Design, Catalyst-Free Synthesis of New Novel α-Trifluoromethylated Tertiary Alcohols Bearing Coumarins as Potential Antifungal Agents
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Instruments
3.1.1. General Procedure for the Preparation of Compounds 3aa–3af
3.1.2. Compounds Data
3.2. In Vitro Antifungal Assay
3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shimizu, M.; Hiyama, T. Modern Synthetic Methods for Fluorine-Substituted Target Molecules. Angew. Chem. Int. Ed. 2005, 44, 214–231. [Google Scholar] [CrossRef]
- Ma, J.; Cahard, D. Strategies for nucleophilic, electrophilic, and radical trifluoromethylations. J. Fluor. Chem. 2007, 128, 975–996. [Google Scholar] [CrossRef]
- Hagmann, W.K. The Many Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008, 51, 4359–4369. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ma, J.-A. Combination Catalysis in Enantioselective Trifluoromethylation. Adv. Synth. Catal. 2010, 352, 2745–2750. [Google Scholar] [CrossRef]
- Liu, X.; Xu, C.; Wang, M.; Liu, Q. Trifluoromethyltrimethylsilane: Nucleophilic Trifluoromethylation and Beyond. Chem. Rev. 2015, 115, 683–730. [Google Scholar] [CrossRef] [PubMed]
- Corbett, J.W.; Soo, S.K.; James, D.R.; Lisa, A.G.; Nicholas, A.M.; Lee, T.B.; Sharon, D.; Susan, J.; Ronald, M.K.; Beverly, C.C.; et al. Inhibition of clinically relevant mutant variants of HIV-1 by quinazolinone non-nucleoside reverse transcriptase inhibitors. J. Med. Chem. 2000, 43, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Sani, M.; Belotti, D.; Giavazzi, R.; Panzeri, W.; Volonterio, A.; Zanda, M. Synthesis and evaluation of stereopure α-trifluoromethyl-malic hydroxamates as inhibitors of matrix metalloproteinases. Tetrahedron Lett. 2004, 45, 1611–1615. [Google Scholar] [CrossRef]
- Betageri, R.; Zhang, Y.; Zindell, R.M.; Kuzmich, D.; Kirrane, T.M.; Bentzien, J.; Cardozo, M.; Capolino, A.J.; Fadra, T.N.; Nelson, R.M.; et al. Trifluoromethyl group as a pharmacophore: Effect of replacing a CF3 group on binding and agonist activity of a glucocorticoid receptor ligand. Bioorg. Med. Chem. Lett. 2005, 15, 4761–4769. [Google Scholar] [CrossRef]
- Caron, S.; Do, N.M.; Sieser, J.E.; Arpin, P.; Vazquez, E. Process Research and Development of an NK-1 Receptor Antagonist. Enantioselective Trifluoromethyl Addition to a Ketone in the Preparation of a Chiral Isochroman. Org. Process Res. Dev. 2007, 11, 1015–1024. [Google Scholar] [CrossRef]
- Han, X.; Ouyang, W.; Liu, B.; Wang, W.; Tien, P.; Wu, S.; Zhou, H.-B. Enantioselective inhibition of reverse transcriptase (RT) of HIV-1 by non-racemic indole-based trifluoropropanoates developed by asymmetric catalysis using recyclable organocatalysts. Org. Biomol. Chem. 2013, 11, 8463–8475. [Google Scholar] [CrossRef]
