Copolymers of 4-Trimethylsilyl Diphenyl Acetylene and 1-Trimethylsilyl-1-Propyne: Polymer Synthesis and Luminescent Property Adjustment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Copolymerization
2.2. Structural Characterization
2.3. Photophysical Property
2.4. Explosive Detection
3. Materials and Methods
3.1. Materials
3.2. Instruments
3.3. Polymer Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene,(CH)x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Shirakawa, H. The discovery of polyacetylene film: The dawning of an era of conducting polymers (nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2575–2580. [Google Scholar] [CrossRef]
- MacDiarmid, A.G. “Synthetic metals”: A novel role for organic polymers (nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590. [Google Scholar] [CrossRef]
- Heeger, A.J. Semiconducting and metallic polymers: The fourth generation of polymeric materials (nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2591–2611. [Google Scholar] [CrossRef]
- Lam, J.W.Y.; Tang, B.Z. Functional polyacetylenes. Acc. Chem. Res. 2005, 38, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Shiotsuki, M.; Sanda, F.; Freeman, B.D.; Masuda, T. Synthesis and properties of indan-based polyacetylenes that feature the highest gas permeability among all the existing polymers. Macromolecules 2008, 41, 8525–8532. [Google Scholar] [CrossRef]
- Nagai, K.; Masuda, T.; Nakagawa, T.; Freeman, B.D.; Pinnau, I. Poly 1-(trimethylsilyl)-1-propyne and related polymers: Synthesis, properties and functions. Prog. Polym. Sci. 2001, 26, 721–798. [Google Scholar] [CrossRef]
- Tsuchihara, K.; Masuda, T.; Higashimura, T. Tractable silicon-containing poly(diphenylacetylenes)—Their synthesis and high gas-permeability. J. Am. Chem. Soc. 1991, 113, 8548–8549. [Google Scholar] [CrossRef]
- Han, D.C.; Jin, Y.J.; Lee, J.H.; Kim, S.I.; Kim, H.J.; Song, K.H.; Kwak, G. Environment-specific fluorescence response of microporous, conformation-variable conjugated polymer film to water in organic solvents: On-line real-time monitoring in fluidic channels. Macromol. Chem. Phys. 2014, 215, 1068–1076. [Google Scholar] [CrossRef]
- Jin, Y.J.; Bae, J.E.; Cho, K.S.; Lee, W.E.; Hwang, D.Y.; Kwak, G. Room temperature fluorescent conjugated polymer gums. Adv. Funct. Mater. 2014, 24, 1928–1937. [Google Scholar] [CrossRef]
- Lee, W.E.; Jin, Y.J.; Kim, S.I.; Kwak, G.; Kim, J.H.; Sakaguchi, T.; Lee, C.L. Fluorescence turn-on response of a conjugated polyelectrolyte with intramolecular stack structure to biomacromolecules. Chem. Commun. 2013, 49, 9857–9859. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.J.; Kwak, G. Unusual, highly efficient fluorescence emission enhancement of conjugated polymers with an intramolecular stack structure through thermal annealing at high temperature. Macromolecules 2017, 50, 9846–9851. [Google Scholar] [CrossRef]
- Kwak, G.; Fukao, S.; Fujiki, M.; Sakaguchi, T.; Masuda, T. Temperature-dependent, static, and dynamic fluorescence properties of disubstituted acetylene polymer films. Chem. Mater. 2006, 18, 2081–2085. [Google Scholar] [CrossRef]
