 542–544. [Google Scholar] [CrossRef] [Green Version]
- Zoete, V.; Grosdidier, A.; Michielin, O. Docking, virtual high throughput screening and in silico fragment-based drug design. J. Cell. Mol. Med. 2009, 13, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Dokorou, V.; Kovala-Demertzi, D.; Jasinski, J.P.; Galani, A.; Demertzis, M.A. Synthesis, Spectroscopic Studies, and Crystal Structures of Phenylorganotin Derivatives with [Bis (2, 6-dimethylphenyl) amino] benzoic Acid: Novel Antituberculosis Agents. Helv. Chim. Acta 2004, 87, 1940–1950. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Geronikaki, A.; Poroikov, V.; Hadjipavlou-Litina, D.; Filimonov, D.; Lagunin, A.; Mgonzo, R. Computer aided predicting the biological activity spectra and experimental testing of new thiazole derivatives. Quant. Struct. Act. Relatsh. 1999, 18, 16–25. [Google Scholar] [CrossRef]
- Ullah, A.; Johora, F.T.; Sarkar, B.; Araf, Y.; Rahman, H. Curcumin analogs as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: A computer-based study. J. Recept. Signal Transduct. 2020, 40, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Guengerich, F.P. CYTOCHROME P-450 3A4: Regulation and Role in Drug Metabolism. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B.; Ullah, M.A.; Prottoy, M.N. Computational exploration of phytochemicals as potent inhibitors of acetylcholinesterase enzyme in Alzheimer’s disease. medRixiv 2020. [Google Scholar] [CrossRef]
- Swierczewska, M.; Lee, K.C.; Lee, S. What is the future of PEGylated therapies? Expert Opin. Emerg. Drugs 2015, 20, 531–536. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, B.; Ullah, A.; Araf, Y. A systematic and reverse vaccinology approach to design novel subunit vaccines against Dengue virus type-1 (DENV-1) and human Papillomavirus-16 (HPV-16). Inform. Med. Unlocked 2020, 19, 100343. [Google Scholar] [CrossRef]
- Aronov, A.M. Predictive in silico modeling for hERG channel blockers. Drug Discov. Today 2005, 10, 149–155. [Google Scholar] [CrossRef]
- Cheng, A.; Dixon, S.L. In silico models for the prediction of dose-dependent human hepatotoxicity. J. Comput. Mol. Des. 2003, 17, 811–823. [Google Scholar] [CrossRef]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2000, 455, 29–60. [Google Scholar] [CrossRef]
- Holt, M.P.; Ju, C. Mechanisms of drug-induced liver injury. AAPS J. 2006, 8, E48–E54. [Google Scholar] [CrossRef]
- Dixon, S.L.; Smondyrev, A.M.; Knoll, E.H.; Rao, S.N.; Shaw, D.E.; Friesner, R.A. PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Mol. Des. 2006, 20, 647–671. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, L.M.; Zain, Z.N.; SNS, A.J.; Seman, A.; Mansur, F.A.; Abdullah, N.S. The Potential Role Of Thrombopoietin And Il-6 In The Thrombocytosis Effect Of Carica Papaya Leaves. Int. J. Res. Pharm. Sci. 2021, 11, SPL4. [Google Scholar]
- Anosike, C.A.; Obidoa, O.; Ezeanyika, L.U. Membrane stabilization as a mechanism of the anti-inflammatory activity of methanol extract of garden egg (Solanum aethiopicum). DARU J. Pharm. Sci. 2012, 20, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schena, E.; Nedialkova, L.; Borroni, E.; Battaglia, S.; Cabibbe, A.M.; Niemann, S.; Utpatel, C.; Merker, M.; Trovato, A.; Hofmann-Thiel, S.; et al. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC™ MGIT™ 960 system. J. Antimicrob. Chemother. 2016, 71, 1532–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, B.; Islam, S.S.; Ullah, A.; Hossain, S.; Prottoy, N.I.; Araf, Y.; Taniya, M.A. Computational Assessment and Pharmacological Property Breakdown of Eight Patented and Candidate Drugs against Four Intended Targets in Alzheimer’s Disease. Adv. Biosci. Biotechnol. 2019, 10, 405–430. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, B.; Ullah, A.; Araf, Y.; Das, S.; Rahman, H.; Moin, A.T. Designing novel epitope-based polyvalent vaccines against herpes simplex virus-1 and 2 exploiting the immunoinformatics approach. J. Biomol. Struct. Dyn. 2020, 39, 6585–6605. [Google Scholar] [CrossRef]
