Nanostructured Lipid Carriers (NLC)-Based Gel Formulations as Etodolac Delivery: From Gel Preparation to Permeation Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Physicochemical Properties of Gel Formulations
2.2. Stability of Gel Formulations
2.3. The Rheological and Mechanical Properties
2.4. Bioadhesive Properties
2.5. In Vitro ETD Release
2.6. Permeation of ETD
3. Materials and Methods
3.1. Materials
3.2. Analytical Method for ETD Assay
3.3. Preparation of NLC Dispersion
3.4. Procedures for Gels Preparation
3.5. Evaluation of Gel Formulations
3.5.1. Visual, pH, Viscosity and Rheological Assessment
3.5.2. Mechanical and Adhesive Properties
3.5.3. Stability Studies
3.5.4. In Vitro Drug Release Study
3.5.5. Drug Permeation Study
Excised Human Skin
In Vitro Penetration Studies
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Council of Europe. European Pharmacopoeia, 6th ed.; Council of Europe: Strasbourg, France, 2007. [Google Scholar]
- Tas, C.; Ozkan, Y.; Okyar, A.; Savaser, A. In vitro and ex vivo permeation studies of etodolac from hydrophilic gels and effect of terpenes as enhancers. Drug Deliv. 2007, 14, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Gill, V.; Nanda, A. Preparation and characterization of etodolac bearing emulsiomes. Int. J. Appl. Pharm. 2020, 12, 166–172. [Google Scholar] [CrossRef]
- Abbas, M.M.; Rajab, N.A. Preparation and characterization of etodolac as a topical nanosponges hydrogel. Oraqi J. Pharm. Sci. 2019, 28, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Drug Bank. Available online: https://www.drugbank.ca (accessed on 10 May 2022).
- Madhavi, N.; Sudhakar, B.; Reddy, K.V.; Ratna, J.V. Pharmacokinetic and pharmacodynamic studies of etodolac loaded vesicular gels on rats by transdermal delivery. DARU J. Pharm. Sci. 2018, 26, 43–56. [Google Scholar] [CrossRef]
- Barkin, R.L. Topical nonsteroidal anti-inflammatory drugs: The importance of drug, delivery and therapeutic outcome. Am. J. Ther. 2015, 22, 388–407. [Google Scholar] [CrossRef] [PubMed]
- Czajkowska-Kośnik, A.; Szekalska, M.; Winnicka, K. Nanostructured lipid carriers: A potential use for skin delivery systems. Pharmacol. Rep. 2019, 71, 156–166. [Google Scholar] [CrossRef]
- Pharmindex. Available online: https://pharmindex.pl (accessed on 15 May 2022).
- Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Trans. Res. 2022, 12, 758–791. [Google Scholar] [CrossRef]
- Kanojia, N.; Sharma, N.; Gupta, N.; Singh, S. Applications of nanostructured lipid carriers: Recent advancements and patent review. Biointerface Res. Appl. Chem. 2022, 12, 638–652. [Google Scholar]
- Subramaniam, B.; Siddik, Z.H.; Nagoor, N.H. Optimization of nanostructured lipid carriers: Understanding the types, designs, and parameters in the process of formulations. J. Nanopart. Res. 2020, 22, 141. [Google Scholar] [CrossRef]
- Salvi, V.R.; Pawar, P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol. 2019, 51, 255–267. [Google Scholar] [CrossRef]
- Elmowafy, M.; Al-Sanea, M.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm. J. 2021, 29, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Celss Nanomed. Biotechnol. 2016, 44, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental concepts of hydrogels: Synthesis, properties and their applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef]
- Bordbar-Khiabani, A.; Gasik, M. Smart hydrogels for advanced drug delivery systems. Int. J. Mol. Sci. 2022, 23, 3665. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- Buenger, D.; Topuz, F.; Groll, J. Hydrogels in sensing applications. Prog. Polym. Sci. 2012, 37, 1678–1719. [Google Scholar] [CrossRef]