- Jiang, H.-X.; Zhuang, D.; Huang, Y.; Cao, X.-X.; Yao, J.-H.; Li, J.-Y.; Wang, J.-Y.; Zhang, C.; Jiang, B. Design, synthesis, and biological evaluation of novel trifluoromethyl indole derivatives as potent HIV-1 non-nucleoside reverse transcriptase inhibitors with an improved drug resistance profile. Org. Biomol. Chem. 2014, 12, 3446–3458. [Google Scholar]
- Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Sumii, Y.; Shibata, N. Contribution of Organofluorine Compounds to Pharmaceuticals. ACS Omega 2020, 5, 10633–10640. [Google Scholar] [CrossRef]
- Aikawa, K.; Hioki, Y.; Mikami, K. Highly enantioselective alkynylation of trifluoropyruvate with alkynylsilanes catalyzed by the BINAP-Pd complex: Access to r-trifluoromethyl-substituted tertiary alcohols. Org. Lett. 2010, 12, 5716–5719. [Google Scholar] [CrossRef] [PubMed]
- Lutete, L.M.; Miyamoto, T.; Ikemoto, T. Tertiary amino thiourea-catalyzed asymmetric cross aldol reaction of aryl methyl ketones with aryl trifluoromethyl ketones. Tetrahedron Lett. 2016, 57, 1220–1223. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.-F.; Zhao, J.-Z.; Du, Z.-H.; Da, C.-S. Organocatalytic Enantioselective Cross-Aldol Reaction of o-Hydroxyarylketones and Trifluoromethyl Ketones. Org. Lett. 2017, 19, 2634–2637. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xiong, W.; Wang, J.; Wang, Q.-A.; Yang, W. Brønsted Acid-Catalyzed Asymmetric Friedel–Crafts Alkylation of Indoles with Benzothiazole-Bearing Trifluoromethyl Ketone Hydrates. J. Org. Chem. 2020, 85, 4398–4407. [Google Scholar] [CrossRef]
- Carceller-Ferrer, L.; del Campo, A.G.; Vila, C.; Blay, G.; Muñoz, M.C.; Pedro, J.R. Catalytic Diastereo- and Enantioselective Synthesis of Tertiary Trifluoromethyl Carbinols through a Vinylogous Aldol Reaction of Alkylidenepyrazolones with Trifluoromethyl Ketones. J. Org. Chem. 2022, 87, 4538–4549. [Google Scholar] [CrossRef]
- Blay, G.; Fernández, I.; Monleón, A.; Pedro, J.R.; Vila, C. Enantioselective Zirconium-Catalyzed Friedel−Crafts Alkylation of Pyrrole with Trifluoromethyl Ketones. Org. Lett. 2009, 11, 441–444. [Google Scholar] [CrossRef]
- Kashikura, W.; Itoh, J.; Mori, K.; Akiyama, T. Enantioselective Friedel-Crafts Alkylation of Indoles, Pyrroles, and Furans with Trifluoropyruvate Catalyzed by Chiral Phosphoric Acid. Chem. Asian J. 2010, 5, 470–472. [Google Scholar] [CrossRef]
- Le, T.P.; Higashita, K.; Tanaka, S.; Yoshimura, M.; Kitamura, M. Revisiting the CuII-Catalyzed Asymmetric Friedel–Crafts Reaction of Indole with Trifluoropyruvate. Org. Lett. 2018, 20, 7149–7153. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Zhao, Y.; Huang, T.; Meng, S.; Jia, X.; Chan, A.S.C.; Zhao, J. Chiral Phosphoric-Acid-Catalyzed Regioselective and Enantioselective C7-Friedel–Crafts Alkylation of 4-Aminoindoles with Trifluoromethyl Ketones. Org. Lett. 2019, 21, 3538–3542. [Google Scholar] [CrossRef] [PubMed]