- Filimonov, D.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014, 42, W53–W58. [Google Scholar] [CrossRef]
Ocimum Sanctum | Solanum Xanthocarpum | Mycobacterial First Line Drug | Mycobacterial Second Line Drugs | |||
---|---|---|---|---|---|---|
S. No. | Biological Activity | Bioactive Compound (Ursolic Acid) | Bioactive Compound (Solasodine) | Rifampicin | Clarithromycin | Ofloxacin |
1 | IC50 value against percentage of heat-induced hemolysis (250 µg/mL) | 51.2% | 89.5% | 32.9% | 49.8% | 55.7% |
2 | MIC50 value against MAP activity mg/mL | 12 µg/mL | 60 µg/mL | 150 µg/mL | 100 µg/mL | 72 µg/mL |
S.n | Ligand Name | Receptor Name | Docking Score/Binding Energy (Kcal/mol) | Distance from Best Mode | Interacting Amino Acids | Bond Distance in Å | Types of Bonds | |
---|---|---|---|---|---|---|---|---|
rmsd 1.b. | rmsdu.b. | |||||||
1 | Control: Rifampicin (PubChem CID: 135398735) | MAP (DPCK) Protein | −7.2 | 0 | 0 | Asn 332 | 2.83883 | Conventional Hydrogen Bond |
Asp 295 | 2.64456 | Carbon–hydrogen Bond | ||||||
Asp 379 | 3.56655 | Carbon–hydrogen Bond | ||||||
Val 382 | 3.26627 | Pi-Sigma | ||||||
Phe 345 | 3.93404 | Pi-Sigma | ||||||
Val 296 | 5.20374 | Alkyl | ||||||
Val 261 | 3.05739 | Alkyl | ||||||
Lys 259 | 4.23769 | Alkyl | ||||||
Val 382 | 4.82889 | Alkyl | ||||||
Tyr 381 | 4.42997 | Pi-Alkyl | ||||||
2 | Solasodine (PubChem CID: 442985) | MAP (DPCK) Protein | −9 | 0 | 0 | Val 245 | 5.04793 | Alkyl |
Ala 346 | 4.5958 | Alkyl | ||||||
Val 382 | 5.29692 | Alkyl | ||||||
Hiss 334 | 4.84765 | Pi-Alkyl | ||||||
3 | Ursolic acid (PubChem CID: 64945) | MAP (DPCK) Protein | −9.8 | 0 | 0 | Ala 346 | 3.08779 | Carbon–hydrogen Bond |
5.12244 | Alkyl | |||||||
Val 382 | 5.14104 | Alkyl | ||||||
Lys 259 | 4.31314 | Alkyl | ||||||
Val 261 | 5.06138 | Alkyl | ||||||
Trp 317 | 4.91095 | Pi-Alkyl | ||||||
Phe 345 | 5.01353 | Pi-Alkyl | ||||||
5.3777 | Pi-Alkyl | |||||||
Phe 389 | 4.94191 | Pi-Alkyl |
Drug-Likeness Properties | Solasodine | Ursolic Acid |
---|---|---|
Lipinski’s rule of five | Yes | Yes |
Molecular weight (g/mol) | 413.67 | 456.7 |
Concensus Log Po/w | 4.69 | 5.93 |
Log S | −4.8 | −5.67 |
Num. H-bond acceptors | 3 | 3 |
Num. H-bond donors | 2 | 2 |
Ghose | No | No |
Veber | Yes | Yes |
Egan | Yes | No |
Muegge | No | No |
Molar Refractivity | 127.23 | 132.61 |
TPSA (Ų) | 41.49 | 57.53 |
Druglikeness score | 0.55 | 0.85 |
Class | Properties | Solasodine (with Probability) | Ursolic Acid (with Probability) |
---|---|---|---|
Absorption | Pgbinhibitor | Negative | Negative |
Pgbsubstrate | Positive | Negative | |
GI absorption (Gastrointestinal Absorption) | High | Low | |
Distribution | BBB (Blood–Brain Barrier) | Positive | Negative |
Metabolism | CYP450 1A2 inhibition | Negative | Negative |
CYP450 3A4 inhibition | Negative | Negative | |
CYP450 2C9 inhibition | Negative | Negative | |
CYP450 2C19 inhibition | Negative | Negative | |
CYP450 2D6 inhibition | Negative | Negative | |
Skin permeation | 5.00 cm/s | 3.87 cm/s | |
Excretion | T1/2 (h) | 1.7 | 0.5 |
Toxicity | DILI (Drug-Induced Liver Injury) | Negative | Negative |