- Lee, W.E.; Lee, C.L.; Sakaguchi, T.; Fujiki, M.; Kwak, G. Piezochromic fluorescence in liquid crystalline conjugated polymers. Chem. Commun. 2011, 47, 3526–3528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.Z.; Lam, J.W.Y.; Tang, B.Z. Acetylenic polymers: Syntheses, structures, and functions. Chem. Rev. 2009, 109, 5799–5867. [Google Scholar] [CrossRef]
- Yang, F.L.; Zhang, S.J.; Shen, T.X.; Ni, J.C.; Zhang, J.; Cheng, X.; Sun, J.Z.; Fu, Z.S.; Tang, B.Z. Polymerization of 1-chloro-2-phenylacetylene derivatives by using a brookhart-type catalyst. Polym. Chem. 2019, 10, 4801–4809. [Google Scholar] [CrossRef]
- Masuda, T.; Isobe, E.; Higashimura, T.; Takada, K. Poly[1-(trimethylsilyl)-1-propyne]- a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas-permeability. J. Am. Chem. Soc. 1983, 105, 7473–7474. [Google Scholar] [CrossRef]
- Hamano, T.; Masuda, T.; Higashimura, T. Polymerization of silicon-containing acetylenes. 8. Copolymerization of 1-(trimethylsilyl)-1-propyne with disubstituted hydrocarbon acetylenes. J. Polym. Sci. Part A Polym. Chem. 1988, 26, 2603–2612. [Google Scholar] [CrossRef]
- Ghisellini, M.; Quinzi, M.; Baschetti, M.G.; Doghieri, F.; Costa, G.; Sarti, G.C. Sorption and diffusion of vapors in ptmsp and ptmsp/ptmse copolymers. Desalination 2002, 149, 441–445. [Google Scholar] [CrossRef]
- Sultanov, E.Y.; Ezhov, A.A.; Shishatskiy, S.M.; Buhr, K.; Khotimskiy, V.S. Synthesis, characterization, and properties of poly(1-trimethylsilyl-1-propyne)-block-poly(4-methyl-2-pentyne) block copolymers. Macromolecules 2012, 45, 1222–1229. [Google Scholar] [CrossRef]
- Jin, Y.J.; Kwak, G. Properties, functions, chemical transformation, nano-, and hybrid materials of poly(diphenylacetylene)s toward sensor and actuator applications. Polym. Rev. 2016, 57, 175–199. [Google Scholar] [CrossRef]
- Kwak, G.; Lee, W.E.; Jeong, H.; Sakaguchi, T.; Fujiki, M. Swelling-induced emission enhancement in substituted acetylene polymer film with large fractional free volume: Fluorescence response to organic solvent stimuli. Macromolecules 2009, 42, 20–24. [Google Scholar] [CrossRef]
- Lee, W.E.; Han, D.C.; Sakaguchi, T.; Kim, Y.B.; Lee, C.L.; Kwak, G. Finely tuned fluorescence emission of polydiphenylacetylene films obtained by copolymerization. Macromol. Chem. Phys. 2012, 213, 2293–2298. [Google Scholar] [CrossRef]
- Kwak, G.; Minakuchi, M.; Sakaguchi, T.; Masuda, T.; Fujiki, M. Alkyl side-chain length effects on fluorescence dynamics, lamellar layer structures, and optical anisotropy of poly(diphenylacetylene) derivatives. Macromolecules 2008, 41, 2743–2746. [Google Scholar] [CrossRef]
- Lee, W.E.; Lee, C.L.; Sakaguchi, T.; Fujiki, M.; Kwak, G. Fluorescent viscosity sensor film of molecular-scale porous polymer with intramolecular pi-stack structure. Macromolecules 2011, 44, 432–436. [Google Scholar] [CrossRef]
- Lee, W.E.; Oh, C.J.; Kang, I.K.; Kwak, G. Diphenylacetylene polymer nanofiber mats fabricated by freeze drying: Preparation and application for explosive sensors. Macromol. Chem. Phys. 2010, 211, 1900–1908. [Google Scholar] [CrossRef]