- Ahmed, E. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Nezhad-Mokhtari, P.; Ghorbani, M.; Roshangar, L.; Rad, J.S. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur. Polym. J. 2019, 117, 64–76. [Google Scholar] [CrossRef]
- Wróblewska, M.; Szekalska, M.; Hafner, A.; Winnicka, K. Oleogels and bigels as topical drug carriers for ketoconazole—Development and in vitro characterization. Acta Pol. Pharm. 2018, 75, 777–786. [Google Scholar]
- Czajkowska-Kośnik, A.; Szymańska, E.; Czarnomysy, R.; Jacyna, J.; Markuszewski, M.; Basa, A.; Winnicka, K. Nanostructured lipid carriers engineered as topical delivery of etodolac: Optimization and cytotoxicity studies. Materials 2021, 14, 596. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar] [PubMed]
- Fernandes, A.V.; Pydi, C.R.; Verma, R.; Jose, J.; Kumar, L. Design, preparation and in vitro characterization of fluconazole loaded nanostructured lipid carriers. Bra. J. Pharm. Sci. 2020, 56, e18069. [Google Scholar] [CrossRef]
- Gomes, M.J.; Martins, S.; Ferreira, D.; Segundo, M.A.; Reis, S. Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization and in vitro release and penetration studies. Int. J. Nanomed. 2014, 9, 1231. [Google Scholar]
- Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific delivery. Biomed. Pharmacother. 2018, 103, 598–613. [Google Scholar] [CrossRef]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef]
- Garg, N.K.; Tandel, N.; Bhadada, S.K.; Tyagi, R.K. Nanostructured lipid carrier-mediated transdermal delivery of aceclofenac hydrogel present an effective therapeutic approach for inflammatory diseases. Front. Pharmacol. 2021, 12, 713616. [Google Scholar] [CrossRef] [PubMed]
- Varges, P.R.; Costa, C.M.; Fonseca, B.S.; Naccache, M.F.; de Souza Mendes, P.R. Rheological characterization of Carbopol® dispersions in water and in water/glycerol solutions. Fluids 2019, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Lopez, Y.A.; Villafuerte-Robles, L. Functional performance of Chitosan/Carbopol 974P NF matrices in captopril tablets. J. Pharm. 2016, 2016, 3240290. [Google Scholar] [CrossRef] [Green Version]
- Rowe, R.C. Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press and the America Pharmacists Association: Washington, DC, USA, 2009. [Google Scholar]
- Kojarunchitt, T.; Hook, S.; Rizwan, S.; Rades, T.; Baldursdottir, S. Development and characterization of modified poloxamer 407 thermoresponsive depot systems containing cubosomes. Int. J. Pharm. 2011, 408, 20–26. [Google Scholar] [CrossRef]
- Fakhari, A.; Corcoran, M.; Schwarz, A. Thermogelling properties of purified poloxamer 407. Heliyon 2017, 3, e00390. [Google Scholar] [CrossRef]
- Gioffredi, E.; Boffito, M.; Calzone, S.; Giannitelli, S.M.; Rainer, A.; Trombetta, M.; Mozetic, P.; Chionoa, V. Pluronic F127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications. Procedia CIRP 2016, 49, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Shi, X.L.; Lin, X.; Yao, C.X.; Shen, L.; Feng, Y. Poloxamer-based in situ hydrogels for controlled delivery of hydrophilic macromolecules after intramuscular injection in rats. Drug Deliv. 2015, 22, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Puscaselu, R.G.; Lobiuc, A.; Dimian, M.; Covasa, M. Alginate: From food industry to biomedical applications and management of metabolic disorders. Polymers 2020, 12, 2417. [Google Scholar] [CrossRef]
- Lopes, B.; Lessa, V.L.; Silva, B.M.; Da Silva Carvalho, F.M.; Schinitzler, E.; Lacer, L.G. Xanthan gum: Properties, production conditions, quality and economic perspective. J. Food Nutr. Res. 2015, 54, 185–194. [Google Scholar]
