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Abstract: Poly(4-trimethylsilyl diphenyl acetylene) (PTMSDPA) has strong fluorescence emission,
but its application is limited by the effect of aggregation-caused quenching (ACQ). Copolymerization
is a commonly used method to adjust the properties of polymers. Through the copolymerization of
4-trimethylsilyl diphenyl acetylene and 1-trimethylsilyl-1-propyne (TMSP), we successfully realized
the conversion of PTMSDPA from ACQ to aggregation-induced emission (AIE) and aggregation-
induced emission enhancement (AEE). By controlling the monomer feeding ratio and with the
increase of the content of TMSDPA inserted into the copolymer, the emission peak was red-shifted,
and a series of copolymers of poly(TMSDPA-co-TMSP) that emit blue–purple to orange–red light was
obtained, and the feasibility of the application in explosive detection was verified. With picric acid
(PA) as a model explosive, a super-quenching process has been observed, and the quenching constant
(KSV) calculated from the Stern–Volmer equation is 24,000 M−1, which means that the polymer is
potentially used for explosive detection.

Keywords: copolymerization; disubstituted-acetylene; fluorescence; AIE; explosive detection

1. Introduction

Polyacetylene is a well-known conjugated polymer because of the metallic conductivity
found in its highly doped films, which opened a new area of research on “synthetic
metals” [1–4]. However, pristine polyacetylene is very unstable and intractable, and
thereby the scope of its practical applications has been heavily limited. Replacement
of the two hydrogen atoms on the acetylene monomer with appropriate substituents
endows disubstituted acetylenes, and the corresponding polymers or poly(disubstituted
acetylene)s (PDSAs) exhibited good stability and processability [5]. In recent years, PDSAs
have shown advanced functions and promising applications in some high-tech areas,
such as ultra-high gas permeability [6–8] for the transportation of small-molecule gases
and solvents and luminescent elastomers for stimuli-responsive materials [9–14]. Due to
the poor tolerance of polymerization catalysts to polar functional groups, however, the
disubstituted acetylene monomers available for polymerization are very limited [15], which
seriously restricts the related basic research and the development of new products. From
the perspective of synthetic chemistry, there are mainly three ways to change the functions
of polymeric materials. One is to change the polymerization reaction route so that the
functional monomer can be polymerized to obtain the desired performance. However,
some polymerization routes have problems to be solved, such as a long reaction time,
low conversion rate and yield, etc. The second is to change the polymerization catalyst
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and adjust the polymer chain structure, to obtain an improved performance. It is very
difficult to develop new catalysts, and only palladium (Pd)-based catalysts [16] have been
developed so far. Most PDSAs are polymerized using conventional early transition metal
compounds such as WCl6, MoCl5, NbCl5, and TaCl5 as catalysts. The third is to adjust the
chemical composition and chain structure of the polymers by copolymerization to achieve
the purpose of property modification.

Copolymerization, as one of the most commonly used modification methods, has also
been reported for the preparation of PDSAs, but it is far less than that of olefin-based copoly-
mers. The documented reports mainly focus on the two PDSAs, poly(1-trimethylsillyl-1-
propyne) (PTMSP) and poly(4-trimethylsilyl diphenyl acetylene) (PTMSDPA). Since the first
report of PTMSP in 1983 [17], a series of publications has appeared due to its unique struc-
ture and properties and, in particular, the extremely high gas permeability. Hamano [18]
noticed that TMSP could copolymerize with other double-substituted acetylene monomers
under the catalysis of TaCl5/Ph3Bi or NbCl5/Ph3Bi, and the reaction activity sequence of
monomers was obtained through the copolymerization curve: 2-octyne > TMSP > 4-octyne
> 1-phenyl-1-propyne > 1-phenyl-1-hexyne. Ghisellini [19] realized the copolymerization
of TMSP with 1-trimethyl-1-hexene, and the catalyst used was TaCl5/Ph3Bi. Khotimsky
and colleagues [20] investigated the copolymerization of 4-methyl-2-pentyne and TMSP
initiated by catalytic systems based on NbCl5. PTMSDPA as a very unusual π-conjugated
polymer has a polyene backbone and two side phenyl rings and is quite emissive [21] and
responsive to external stimuli such as liquid solvents [22]. Kwak [23] explored PTMSDPA
copolymers containing both longer and shorter alkyl side chains in the same backbone.