- Lee, W.E.; Oh, C.J.; Park, G.T.; Kim, J.W.; Choi, H.J.; Sakaguchi, T.; Fujiki, M.; Nakao, A.; Shinohara, K.-I.; Kwak, G. Substitution position effect on photoluminescence emission and chain conformation of poly(diphenylacetylene) derivatives. Chem. Commun. 2010, 46, 6491. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.I.; Jin, Y.J.; Lee, W.E.; Yu, R.; Park, S.J.; Kim, H.J.; Song, K.H.; Kwak, G. Microporous conjugated polymers with enhanced emission in immiscible two-phase system in response to surfactants. Adv. Mater. Interfaces 2014, 1, 7. [Google Scholar] [CrossRef]
- Shen, X.Y.; Wang, Y.J.; Zhao, E.G.; Yuan, W.Z.; Liu, Y.; Lu, P.; Qin, A.J.; Ma, Y.G.; Sun, J.Z.; Tang, B.Z. Effects of substitution with donor-acceptor groups on the properties of tetraphenylethene trimer: Aggregation-induced emission, solvatochromism, and mechanochromism. J. Phys. Chem. C 2013, 117, 7334–7347. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, Z.Y.; Tong, J.Q.; Shen, X.Y.; Qin, A.J.; Sun, J.Z.; Tang, B.Z. The fluorescence properties and aggregation behavior of tetraphenylethene-perylenebisimide dyads. J. Mater. Chem. C 2015, 3, 3559–3568. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.J.; Wang, Y.M.; Sun, J.Z.; Tang, B.Z. Poly(phenylene-ethynylene-alt-tetraphenylethene) copolymers: Aggregation enhanced emission, induced circular dichroism, tunable surface wettability and sensitive explosive detection. Polym. Chem. 2017, 8, 2353–2362. [Google Scholar] [CrossRef]
- Xue, J.Q.; Bai, W.; Duan, H.Y.; Nie, J.J.; Du, B.Y.; Sun, J.Z.; Tang, B.Z. Tetraphenylethene cross-linked thermosensitive microgels via acylhydrazone bonds: Aggregation-induced emission in nanoconfined environments and the cononsolvency effect. Macromolecules 2018, 51, 5762–5772. [Google Scholar] [CrossRef]
- Dong, W.Y.; Fei, T.; Palma, A.; Scherf, U. Aggregation induced emission and amplified explosive detection of tetraphenylethylene-substituted polycarbazoles. Polym. Chem. 2014, 5, 4048–4053. [Google Scholar] [CrossRef] [Green Version]
- Li, D.D.; Zhang, Y.P.; Fan, Z.Y.; Yu, J.H. Aie luminogen-functionalised mesoporous nanomaterials for efficient detection of volatile gases. Chem. Commun. 2015, 51, 13830–13833. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Ma, Z.; Zhang, W.Q.; Xu, J.L.; Wei, W.; Lu, H.; Zhao, X.S.; Wang, X.J. Aie-active tetraphenylethene functionalized metal-organic framework for selective detection of nitroaromatic explosives and organic photocatalysis. Chem. Commun. 2016, 52, 11284–11287. [Google Scholar] [CrossRef]
- Shyamal, M.; Maity, S.; Mazumdar, P.; Sahoo, G.P.; Maity, R.; Misra, A. Synthesis of an efficient pyrene based aie active functional material for selective sensing of 2,4,6-trinitrophenol. J. Photochem. Photobiol. A Chem. 2017, 342, 1–14. [Google Scholar] [CrossRef]
- Palma, A.; Woitassek, D.; Brunklaus, G.; Scherf, U. Luminescent tetraphenylethene-cored, carbazole- and thiophene-based microporous polymer films for the chemosensing of nitroaromatic analytes. Mater. Chem. Front. 2017, 1, 1118–1124. [Google Scholar] [CrossRef]