- Sznitowska, M. Farmacja Stosowana, 1st ed.; PZWL: Warszawa, Poland, 2017. [Google Scholar]
- Shukla, J. Recent advances in semisolid dosage forms. Int. J. Pharm. Sci. Res. 2017, 1, 10. [Google Scholar]
- Proksch, E. pH in nature, humans and skin. J. Dermatol. 2018, 45, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Blaak, J.; Staib, P. The relation of pH skin skin cleansing. Curr. Probl. Dermatol. 2018, 54, 132–142. [Google Scholar] [PubMed]
- Kanfer, I.; Rath, S.; Purazi, P.; Mudyahoto, N.A. In vitro release testing of semi-solid dosage forms. Dissolut. Technol. 2017, 24, 52–60. [Google Scholar] [CrossRef]
- Gupta, P.; Garg, S. Semisolid dosage forms for dermatological application. Pharm. Technol. 2002, 26, 144–162. [Google Scholar]
- Bräuer, F.; Trautner, E.; Hasslberger, J.; Cifani, P.; Klein, M. Turbulent bubble-laden channel flow of power-law fluids: A direct numerical simulation study. Fluids 2021, 6, 40. [Google Scholar] [CrossRef]
- Dabbaghi, M.; Namjoshi, S.; Panchal, B.; Grice, J.E.; Prakash, S.; Roberts, M.S.; Mohammed, Y. Viscoelastic and deformation characteristics of structurally different commercial topical systems. Pharmaceutics 2021, 13, 1351. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Moturi, V. Thixotropic property in pharmaceutical formulations. J. Control. Release 2009, 136, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Walicka, A.; Falicki, J.; Iwanowska-Chomiak, B. Rheology of drugs for topical and transdermal delivery. Int. J. Appl. Mech. Eng. 2019, 24, 179–198. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Yin, R.; Che, X.; Yuan, J.; Cui, Y.; Yin, H.; Li, S. Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: Design, characterization and in vivo evaluation. Int. J. Pharm. 2012, 439, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Ghica, M.V.; Hirjau, M.; Lupuleasa, D.; Dinu-Pirvu, C.E. Flow and thixotropic parameters for rheological characterization of hydrogels. Molecules 2016, 21, 786. [Google Scholar] [CrossRef]
- Hurler, J.; Engesland, A.; Poorahmary, K.B.; Škalko-Basnet, N. Improved texture analysis for hydrogel characterization: Gel cohesiveness, adhesiveness, and hardness. J. Appl. Polym. Sci. 2012, 125, 180–188. [Google Scholar] [CrossRef]
- Marques, A.C.; Rocha, A.I.; Leal, P.; Estanqueiro, M.; Lobo, J.M.S.L. Development and characterization of mucoadhesive buccal gels containing lipid nanoparticles of ibuprofen. Int. J. Pharm. 2017, 533, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Seyed, M.A.; Karazhiyan, R.H. Rheological and textural characteristics of date paste. Int. J. Food Prop. 2012, 15, 281–291. [Google Scholar]
- Silva, A.C.; Amaral, M.H.; Gonzalez-Mira, E.; Santos, D.; Ferreira, D. Solid lipid nanoparticles (SLN)—Based hydrogels as potential carriers for oral transmucosal delivery of risperidone: Preparation and characterization studies. Colloids Surf. B Biointerfaces 2012, 93, 241–248. [Google Scholar] [CrossRef]
- Płaczek, M.; Sznitowska, M. The mucoadhesion phenomena and importance in drug application. Polim. Med. 2009, 39, 49–64. [Google Scholar]
- Olejnik, A.; Goscianska, J.; Nowak, I. Active compounds release from semisolid dosage forms. J. Pharm. Sci. 2012, 101, 4032–4045. [Google Scholar] [CrossRef]