All the above copolymerized monomers have very similar structures, so there is great
potential to regulate the property of PDSAs through copolymerization. We prepared a
series of copolymers of TMSP and TMSDPA, as shown in Scheme 1. The characterization
data confirmed that the resultant polymers possess the expected chemical structure, and the
properties of these copolymers were investigated. We took advantage of the AIE properties
of P7 to detect picric acid (PA), a model compound of nitro-aromatic explosives in aqueous
media, and a high sensitivity to PA has been achieved.
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Scheme 1. Synthetic route of the copolymerization of TMSP and TMSDPA.

2. Results and Discussion
2.1. Copolymerization

Copolymerization of the two monomers was conducted by using TaCl5–Bu4Sn, which
was selected from seven catalysts (TaCl5–Bu4Sn, TaCl5–Ph3SiH, NbCl5–Ph4Sn, NbCl5–
Ph3SiH, WCl6–Ph4Sn, WCl6–Ph3SiH, and MoCl5–Bu4Sn), because the copolymerization
reaction could only proceed under this catalyst. Table 1 presents the results of the copoly-
merization of the monomers. The polymer yield of P1, regarded as adding a small amount
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of TMSDPA to the TMSP system, was reduced to 50% of PTMSP, although the molecular
weight was not significantly changed. Accordingly, it could be suggested from P4 that the
reaction could not succeed once TMSP was added to TMSDPA. Further research showed
that when the contents of TMSDPA reached 60% and 80%, there was no product. When
TMSP reached 60% and 80%, small amounts of products could be obtained. Then, we
speculated that the complex catalyst of TaCl5–Bu4Sn tends to polymerize TMSP.

Table 1. Copolymerization of TMSP and TMSDPA a.

Samples Feed Ratio
(TMSP:TMSDPA)

t
(min)

Y b

(%)
Mw

c

(×104) PDI c Color QY
(%)

PTMSP 100:0 2 38 187.5 1.56 white
P1 80:20 2 19 178.0 1.71 white 9.1
P2 60:40 2 13 158.6 1.93 white 10.7
P3 40:60 2 - - -
P4 20:80 2 - - -

PTMSDPA 0:100 2 20 233.2 1.71 yellow 25.5
P5 50:50 2 11 86.9 2.00 white 45.0
P6 50:50 4 18 111.1 1.86 white 47.1
P7 50:50 10 22 107.4 2.12 light yellow 39.1
P8 50:50 30 33 107.0 2.10 yellow 23.8
P9 50:50 50 40 146.9 2.24 yellow 9.6

P10 d 50:50 4 18 105.4 1.77 white 51.8
P11 e 50:50 4 19 106.8 1.99 white 19.8

a Conditions: [TaCl5] = 0.1 mmol, [Bu4Sn] = 0.2 mmol in 6 mL toluene solution, T = 80 ◦C, t = time, Y = yield,
PDI = poly-dispersion index, QY = quantum yield of solid. b The product was precipitated from methanol/acetone
(v/v, 5/1). c Estimated by GPC of the THF-soluble part against polystyrene calibration. d TMSP is added first,
and TMSDPA is added after 2 min. e TMSDPA is added first, and TMSP is added after 2 min.

We also examined the time effect of the polymerization reaction. The molecular weight
reached 106 even though the reaction time was only 2 min for the homo-polymerization of
TMSP and TMSDPA. Gel was produced when the reaction time was extended to 10 min.
The results indicate that the catalyst has very high activity in the homo-polymerization of
TMSP and TMSDPA. The product yield improved with the increase of the reaction time, but
the molecular weight was almost unchanged, as suggested by the comparison between P5
and P9. These results indicate that the initiation of the active center is the rate-determining
step in polymerization, and the chain growth rate is extremely high. The results of P10
and P11 show that the yield and molecular weight of the polymer were not significantly
affected by changing monomer sequences.