- Kasztelan, A.; Biedrzycki, M.; Kwiatkowski, P. High-Pressure-Mediated Asymmetric Organocatalytic Hydroxyalkylation of Indoles with Trifluoromethyl Ketones. Adv. Synth. Catal. 2016, 358, 2962–2969. [Google Scholar] [CrossRef]
- Biedrzycki, M.; Kasztelan, A.; Kwiatkowski, P. High-Pressure Accelerated Enantioselective Addition of Indoles to Trifluoromethyl Ketones with a Low Loading of Chiral BINOL-Derived Phosphoric Acid. ChemCatChem 2017, 9, 2453–2456. [Google Scholar] [CrossRef]
- Hua, Y.-Z.; Chen, J.-W.; Yang, H.; Wang, M.-C. Asymmetric Friedel–Crafts Alkylation of Indoles with Trifluoromethyl Pyruvate Catalyzed by a Dinuclear Zinc Catalyst. J. Org. Chem. 2018, 83, 1160–1166. [Google Scholar] [CrossRef]
- Sasaki, S.; Yamauchi, T.; Higashiyama, K. Dy(OTf)3/Pybox-catalyzed enantioselective Friedel–Crafts alkylation of indoles with α,β-unsaturated trifluoromethyl ketones. Tetrahedron Lett. 2010, 51, 2326–2328. [Google Scholar] [CrossRef]
- Anokhin, M.V.; Feofanov, M.N.; Averin, A.D.; Beletskaya, I.P. The asymmetric Friedel-Crafts reaction of indoles with arylidenemalonates catalyzed by MgI2/PyBox complexes. ChemistrySelect 2018, 3, 1388–1391. [Google Scholar] [CrossRef]
- Young, C.M.; Taylor, J.E.; Smith, A.D. Evaluating aryl esters as bench-stable C(1)-ammonium enolate precursors in catalytic, enantioselective Michael addition–lactonisations. Org. Biomol. Chem. 2019, 17, 4747–4752. [Google Scholar] [CrossRef]
- Zhao, H.-C.; Zhang, Z.-B.; Lu, W.-H.; Han, P.; Wang, W.; Jing, L.-H. 3-Carboxamide oxindoles as 1,3-C,N-bisnucleophiles for the highly diastereoselective synthesis of CF3-containing spiro-δ-lactam oxindoles featuring acyl at the ortho-position of spiro carbon atom. Tetrahedron Lett. 2021, 83, 153426. [Google Scholar] [CrossRef]
- Bao, J.-P.; Xu, C.-L.; Yang, G.-Y.; Wang, C.-X.; Zheng, X.; Yuan, X.-X. Novel 6a,12b-dihydro-6H,7H-chromeno [3,4-c] chromen-6-ones: Synthesis, structure and antifungal activity. Molecules 2019, 24, 1745. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Wu, L.; Xu, C.; Pan, Z.; Shi, L.; Yang, G.; Wang, C.; Fan, S. A consecutive one-pot two-step approach to novel trifluoromethyl-substituted bis(indolyl)methane derivatives promoted by Sc(OTf)3 and p-TSA. Tetrahedron Lett. 2019, 60, 151329. [Google Scholar] [CrossRef]
- Shi, L.-J.; Liu, Y.; Wang, C.-X.; Yuan, X.-X.; Liu, X.; Wu, L.-L.; Pan, Z.-L.; Yu, Q.; Xu, C.-L.; Yang, G.-Y. Synthesis of 1-(beta-coumarinyl)-1-(beta-indolyl)trifluoroethanols through regioselective Friedel-Crafts alkylation of indoles with beta-(trifluoroacetyl)coumarins catalyzed by Sc(OTf)3. RSC Adv. 2020, 10, 13929–13935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Shi, L.; Pan, Z.; Wu, L.; Fan, L.; Wang, C.; Xu, C.; Liang, J. The synthesis of coumarin thiazoles containing a trifluoromethyl group and their antifungal activities. Arab. J. Chem. 2021, 14, 102880. [Google Scholar] [CrossRef]