- Petro, E.; Balogh, A.; Blazso, G.; Eros, I.; Csoka, I. In vitro and in vivo evaluation of drug release from semisolid dosage forms. Pharmazie 2011, 66, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Bhasarkar, J.; Bal, D. Kinetic investigation of a controlled drug delivery system based on alginate scaffold with embedded voids. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800018817462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Concha, L.; Resende Pires, A.L.; Moraes, A.M.; Mas-Hernández, E.; Berres, S.; Hernandez-Montelongo, J. Cost function analysis applied to different kinetic release models of Arrabidaea chica verlot extract from chitosan/alginate membranes. Polymers 2022, 14, 1109. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ge, Z.Q. Nanostructured Lipid Carriers Improve Skin Permeation and Chemical Stability of Idebenone. AAPS Pharm. Sci. Technol. 2012, 13, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, J.C.; Baisaeng, N.; Hoppel, M.; Löw, M.; Keck, C.M.; Valenta, C. Ultra-small NLC for improved dermal delivery of coenzyme Q10. Int. J. Pharm. 2013, 447, 213–217. [Google Scholar] [CrossRef]
- Arce, F.J.; Asano, N.; See, G.L.; Itakura, S.; Todo, H.; Sugibayashi, K. Usefulness of artificial membrane, Strat-M®, in theassessment of drug permeation from complex vehicles in finite dose conditions. Pharmaceutics 2020, 12, 173. [Google Scholar] [CrossRef] [Green Version]
- Strati, F.; Neubert, R.H.H.; Opálka, L.; Kerth, A.; Brezesins, G. Non-ionic surfactants as innovative skin penetration enhancers: Insight in the mechanism of interaction with simple 2D stratum corneum model system. Eur. J Pharm. Sci. 2021, 157, 105620. [Google Scholar] [CrossRef]
- Moghimipour, E.; Salimi, A.; Zadeh, B.S.M. Effect of the various solvents on the in vitro permeability of vitamin B12 through excised rat skin. Trop. J. Pharm. Res. 2013, 12, 671–677. [Google Scholar]
- Bachhav, D.G.; Khadabadi, S.S.; Deore, L.P. Development and validation of HPLC method for estimation of etodolac in rat plasma. Austin J. Anal. Pharm. Chem. 2016, 3, 1061. [Google Scholar]
- Hao, Z.; Chen, Z.; Chang, M.; Meng, J.; Liu, J.; Feng, C. Rheological properties and gel characteristics of polysaccharides from fruit-bodies of Sparassis crispa. Int. J. Food Prop. 2018, 21, 2283–2295. [Google Scholar] [CrossRef] [Green Version]
- Szymańska, E.; Krzyżowska, M.; Cal, K.; Mikolaszek, B.; Tomaszewski, J.; Wołczyński, S.; Winnicka, K. Potential of mucoadhesive chitosan glutamate microparticles as microbicide carriers—Antiherpes activity and penetration behavior across the human vaginal epithelium. Drug Deliv. 2021, 28, 2278–2288. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.; Goodyear, B.; Ameen, D.; Joshi, V.; Michniak-Kohn, B. Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. Int. J. Pharm. 2018, 547, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Pubchem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Etodolac (accessed on 23 June 2022).
Formulation | Visually Observation | pH | Viscosity (Pa·s) * |
---|---|---|---|
F1 | milky, non-transparent, homogeneous gel | 6.9 ± 0.03 | 7.8 ± 0.2 a |
F2 | milky, non-transparent, homogeneous gel | 6.6 ± 0.04 | 15.4 ± 0.0 b |
F3 | milky, non-transparent, homogeneous gel | 5.9 ± 0.04 | 3.3 ± 0.1 c |
F4 | milky, non-transparent, homogeneous gel non | 6.0 ± 0.01 | 6.1 ± 0.3 d |
F5 | milky, non-transparent, homogeneous gel | 6.5 ± 0.01 | 5.2 ± 0.2 e |
F6 | transparent homogeneous gel | 6.1 ± 0.01 | 13.5 ± 0.1 f |
F7 | transparent homogeneous gel | 6.3 ± 0.01 | 6.5 ± 0.0 dg |
Formulation | Visually Observation (During 60 Days of Storage) | Centrifuge Test (After 30 Days of Storage) |
---|---|---|
F1 | apperance unchanged | stable at 4 °C and 25 °C, phase separation at 40 °C |
F2 | appearance unchanged | stable at all temperatures |
F3 | appearance unchanged | phase separation at all temperatures |