2.2. Structural Characterization

FTIR and 1H NMR spectroscopic techniques were employed to confirm the chemical
structure of the polymers. We used the characterization data of P7 as representative
of the copolymer to compare with the homopolymer. Other copolymers have similar
data (Supplementary Materials: Figures S1–S3). As clearly shown in the FTIR spectra
(Figure 1), the absorption band around 2200 cm−1 that could be attributed to the tensile
vibration of the C≡C bond was absent. At the same time, a new asymmetric absorption
band near 1600 cm−1 appeared, which can be assigned to the asymmetric stretching
vibration peak of the C=C bond. The changes of these two characteristic bands indicate the
complete consumption of the triple bond and transformation into the double bond after the
polymerization reaction. Infrared absorption spectra were used to further characterize the
influence of the reaction time on the polymer composition (Figure S3). The overall infrared
spectrum changes showed a trend of superposition of PTMSP and PTMSDPA spectra with
the reaction time. The absorption band of 1120 cm−1 assigned as the respiratory vibration
of the benzene ring appeared in the infrared spectrum since P8, indicating that the TMSDPA
component in the copolymer increased with the increase of time.
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Figure 1. FTIR spectra of PTMSP, P2, P7, and PTMSDPA in KBr pellets.

Further evidence comes from the 1H NMR spectra (Figure 2) of PTMSP, P7, and
PTMSDPA. The signal in the low-field part of the spectrum was amplified for analysis.
The resonant peak around 7.5 ppm, which was assigned to the protons of the benzene
ring, existed in P7. The monomer showed a sharp resonance signal around 0.1 ppm,
which was assigned to the protons of methyl and transformed into a dull band. The above
results suggest that copolymerization of phenyl disubstituted acetylene and alkyl-silyl
disubstituted acetylene has been successfully achieved.
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2.3. Photophysical Property

Poly-diphenyl acetylenes are highly emissive even in a solid state since the intro-
duction of the benzene ring changes the electronic structure of the backbone, and the
fluorescence property of PTMSDPA has been widely reported [24–28]. Since no one has
tried to synthesize copolymers containing PTMSDPA chain segments, the absorption and
emission properties of these copolymers have never been reported anywhere. Figure 3a
shows the UV-visible absorption spectra of copolymers.

A straight line in the range from 370 to 620 nm of PTMSP was recorded, and this
observation is consistent with the appearance of the white powder. This means that the
polymer does not have the extended electronic structure of general polyacetylenes, because
the large substituents distort the conjugation of the polyene backbone. PTMSDPA has
two obvious absorption peaks at 430 and 375 nm, respectively. The absorption band of
430 nm can be assigned to the π-π* transition of the conjugated backbone of the poly-
mer, and the absorption band of 375 nm can be assigned to the π-π* transition of the
diphenylethylene conjugated unit. There are no characteristic absorption peaks of 375 nm
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and 430 nm assigned to PTMSDPA in P1 and P2, indicating that P1 and P2 contain few or
no diphenylethylene conjugate units, and this is consistent with the results of structural
characterization. P5 and P6 still do not show the characteristic absorption band at 430 nm,
suggesting that it is difficult to link the TMSDPA monomer to the PTMSP chain end when
the reaction time is short. P7 shows the character of PTMSDPA’s UV absorption peak.
This indicates that when the reaction time is prolonged to a sufficient degree, the TMSP
monomer is consumed and the active center begins to accept the introduction of TMSDPA,
resulting in the occurrence of PTMSDPA fragments in the polymer chain. As a result, the
UV-visible absorption spectrum of the polymer shows the characteristic absorption band of
its homopolymer. The UV-visible absorption spectra of the polymer P8 and P9 were more
obvious by prolonging the polymerization time to 30 and 50 min, which indicates that there
are already enough PTMSDPA segments in the polymers. Compared with P10, the stronger
UV absorption peak of P11 (Figure S5) at 415 nm indicates that there are more TMSDPA
fragments in the main chain, which further indicates that it is difficult for TMSDPA to insert
into the PTMSP chain.
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and P9.

