Effect of Different Heat Treatments on the Quality and Flavor Compounds of Black Tibetan Sheep Meat by HS-GC-IMS Coupled with Multivariate Analysis
Abstract
:1. Introduction
2. Results
2.1. Sensory Evaluation
2.2. Edible Quality
2.3. Nutritional Quality
2.4. Amino Acids Content
2.5. Fatty Acids Content
2.6. Flavour
2.6.1. Topographic Plots of VFCs
2.6.2. Qualitative Analysis of VFCs
2.6.3. OPLS-DA Analysis
2.7. Correlation Analysis of Fatty Acids and Flavor
3. Discussion
3.1. Effect of Different Processing Methods on the Sensory of Property of BTS Meat
3.2. Effect of Different Processing Methods on the Edible Quality of BTS Meat
3.3. Effect of Different Processing Methods on the Nutritional Quality of BTS Meat
3.4. Effect of Different Processing Methods on Amino Acids Content of BTS Meat
3.5. Effect of Different Processing Methods on Fatty Acids Content of BTS Meat
3.6. Effect of Different Processing Methods on the Flavor of BTS Meat
3.7. Correlation Analysis of Fatty Acids and Flavor Substances
4. Materials and Methods
4.1. Materials and Sample Preparation
4.2. Meat Quality Indices
4.2.1. Sensory Evaluation
4.2.2. Edible quality examination
4.2.3. Nutritional Quality Examination
4.2.4. Amino Acids Examination
4.2.5. Fatty Acids Determination
4.2.6. Volatile Flavor Compounds Determined by HS-GC-IMS
4.2.7. Statistical Analysis
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- ScienceDirect. Altered Milk Yield and Rumen Microbial Abundance in Response to Concentrate Supplementation during the Cold Season in Tibetan Sheep. Available online: http://www-sciencedirect-com-443.bjmu.ilibs.cn/science/article/pii/S0717345821000348 (accessed on 30 November 2022).
- Zhang, X.; Han, L.; Hou, S.; Raza, S.H.A.; Gui, L.; Sun, S.; Wang, Z.; Yang, B.; Yuan, Z.; Simal-Gandara, J.; et al. Metabolomics Approach Reveals High Energy Diet Improves the Quality and Enhances the Flavor of Black Tibetan Sheep Meat by Altering the Composition of Rumen Microbiota. Front. Nutr. 2022, 9, 915558. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zhang, C.; Raza, S.H.A.; Yang, B.; Aloufi, B.H.; Alshammari, A.M.; AlGabbani, Q.; Khan, R.; Hou, S.; Gui, L. Effects of Dietary Non-Fibrous Carbohydrate (NFC) to Neutral Detergent Fiber (NDF) Ratio Change on Rumen Bacterial Community and Ruminal Fermentation Parameters in Chinese Black Tibetan Sheep (Ovis aries). Small Rumin. Res. 2022, 216, 106793. [Google Scholar] [CrossRef]
- Oz, F.; Aksu, M.I.; Turan, M. The Effects of Different Cooking Methods on Some Quality Criteria and Mineral Composition of Beef Steaks. J. Food Process. Preserv. 2017, 41, e13008. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Huang, Q.; Zhuo, Y.; Xu, B.; Wang, Z. Changes in the Phospholipid Molecular Species in Water-Boiled Salted Duck during Processing Based on Shotgun Lipidomics. Food Res. Int. 2020, 132, 109064. [Google Scholar] [CrossRef] [PubMed]
- Liu-2006-Journal of Food Science-Wiley Online Library. Changes in Volatile Compounds of Traditional Chinese Nanjing Water-Boiled Salted Duck During Processing. Available online: https://ift.onlinelibrary.wiley.com/doi/10.1111/j.1750-3841.2006.00020.x (accessed on 30 November 2022).