- Wu, L.; Yuan, X.; Yang, G.; Xu, C.; Pan, Z.; Shi, L.; Wang, C.; Fan, L. An eco-friendly procedure for the synthesis of new phosphates using KF/Al2O3 under solventless conditions and their antifungal properties. J. Saudi Chem. Soc. 2021, 25, 101273. [Google Scholar] [CrossRef]
- Wang, X.; Bastow, K.F.; Sun, C.-M.; Lin, Y.-L.; Yu, H.-J.; Don, M.-J.; Wu, T.-S.; Nakamura, S.; Lee, K.-H. Antitumor Agents. Part 239. Isolation, Structure Elucidation, Total Synthesis, and anti-Breast Cancer Activity of Neo-tanshinlactone from Salvia miltiorrhiza. J. Med. Chem. 2004, 47, 5816–5819. [Google Scholar] [CrossRef]
- Olmedo, D.; Sancho, R.; Bedoya, L.M.; López-Pérez, J.L.; DEL Olmo, L.M.B.; Muñoz, E.; Alcamí, J.; Gupta, M.P.; Feliciano, A.S. 3-Phenylcoumarins as Inhibitors of HIV-1 Replication. Molecules 2012, 17, 9245–9257. [Google Scholar] [CrossRef]
- Matos, M.J.; Vazquez-Rodriguez, S.; Santana, L.; Uriarte, E.; Fuentes-Edfuf, C.; Santos, Y.; Muñoz-Crego, A. Synthesis and structure-activity relationships of novel amino/nitro substituted 3-arylcoumarins as antibacterial agents. Molecules 2013, 18, 1394–1404. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Thakur, J.P.; Chanda, D.; Saikia, D.; Khan, F.; Dixit, S.; Kumar, A.; Konwar, R.; Negi, A.S.; Gupta, A. Syntheses of lipophilic chalcones and their conformationally restricted analogues as antitubercular agents. Bioorg. Med. Chem. Lett. 2013, 23, 1322–1325. [Google Scholar] [CrossRef]
- Hanke, S.; Tindall, C.A.; Pippel, J.; Ulbricht, D.; Pirotte, B.; Ravaux, M.R.; Heiker, J.T.; Sträter, N. Structural Studies on the Inhibitory Binding Mode of Aromatic Coumarinic Esters to Human Kallikrein-Related Peptidase 7. J. Med. Chem. 2020, 63, 5723–5733. [Google Scholar] [CrossRef]
- Wei, L.; Hou, T.; Li, J.; Zhang, X.; Zhou, H.; Wang, Z.; Cheng, J.; Xiang, K.; Wang, J.; Zhao, Y.; et al. Structure–Activity Relationship Studies of Coumarin-like Diacid Derivatives as Human G Protein-Coupled Receptor-35 (hGPR35) Agonists and a Consequent New Design Principle. J. Med. Chem. 2021, 64, 2634–2647. [Google Scholar] [CrossRef]
- Yan, N.L.; Santos-Martins, D.; Nair, R.; Chu, A.; Wilson, I.A.; Johnson, K.A.; Forli, S.; Morgan, G.J.; Petrassi, H.M.; Kelly, J.W. Discovery of Potent Coumarin-Based Kinetic Stabilizers of Amyloidogenic Immunoglobulin Light Chains Using Structure-Based Design. J. Med. Chem. 2021, 64, 6273–6299. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Wang, A.; Guo, P.; Li, W.; Zhao, L.; Tong, J.; Wang, H.; Yu, Y.; He, C. Visible-Light-Induced Regioselective Deaminative Alkylation of Coumarins via Photoredox Catalysis. Adv. Synth. Catal. 2021, 364, 24–29. [Google Scholar] [CrossRef]
- Zhang, J.; Han, Q.; Jiang, Z.; Li, H.; Deng, M.; Zhu, K.; Li, M.; Duan, H. Chitinase inhibitors and synthesis and agricultural bioactivity of thiazolidinones: A review. Chin. J. Pest. Sci. 2021, 23, 421–437. [Google Scholar]