The above deduction was supported by the experimental data shown in Figure 4. The
PTMSP was non-emissive in THF solution, and a strong luminescence peak of 498 nm
appeared in the photoluminescence (PL) spectrum of PTMSDPA. The PL spectrum of P1
almost overlaps with PTMSP. However, P2 shows a weak luminescence peak at around
490 nm, indicating that the copolymerization was successful. This is inconsistent with the
previous results because fluorescence spectra are more sensitive than FTIR, 1H NMR, and
UV-visible absorption spectra. P7–P9 solutions showed gradually enhanced fluorescence
emission. The red-shift fluorescence emission peak of P11 (Figure S6) compared with P10
confirmed our previous results. The luminescent performance of P5 and P6 looks abnormal:
their dilute solutions have not shown absorption and emission bands, which implies that
there are no TMSDPA segments in polymers. However, their powders emit fluorescence
under UV light (Figure S7). This phenomenon can be associated with the aggregation-
induced emission (AIE) effect. For a typical AIE molecule or macromolecule, there is no or
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very weak luminescent emission observed for the dilute solution of a good solvent, however
significantly enhanced luminescent emission can be recorded when the molecules form
aggregates or are trapped in a certain cramped environment [29–32]. Tetraphenylethylene
(TPE) is a representative AIE-active luminogen (AIEgen), and the structure for the main
chain of poly(TMSP-co-TMSDPA) containing two adjacently inserted TMSDPA units is
similar to that of TPE. The absence of fluorescence emission of P6 in the solution state does
not mean the absence of TMSDPA units in the polymer chain but it indicates that there
are very short segments of TMSDPA in the polymer chain, serving as the source of the
AIE property.
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The fluorescence spectra (Figure 5) of solid powders of polymers P5–P9 were mea-
sured to verify the above deduction. The solid powders of P5 and P6 both emitted blue
fluorescence with a peak at around 470 nm when a larger ratio of TMSDPA monomer
was introduced into the polymer chain with the extension of the polymerization time,
and the PTMSDPA segments were lengthened. Consequently, the emission spectrum was
red-shifted. The emission peaks of P7–P9 solids appeared at 545, 555, and 558 nm, re-
spectively. According to the classical method to verify the AIE properties of molecules,
the PL behavior of the polymers in the mixed solvent system of THF/H2O with different
water contents was analyzed by using THF as a good solvent and water as a bad solvent
(Figures 6, S8 and S9). The excitation wavelength of 375 nm was chosen to avoid the effect
of Raman scattering by water. Figure 6 shows that with the increase of the water fraction
in the mixed solvent, the system changed from non-luminescent to luminous, and the
fluorescence intensity increased with the increase of the water content, which fully confirms
that P6 is an AIE-type polymer. There was weak fluorescence in the P7 solution. The
fluorescence was gradually enhanced when water, the poor solvent of P7, was added to
the solution, and the solution reached the highest fluorescence intensity when the water
fraction reached 90%. The polymer exhibits typical AEE behavior.
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of peak intensity of P6 in THF/water mixtures with different water fractions. I0 = Peak intensity of
P6 when f w = 0. I = Peak intensity of P6 when f w = 0. λex = 375 nm, Concentration = 100 µM. Inset:
Photographs of the fluorescence of P6 in THF/water mixtures with a 90% water fraction.

On the other hand, PTMSDPA shows a typical ACQ behavior (Figure S9). The flu-
orescence intensity decreased with the increase of water fraction, which is similar to the
luminescence behavior of most diphenyl acetylene derivatives [21–25]. According to the
above results, a series of copolymers containing different lengths of PTMSDPA can be
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obtained by controlling the proportion of the two monomers and the reaction time. We
can not only regulate the luminescence color from blue–purple to orange–red, but we can
also adjust the luminescent behavior from ACQ of the homopolymer PTMSDPA to AIE of
the copolymer.

2.4. Explosive Detection

Detection of explosives has drawn much attention because of its application in global
safety and anti-terrorism activities. In this area, fluorescence spectroscopy has been widely
used due to its high sensitivity, good selectivity, low cost, and easy operation. The suspen-
sion formed by P7 in the mixed solvent shows high stability compared with the suspension
formed by small molecules and can be placed for several months without precipitation,
which makes the system more suitable for working as a detection medium. Then, P7 in
the THF/water mixture with a 90% water fraction was used as the fluorescent detection
medium, and picric acid (PA, 2,4,6-trinitrophenol) was chosen as a model of explosive to
simulate practical detection. As shown in Figure 7a, the intensity of the fluorescence began
to decrease with the addition of more and more PA into the suspension, but the maximum
emission wavelength did not change. In the PA concentration range of 0~100 µM, an
exponential growth (I0/I vs. PA concentration) can be derived (Figure 7b), which implies
that the detection system has a super-amplification effect, as observed in other AIE-active
polymer systems [33–41]. Based on the experimental data, the quenching constant (KSV)
of PA to P7 was calculated from the Stern–Volmer plot, which is as high as 24,000 M−1.
This attempt suggests that P7 is potentially used as an effective fluorescent probe in the
fabrication of test plates and/or portable sensors for explosive detection.
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intensity at [TNP] = 0 mM and a non-zero concentration. [M]: 10 µM, λex = 387 nm.