- Lorenzo, J.M.; Cittadini, A.; Munekata, P.E.; Domínguez, R. Physicochemical Properties of Foal Meat as Affected by Cooking Methods. Meat Sci. 2015, 108, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Suleman, R.; Wang, Z.; Aadil, R.M.; Hui, T.; Hopkins, D.L.; Zhang, D. Effect of Cooking on the Nutritive Quality, Sensory Properties and Safety of Lamb Meat: Current Challenges and Future Prospects. Meat Sci. 2020, 167, 108172. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Zhang, R.; Liu, L.; Zhu, Z.; Mo, H.; Xu, M.; Shi, L.; Zhang, H. Proteomics Analysis to Investigate the Impact of Diversified Thermal Processing on Meat Tenderness in Hengshan Goat Meat. Meat Sci. 2022, 183, 108655. [Google Scholar] [CrossRef]
- Alarcón, M.; Pérez-Coello, M.S.; Díaz-Maroto, M.C.; Alañón, M.E.; Soriano, A. Effect of Winery By-Product Extracts on Oxidative Stability, Volatile Organic Compounds and Aroma Profile of Cooked Pork Model Systems during Chilled Storage. LWT 2021, 152, 112260. [Google Scholar] [CrossRef]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and Lipid Oxidation Interactions: Mechanistic Bases and Control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat Deposition, Fatty Acid Composition and Meat Quality: A Review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Gravador, R.S.; Valentini, V.; Harrison, S.M.; Fahey, A.; Moloney, A.P.; Diskin, M.G.; Monahan, F.J. Impact of Cooking on the Content of Nutritionally Important Fatty Acids in Muscle from Lambs Raised to Have Divergent Intramuscular Fatty Acid Compositions. Small Rumin. Res. 2022, 216, 106802. [Google Scholar] [CrossRef]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat Flavor Precursors and Factors Influencing Flavor Precursors—A Systematic Review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef]
- Roldán, M.; Ruiz, J.; del Pulgar, J.S.; Pérez-Palacios, T.; Antequera, T. Volatile Compound Profile of Sous-Vide Cooked Lamb Loins at Different Temperature–Time Combinations. Meat Sci. 2015, 100, 52–57. [Google Scholar] [CrossRef]
- Rao, W.; Wang, Z.; Li, G.; Meng, T.; Suleman, R.; Zhang, D. Formation of Crust of Dried Meat and Its Relationship to Moisture Migration during Air Drying. J. Food Process. Preserv. 2020, 44, e14255. [Google Scholar] [CrossRef]
- Ángel-Rendón, S.V.; Filomena-Ambrosio, A.; Hernández-Carrión, M.; Llorca, E.; Hernando, I.; Quiles, A.; Sotelo-Díaz, I. Pork Meat Prepared by Different Cooking Methods. A Microstructural, Sensorial and Physicochemical Approach. Meat Sci. 2020, 163, 108089. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.S.; Sallam, K.I.; Zaki, H.M.B.A. Effect of Different Cooking Methods of Rabbit Meat on Topographical Changes, Physicochemical Characteristics, Fatty Acids Profile, Microbial Quality and Sensory Attributes. Meat Sci. 2021, 181, 108612. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Hwang, K.-E.; Jeong, T.-J.; Kim, Y.-B.; Jeon, K.-H.; Kim, E.-M.; Sung, J.-M.; Kim, H.-W.; Kim, C.-J. Comparative Study on the Effects of Boiling, Steaming, Grilling, Microwaving and Superheated Steaming on Quality Characteristics of Marinated Chicken Steak. Food Sci. Anim. Resour. 2016, 36, 1–7. [Google Scholar] [CrossRef]
- Khan, M.A.; Ali, S.; Yang, H.; Kamboh, A.A.; Ahmad, Z.; Tume, R.K.; Zhou, G. Improvement of Color, Texture and Food Safety of Ready-to-Eat High Pressure-Heat Treated Duck Breast. Food Chem. 2019, 277, 646–654. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A Structural Approach to Understanding the Interactions between Colour, Water-Holding Capacity and Tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Panea, B.; Astiz, C.S.; Olleta, J.L.; Civit, D. Effect of Ageing Method, Ageing Period, Cooking Method and Sample Thickness on Beef Textural Characteristics. Span. J. Agric. Res. 2008, 6, 25–32. [Google Scholar] [CrossRef]