- Wang, G.Z.; Li, M.L.; Wei, Q.H.; Xiong, Y.H.; Li, J.; Li, Z.W.; Tang, J.Y.; Wei, F.; Tu, H.L. Design of an aie-active flexible self-assembled monolayer probe for trace nitroaromatic compound explosive detection. ACS Sens. 2021, 6, 1849–1856. [Google Scholar] [CrossRef]
- Li, H.K.; Wu, H.Q.; Zhao, E.G.; Li, J.; Sun, J.Z.; Qin, A.J.; Tang, B.Z. Hyperbranched poly(aroxycarbonyltriazole)s: Metal-free click polymerization, light refraction, aggregation-induced emission, explosive detection, and fluorescent patterning. Macromolecules 2013, 46, 3907–3914. [Google Scholar] [CrossRef]
- Wang, J.; Mei, J.; Yuan, W.Z.; Lu, P.; Qin, A.J.; Sun, J.Z.; Ma, Y.G.; Tang, B.Z. Hyperbranched polytriazoles with high molecular compressibility: Aggregation-induced emission and superamplified explosive detection. J. Mater. Chem. 2011, 21, 4056–4059. [Google Scholar] [CrossRef]
- Yuan, W.Z.; Zhao, H.; Shen, X.Y.; Mahtab, F.; Lam, J.W.Y.; Sun, J.Z.; Tang, B.Z. Luminogenic polyacetylenes and conjugated polyelectrolytes: Synthesis, hybridization with carbon nanotubes, aggregation-induced emission, superamplification in emission quenching by explosives, and fluorescent assay for protein quantitation. Macromolecules 2009, 42, 9400–9411. [Google Scholar] [CrossRef]
Samples | Feed Ratio (TMSP:TMSDPA) | t (min) | Y b (%) | Mwc (×104) | PDI c | Color | QY (%) |
---|---|---|---|---|---|---|---|
PTMSP | 100:0 | 2 | 38 | 187.5 | 1.56 | white | |
P1 | 80:20 | 2 | 19 | 178.0 | 1.71 | white | 9.1 |
P2 | 60:40 | 2 | 13 | 158.6 | 1.93 | white | 10.7 |
P3 | 40:60 | 2 | - | - | - | ||
P4 | 20:80 | 2 | - | - | - | ||
PTMSDPA | 0:100 | 2 | 20 | 233.2 | 1.71 | yellow | 25.5 |
P5 | 50:50 | 2 | 11 | 86.9 | 2.00 | white | 45.0 |
P6 | 50:50 | 4 | 18 | 111.1 | 1.86 | white | 47.1 |
P7 | 50:50 | 10 | 22 | 107.4 | 2.12 | light yellow | 39.1 |
P8 | 50:50 | 30 | 33 | 107.0 | 2.10 | yellow | 23.8 |
P9 | 50:50 | 50 | 40 | 146.9 | 2.24 | yellow | 9.6 |
P10 d | 50:50 | 4 | 18 | 105.4 | 1.77 | white | 51.8 |
P11 e | 50:50 | 4 | 19 | 106.8 | 1.99 | white | 19.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, T.; Chen, M.; Zhang, H.; Sun, J.Z.; Tang, B.Z. Copolymers of 4-Trimethylsilyl Diphenyl Acetylene and 1-Trimethylsilyl-1-Propyne: Polymer Synthesis and Luminescent Property Adjustment. Molecules 2023, 28, 27. https://doi.org/10.3390/molecules28010027
Shen T, Chen M, Zhang H, Sun JZ, Tang BZ. Copolymers of 4-Trimethylsilyl Diphenyl Acetylene and 1-Trimethylsilyl-1-Propyne: Polymer Synthesis and Luminescent Property Adjustment. Molecules. 2023; 28(1):27. https://doi.org/10.3390/molecules28010027
Chicago/Turabian StyleShen, Tanxiao, Manyu Chen, Haoke Zhang, Jing Zhi Sun, and Ben Zhong Tang. 2023. "Copolymers of 4-Trimethylsilyl Diphenyl Acetylene and 1-Trimethylsilyl-1-Propyne: Polymer Synthesis and Luminescent Property Adjustment" Molecules 28, no. 1: 27. https://doi.org/10.3390/molecules28010027
APA StyleShen, T., Chen, M., Zhang, H., Sun, J. Z., & Tang, B. Z. (2023). Copolymers of 4-Trimethylsilyl Diphenyl Acetylene and 1-Trimethylsilyl-1-Propyne: Polymer Synthesis and Luminescent Property Adjustment. Molecules, 28(1), 27. https://doi.org/10.3390/molecules28010027