H-HT (Human Hepatotoxicity) | Negative | Negative | |
Ames (Ames Mutagenicity) | Negative | Negative | |
hERG (hERG Blockers) | Non-blocker | Non-blocker |
S. No. | Biological Activities | Solasodine | Ursolic Acid | ||
---|---|---|---|---|---|
Predicted LD50: NA | Predicted LD50: 300 mg/kg | ||||
Toxicity Class: NA | Toxicity Class: NA | ||||
Pa | Pi | Pa | Pi | ||
1 | Antiinflammatory | 0.908 | 0.004 | 0.864 | 0.005 |
2 | Spasmolytic, Papaverin-like | 0.893 | 0.003 | - | - |
3 | Antineoplastic | 0.860 | 0.006 | 0.857 | 0.006 |
4 | Diuretic inhibitor | 0.828 | 0.002 | - | - |
5 | Glyceryl-ether monooxygenase inhibitor | 0.807 | 0.005 | - | - |
6 | Antineoplastic (lung cancer) | 0.735 | 0.005 | - | - |
7 | Acylcarnitine hydrolase inhibitor | 0.738 | 0.021 | 0.748 | 0.019 |
8 | Phosphatase inhibitor | 0.717 | 0.010 | 0.764 | 0.005 |
9 | Hepatoprotectant | - | - | 0.961 | 0.001 |
10 | Transcription factor NF kappa B stimulant | - | - | 0.927 | 0.001 |
11 | Transcription factor stimulant | - | - | 0.927 | 0.001 |
12 | Antiprotozoal (Leishmania) | - | - | 0.915 | 0.003 |
13 | Caspase 3 stimulant | - | - | 0.912 | 0.003 |
14 | Apoptosis agonist | - | - | 0.890 | 0.004 |
15 | Membrane integrity antagonist | - | - | 0.885 | 0.003 |
16 | Diacylglycerol O-acyltransferase inhibitor | - | - | 0.882 | 0.001 |
17 | Hypolipemic | - | - | 0.885 | 0.004 |
18 | Oxidoreductase inhibitor | - | - | 0.876 | 0.003 |
19 | Wound-healing agent | - | - | 0.868 | 0.003 |
20 | Antiulcerative | - | - | 0.861 | 0.003 |
21 | Hepatic disorders treatment | - | - | 0.856 | 0.003 |
22 | Testosterone 17beta-dehydrogenase (NADP+) inhibitor | - | - | 0.863 | 0.012 |
23 | Nitric oxide antagonist | - | - | 0.843 | 0.002 |
24 | Alkenylglycerophosphocholine hydrolase inhibitor | - | - | 0.846 | 0.012 |
25 | Caspase 8 stimulant | - | - | 0.834 | 0.001 |
26 | Antinociceptive | - | - | 0.821 | 0.001 |
27 | Mucomembranous protector | - | - | 0.804 | 0.017 |
28 | Chemopreventive | - | - | 0.790 | 0.004 |
29 | Antiviral (Influenza) | - | - | 0.761 | 0.004 |
30 | Antipruritic | - | - | 0.748 | 0.005 |
31 | Protein phosphatase inhibitor | - | - | 0.715 | 0.003 |
32 | Alkylacetylglycerophosphatase inhibitor | - | - | 0.717 | 0.018 |
33 | Antieczematic | - | - | 0.727 | 0.037 |
34 | Nootropic | - | - | 0.708 | 0.039 |
35 | CYP2J substrate | - | - | 0.713 | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navabharath, M.; Srivastava, V.; Gupta, S.; Singh, S.V.; Ahmad, S. Ursolic Acid and Solasodine as Potent Anti-Mycobacterial Agents for Combating Paratuberculosis: An Anti-Inflammatory and In Silico Analysis. Molecules 2023, 28, 274. https://doi.org/10.3390/molecules28010274
Navabharath M, Srivastava V, Gupta S, Singh SV, Ahmad S. Ursolic Acid and Solasodine as Potent Anti-Mycobacterial Agents for Combating Paratuberculosis: An Anti-Inflammatory and In Silico Analysis. Molecules. 2023; 28(1):274. https://doi.org/10.3390/molecules28010274
Chicago/Turabian StyleNavabharath, Manthena, Varsha Srivastava, Saurabh Gupta, Shoor Vir Singh, and Sayeed Ahmad. 2023. "Ursolic Acid and Solasodine as Potent Anti-Mycobacterial Agents for Combating Paratuberculosis: An Anti-Inflammatory and In Silico Analysis" Molecules 28, no. 1: 274. https://doi.org/10.3390/molecules28010274
APA StyleNavabharath, M., Srivastava, V., Gupta, S., Singh, S. V., & Ahmad, S. (2023). Ursolic Acid and Solasodine as Potent Anti-Mycobacterial Agents for Combating Paratuberculosis: An Anti-Inflammatory and In Silico Analysis. Molecules, 28(1), 274. https://doi.org/10.3390/molecules28010274