Entry | Catalyst | Solvent | Temp. (℃) | Yield (%) b |
---|---|---|---|---|
1 | AlCl3 (5%) | CH2Cl2 | 25 | 46 |
2 | FeCl3 (5%) | CH2Cl2 | 25 | 39 |
3 | CuCl2 (5%) | CH2Cl2 | 25 | 41 |
4 | CH3COOAg (5%) | CH2Cl2 | 25 | 40 |
5 | Sc(OTf)3 (5%) | CH2Cl2 | 25 | 20 |
6 | Cu(OTf)2 (5%) | CH2Cl2 | 25 | 46 |
7 | — | CH2Cl2 | 25 | 97 |
8 | — | CHCl3 | 25 | 48 |
9 | — | EtOAc | 25 | 20 |
10 | — | CH3CN | 25 | 35 |
11 | — | toluene | 25 | 21 |
12 | — | THF | 25 | 36 |
13 | — | dioxane | 25 | 55 |
14 | — | ClCH2CH2Cl | 25 | 78 |
15 | — | BrCH2CH2Br | 25 | 68 |
16 | — | CH2Cl2 | 0 | 36 |
Entry | R1 | R2 | R3 | Product | Yield b |
---|---|---|---|---|---|
1 | H | 2-Me | H | 3aa | 97 |
2 | 6-Me | 2-Me | H | 3ba | 85 |
3 | 6-Cl | 2-Me | H | 3ca | 91 |
4 | 6-Br | 2-Me | H | 3da | 84 |
5 | 7-OMe | 2-Me | H | 3ea | 97 |
6 | 8-OMe | 2-Me | H | 3fa | 85 |
7 | 6,8-(Cl)2 | 2-Me | H | 3ga | 95 |
8 | 6,8-(Br)2 | 2-Me | H | 3ha | 90 |
9 | naphthyl | 2-Me | H | 3ia | 89 |
10 | H | 2,4-(Me)2 | H | 3ab | 93 |
11 | 8-OMe | 2,4-(Me)2 | H | 3fb | 84 |
12 c | H | 2,5-(Me)2 | H | 3ac | 78 |
13 c | 6-Me | 2,5-(Me)2 | H | 3bc | 85 |
14 c | 6-Cl | 2,5-(Me)2 | H | 3cc | 88 |
15 c | 6-Br | 2,5-(Me)2 | H | 3dc | 86 |
16 c | 7-OMe | 2,5-(Me)2 | H | 3ec | 91 |
17 c | 8-OMe | 2,5-(Me)2 | H | 3fc | 85 |
18 c | 6,8-(Cl)2 | 2,5-(Me)2 | H | 3gc | 90 |
19 c | 6,8-(Br)2 | 2,5-(Me)2 | H | 3hc | 87 |
20 c | naphthyl | 2,5-(Me)2 | H | 3ic | 82 |
21 | H | 2,4-(Me)2-3-Et | H | 3ad | 92 |
22 | 6-Me | 2,4-(Me)2-3-Et | H | 3bd | 89 |
23 | 6-Cl | 2,4-(Me)2-3-Et | H | 3cd | 92 |
24 | 6-Br | 2,4-(Me)2-3-Et | H | 3dd | 87 |
25 | 7-OMe | 2,4-(Me)2-3-Et | H | 3ed | 92 |
26 | 6,8-(Cl)2 | 2,4-(Me)2-3-Et | H | 3gd | 86 |
27 | 6,8-(Br)2 | 2,4-(Me)2-3-Et | H | 3hd | 75 |
28 | H | H | H | 3ae | 77 |
29 | H | H | Me | 3af | 73 |
30 | H | 2-COOH | H | — | NR d |
Compound | A | B | C | D | E | F |
---|---|---|---|---|---|---|
3aa | 31 ± 0 | 24 ± 0 | <10 | 26 ± 3 | 64 ± 1 | 17 ± 1 |
3ba | 25 ± 3 | 28 ± 0 | <10 | 19 ± 2 | 58 ± 2 | 15 ± 0 |
3ca | <10 | <10 | <10 | 16 ± 1 | 44 ± 1 | <10 |
3da | 20 ± 1 | 21 ± 0 | <10 | 14 ± 0 | 54 ± 1 | <10 |
3ea | 27 ± 1 | 24 ± 1 | <10 | 14 ± 0 | 47 ± 0 | 21 ± 0 |
3fa | <10 | <10 | <10 | <10 | 50 ± 1 | <10 |
3ga | 37 ± 2 | 73 ± 1 | <10 | 22 ± 1 | 54 ± 0 | 21 ± 1 |
3ha | 59 ± 2 | 36 ± 1 | <10 | 55 ± 1 | 64 ± 0 | 79 ± 0 |
3ia | 20 ± 0 | 17 ± 0 | <10 | 29 ± 0 | 53 ± 1 | 43 ± 1 |
3ab | 75 ± 3 | 67 ± 1 | 45 ± 2 | 74 ± 0 | 86 ± 2 | 64 ± 0 |
3ac | 77 ± 0 | <10 | <10 | 77 ± 0 | 54 ± 1 | 82 ± 1 |
3bc | 36 ± 1 | 48 ± 1 | <10 | 40 ± 2 | 47 ± 0 | 20 ± 0 |
3cc | 47 ± 3 | 56 ± 1 | <10 | 55 ± 1 | 70 ± 0 | 61 ± 1 |
3dc | 34 ± 0 | 42 ± 0 | <10 | 46 ± 1 | 61 ± 1 | 29 ± 1 |
3ec | 40 ± 0 | 49 ± 0 | 28 ± 0 | 51 ± 0 | 58 ± 0 | 40 ± 1 |
3fc | 53 ± 2 | 45 ± 0 | 24 ± 0 | 46 ± 0 | 49 ± 0 | 45 ± 1 |