3. Materials and Methods
3.1. Materials

The 1-Trimethylsillyl-1-propyne (TMSP) and TaCl5 were purchased from J&K Scientific
(Beijing, China). Bu4Sn, Ph4Sn, Ph3SiH, and Et3SiH were purchased from Energy Chemical
(Shanghai, China). WCl6, MoCl5, and NbCl5 were purchased from Sigma-Aldrich Corpora-
tion (Shanghai, China). The 4-Trimethylsilyl diphenyl acetylene (TMSDPA) was purchased
from Tokyo Chemical Industry (Shanghai, China). All the chemicals were used directly
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without further purification. Tetrahydrofuran (THF) and toluene were freshly distilled
from sodium and benzophenone ketyl under nitrogen and normal pressure.

3.2. Instruments

The molecular weight (Mw and Mn) and polydispersity (Mw/Mn) of the polymers
were estimated in THF using a gel permeation chromatography (GPC, PL-GPC-50, Waters
Corporation, Milford, CT, USA) system with a set of monodisperse polystyrene standards
covering the molecular weight varying from 103 to 107 as calibration. FTIR spectra were
recorded on a VECTOR 22 (Bruker Corporation, Billerica, MA, USA) spectrometer. 1H
NMR spectra were recorded on AVANCE III 400 (Bruker Corporation, Billerica, MA, USA)
spectrometers, and tetramethylsilane (TMS) was used as an internal standard. UV-vis
absorption spectra were recorded on a Varian CARY 100 Bio UV-vis (Agilent Technologies
Inc, Santa Clara, CA, USA)spectrophotometer. Fluorescence spectra were recorded on
a RF-5301PC (Shimadzu, Kyoto, Japan) spectrofluorophotometer. Quantum yield was
recorded on the Spectrofluorometer FS5 (Edinburgh Instruments, Livingston, Scotland, UK)
spectrofluorophotometer.

3.3. Polymer Synthesis

The polymerizations were carried out under the protection of dry nitrogen using the
standard glovebox or Schlenk technique, except for polymer purification. The catalyst
(1 eq., 1.0 mmol) and co-catalysts (2 eq., 2.0 mmol) were stirred with 400 rpm in a desired
solution (3 mL) at 80 ◦C for 20 min, and then 3 mL of toluene solution of the monomers
(10 eq., 10 mmol) was added. The mixture was stirred at 80 ◦C for the desired period of
time and the reaction was quenched with nearly 8–10 mL of methanol and washed with
120 mL of methanol and acetone three times to precipitate a solid polymer. Then, the solid
sample was filtered by a filter funnel with a fritted disc and dried under a vacuum for 24 h.

4. Conclusions

In this article, copolymers of disubstituted acetylenes containing both phenyl and alkyl-
silyl in the same backbone were synthesized and the chemical structures of the resultant
polymers were characterized with FTIR and NMR spectroscopy techniques. Their emission
properties varied according to the proportion of the two monomers. A higher content
of TMSDPA units in the copolymers led to significantly enhanced, red-shifted emission
in the solid and solution, and polymers were adjusted from ACQ to AIE copolymers.
Consequently, it was possible to finely tune the emission properties of the polymers simply
via the copolymerization of monomers. Moreover, using the P7 suspension and PA as the
detection medium and model explosive, a super-quenching process has been observed and
a good linear relationship between ln(I0/I) vs. PA has been established. The quenching
constant (KSV) calculated using the Stern–Volmer equation was 24,000 M−1. This result is
expected to be quite helpful in the molecular design of light-emitting materials with finely
tuned fluorescence emission and in the further research of poly(disubstituted acetylene)
derivatives.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010027/s1. Figure S1: FTIR spectra of TMSP, PTMSP,
TMSDPA, and PTMSDPA in KBr pellets. Figure S2: FTIR spectra of PTMSP, P1, P2, and PTMSDPA
in KBr pellets. Figure S3: FTIR spectra of P5, P6, P7, P8, and P9 in KBr pellets. Figure S4: 1H NMR
spectra of PTMSP, P7, and PTMSDPA (CDCl3). Figure S5: UV-vis spectra of P10 and P11 in THF
solution. Figure S6: PL spectra of P10 and P11 powders. Figure S7: Fluorescence photos of P6 in
THF solution and powder under 365 nm light. Figure S8: PL behavior of P7 in THF/water mixtures.
Figure S9: PL behavior of PTMSDPA in THF/water mixtures. Table S1: The quantum yield for the
suspensions of PTMSDPA, P6 and P7.
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