F4 | color change to brown-cream, separation of water on the gel surface | phase separation at all temperatures |
F5 | appearance unchanged | stable at all temperatures |
F6 | appearance unchanged | stable at all temperatures |
F7 | color change to yellow, separation of oil on the gel surface | phase separation at all temperatures |
Formulation | K * | N ** | R2 |
---|---|---|---|
F1 | 41.4 | 0.20 | 0.998 |
F2 | 113.0 | 0.08 | 0.998 |
F3 | 24.1 | 0.26 | 0.995 |
F4 | 31.7 | 0.31 | 0.997 |
F5 | 26.5 | 0.25 | 1.000 |
F6 | 115.2 | 0.17 | 0.999 |
F7 | 75.4 | −0.50 | 0.991 |
Formulation | Hardness (g) * | Cohesiveness (g) * | Consistency (g × s) * |
---|---|---|---|
F1 | 96.8 ± 0.6 a | 37.4 ± 1.1 a | 190.5 ± 3.7 a |
F2 | 101.9 ± 1.5 b | 79.2 ± 1.3 b | 175.1 ± 7.5 b |
F3 | 36.8 ± 0.7 c | 13.5 ± 0.2 c | 81.9 ± 1.3 c |
F4 | 30.2 ± 0.4 d | 12.9 ± 0.1 cd | 59.0 ± 0.1 d |
F5 | 43.4 ± 1.8 e | 21.0 ± 1.1 e | 88.4 ± 4.6 ce |
F6 | 98.1 ± 2.5 abf | 81.1 ± 2.1 bf | 132.2 ± 1.4 f |
F7 | 27.9 ± 0.5 dg | 12.1 ± 0.2 cdg | 59.5 ± 0.5 dg |
Formulation | Adhesive Work (µJ) |
---|---|
F1 | 363.3 ± 54.2 a |
F2 | 27,950.9 ± 232.7 b |
F3 | 201.5 ± 5.7 a |
F4 | 19,225.6 ± 326.1 c |
F5 | 148.8 ± 19.5 a |
F6 | 497.6 ± 15.8 a |
F7 | 37,607.5 ± 2036.2 d |
Formulation | Kinetic Model | ||||
---|---|---|---|---|---|
Zero-Order | Higuchi | ||||
R2 | K0 | R2 | KH | LT (h1/2) | |
F1 | 0.914 | 0.005 | 0.999 | 0.105 | 0.15 |
F2 | 0.894 | 0.002 | 0.975 | 0.038 | 0.82 |
F3 | 0.925 | 0.003 | 0.999 | 0.062 | 0.18 |
F4 | 0.912 | 0.003 | 0.998 | 0.069 | 0.14 |
F5 | 0.945 | 0.003 | 0.994 | 0.073 | 0.71 |
F6 | 0.973 | 0.005 | 0.983 | 0.102 | 1.39 |
F7 | 0.960 | 0.001 | 0.963 | 0.029 | 0.82 |
Formulation | Gelling Agent | Composition |
---|---|---|
F1 NLC-gel | Carbopol | NLC dispersion with Carbopol (0.5%), propylene glycol (10%) and triethanolamine (1%) |
F2 NLC-gel | Poloxamer | NLC dispersion with Poloxamer (15%) and propylene glycol (10%) |
F3 NLC-gel | Xanthan gum | NLC dispersion with xanthan gum (1%) and propylene glycol (10%) |
F4 NLC-gel | Sodium alginate | NLC dispersion with sodium alginate (1.5%) and propylene glycol (10%) |
F5 gel with suspended ETD | Carbopol | Carbopol (0.5%), propylene glycol (10%), methylparaben (0.2%), propylparaben (0.1%), triethanolamine (1%), water |
F6 gel with suspended ETD | Poloxamer | Poloxamer (15%), propylene glycol (10%), methylparaben (0.2%), propylparaben (0.1%), water |
F7 gel with suspended ETD | Aerosil | Aerosil (5%), Tween 20 (1%), vitamin E (0.01%), Miglyol 812 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czajkowska-Kośnik, A.; Szymańska, E.; Winnicka, K. Nanostructured Lipid Carriers (NLC)-Based Gel Formulations as Etodolac Delivery: From Gel Preparation to Permeation Study. Molecules 2023, 28, 235. https://doi.org/10.3390/molecules28010235
Czajkowska-Kośnik A, Szymańska E, Winnicka K. Nanostructured Lipid Carriers (NLC)-Based Gel Formulations as Etodolac Delivery: From Gel Preparation to Permeation Study. Molecules. 2023; 28(1):235. https://doi.org/10.3390/molecules28010235
Chicago/Turabian StyleCzajkowska-Kośnik, Anna, Emilia Szymańska, and Katarzyna Winnicka. 2023. "Nanostructured Lipid Carriers (NLC)-Based Gel Formulations as Etodolac Delivery: From Gel Preparation to Permeation Study" Molecules 28, no. 1: 235. https://doi.org/10.3390/molecules28010235
APA StyleCzajkowska-Kośnik, A., Szymańska, E., & Winnicka, K. (2023). Nanostructured Lipid Carriers (NLC)-Based Gel Formulations as Etodolac Delivery: From Gel Preparation to Permeation Study. Molecules, 28(1), 235. https://doi.org/10.3390/molecules28010235