3gc | 64 ± 1 | 56 ± 0 | 47 ± 0 | 56 ± 0 | 80 ± 2 | 50 ± 2 |
3hc | 60 ± 2 | 50 ± 0 | 45 ± 1 | 43 ± 1 | 60 ± 1 | 32 ± 0 |
3ic | 28 ± 1 | 24 ± 0 | 20 ± 0 | 33 ± 1 | 54 ± 1 | 15 ± 1 |
3ad | 97 ± 0 | 84 ± 2 | 87 ± 0 | 82 ± 0 | 98 ± 1 | 88 ± 1 |
3bd | 95 ± 0 | 88 ± 0 | 86 ± 1 | 62 ± 1 | 78 ± 2 | 85 ± 1 |
3cd | 94 ± 2 | 69 ± 1 | 76 ± 1 | 62 ± 1 | 86 ± 1 | 57 ± 1 |
3dd | 76 ± 2 | 58 ± 1 | 35 ± 1 | 47 ± 3 | 54 ± 1 | 35 ± 3 |
3ed | 64 ± 2 | 73 ± 1 | 71 ± 1 | 52 ± 1 | 74 ± 1 | 33 ± 1 |
3gd | 87 ± 2 | 93 ± 1 | 62 ± 2 | 94 ± 1 | 100 | 87 ± 1 |
3hd | 89 ± 2 | 84 ± 1 | 53 ± 1 | 55 ± 0 | 100 | 88 ± 1 |
triadimefon | 45 ± 1 | 41 ± 1 | 25 ± 1 | 85 ± 1 | 70 ± 1 | 30 ± 1 |
Fungicidal | Compound | Regression Equation | R2 | EC50 (μg/mL) |
---|---|---|---|---|
F. graminearum | 3ad | y = 0.401x + 1.007 | 0.941 | 54.4 |
3bd | y = 0.445x + 0.930 | 0.930 | 107.8 | |
triadimefon | y = 0.346x + 1.181 | 0.974 | 10.7 | |
F. oxysporum | 3hd | y = 0.434x + 0.941 | 0.947 | 96.7 |
triadimefon | y = 0.498x + 1.181 | 0.990 | 42.9 | |
F. moniliforme | 3gd | y = 0.654x + 1.182 | 0.937 | 90.9 |
triadimefon | y = 0.234x + 1.194 | 0.977 | 1.1 | |
R. solani Kuhn. | 3ad | y = 0.317x + 1.032 | 0.971 | 21.0 |
3cd | y = 0.226x + 0.944 | 0.985 | 10.9 | |
3gd | y = 0.321x + 1.065 | 0.979 | 17.4 | |
3hd | y = 0.339x + 1.075 | 0.993 | 20.2 | |
triadimefon | y = 0.329x + 1.227 | 0.974 | 6.1 | |
P. parasitica var nicotianae | 3gd | y = 0.616x + 1.074 | 0.994 | 117.0 |
3hd | y = 0.440x + 1.027 | 0.964 | 63.4 | |
triadimefon | y = 0.248x + 0.745 | 0.984 | 102.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Yang, G.; Shi, L.; Fan, L.; Pan, Z.; Wang, C.; Chang, X.; Zhou, B.; Xu, M.; Wu, L.; et al. Design, Catalyst-Free Synthesis of New Novel α-Trifluoromethylated Tertiary Alcohols Bearing Coumarins as Potential Antifungal Agents. Molecules 2023, 28, 260. https://doi.org/10.3390/molecules28010260
Jiang S, Yang G, Shi L, Fan L, Pan Z, Wang C, Chang X, Zhou B, Xu M, Wu L, et al. Design, Catalyst-Free Synthesis of New Novel α-Trifluoromethylated Tertiary Alcohols Bearing Coumarins as Potential Antifungal Agents. Molecules. 2023; 28(1):260. https://doi.org/10.3390/molecules28010260
Chicago/Turabian StyleJiang, Shengfei, Guoyu Yang, Lijun Shi, Liangxin Fan, Zhenliang Pan, Caixia Wang, Xiaodan Chang, Bingyi Zhou, Meng Xu, Lulu Wu, and et al. 2023. "Design, Catalyst-Free Synthesis of New Novel α-Trifluoromethylated Tertiary Alcohols Bearing Coumarins as Potential Antifungal Agents" Molecules 28, no. 1: 260. https://doi.org/10.3390/molecules28010260
APA StyleJiang, S., Yang, G., Shi, L., Fan, L., Pan, Z., Wang, C., Chang, X., Zhou, B., Xu, M., Wu, L., & Xu, C. (2023). Design, Catalyst-Free Synthesis of New Novel α-Trifluoromethylated Tertiary Alcohols Bearing Coumarins as Potential Antifungal Agents. Molecules, 28(1), 260. https://doi.org/10.3390/molecules28010260