- García-Segovia, P.; Andrés-Bello, A.; Martínez-Monzó, J. Effect of Cooking Method on Mechanical Properties, Color and Structure of Beef Muscle (M. Pectoralis). J. Food Eng. 2007, 80, 813–821. [Google Scholar] [CrossRef]
- Chumngoen, W.; Chen, C.F.; Chen, H.Y.; Tan, F.J. Influences of End-Point Heating Temperature on the Quality Attributes of Chicken Meat. Br. Poult. Sci. 2016, 57, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, X.; Liu, X.; Xing, J.; Guo, C.; Du, Y.; Zhang, H.; Wang, W. Focusing on Intramuscular Connective Tissue: Effect of Cooking Time and Temperature on Physical, Textual, and Structural Properties of Yak Meat. Meat Sci. 2022, 184, 108690. [Google Scholar] [CrossRef] [PubMed]
- Kaliniak-Dziura, A.; Domaradzki, P.; Kowalczyk, M.; Florek, M.; Skałecki, P.; Kędzierska-Matysek, M.; Stanek, P.; Dmoch, M.; Grenda, T.; Kowalczuk-Vasilev, E. Effect of Heat Treatments on the Physicochemical and Sensory Properties of the Longissimus Thoracis Muscle in Unweaned Limousin Calves. Meat Sci. 2022, 192, 108881. [Google Scholar] [CrossRef] [PubMed]
- Goluch, Z.; Barbara, K.; Haraf, G.; Wołoszyn, J.; Okruszek, A.; Wereńska, M. Impact of Various Types of Heat Processing on the Energy and Nutritional Values of Goose Breast Meat. Poult. Sci. 2021, 100, 101473. [Google Scholar] [CrossRef]
- Sánchez del Pulgar, J.; Gázquez, A.; Ruiz-Carrascal, J. Physico-Chemical, Textural and Structural Characteristics of Sous-Vide Cooked Pork Cheeks as Affected by Vacuum, Cooking Temperature, and Cooking Time. Meat Sci. 2012, 90, 828–835. [Google Scholar] [CrossRef]
- Campo, M.M.; Muela, E.; Olleta, J.L.; Moreno, L.A.; Santaliestra-Pasías, A.M.; Mesana, M.I.; Sañudo, C. Influence of Cooking Method on the Nutrient Composition of Spanish Light Lamb. J. Food Compos. Anal. 2013, 31, 185–190. [Google Scholar] [CrossRef]
- Wiley Online Library. Cooking-Induced Protein Modifications in Meat-Yu-2017-Comprehensive Reviews in Food Science and Food Safety. Available online: https://ift.onlinelibrary.wiley.com/doi/10.1111/1541-4337.12243 (accessed on 30 November 2022).
- Echegaray, N.; Pateiro, M.; Zhang, W.; Domínguez, R.; Campagnol, P.C.B.; Carballo, J.; Lorenzo, J.M. Influence of the Inclusion of Chestnut (Castanea Sativa Miller) in the Finishing Diet and Cooking Technique on the Physicochemical Parameters and Volatile Profile of Biceps Femoris Muscle. Foods 2020, 9, 754. [Google Scholar] [CrossRef]
- Parois, S. Effects of Genotype, Aggressiveness and Hygiene on the Concentration in Odorous Compounds of the Meat of Entire Male Pigs; Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- Lopes, A.F.; Alfaia, C.M.M.; Partidário, A.M.C.P.C.; Lemos, J.P.C.; Prates, J.A.M. Influence of Household Cooking Methods on Amino Acids and Minerals of Barrosã-PDO Veal. Meat Sci. 2015, 99, 38–43. [Google Scholar] [CrossRef]
- Wilkinson, B.H.P.; Lee, E.; Purchas, R.W.; Morel, P.C.H. The Retention and Recovery of Amino Acids from Pork Longissimus Muscle Following Cooking to Either 60 °C or 75 °C. Meat Sci. 2014, 96, 361–365. [Google Scholar] [CrossRef]
- Nyam, K.L.; Goh, K.M.; Chan, S.Q.; Tan, C.P.; Cheong, L.Z. Effect of sous vide cooking parameters on physicochemical properties and free amino acids profile of chicken breast meat. J. Food Compos. Anal. 2023, 115, 105010. [Google Scholar] [CrossRef]
- Domínguez, R.; Borrajo, P.; Lorenzo, J.M. The Effect of Cooking Methods on Nutritional Value of Foal Meat. J. Food Compos. Anal. 2015, 43, 61–67. [Google Scholar] [CrossRef]
- Adeleye, O.O.; Awodiran, S.T.; Ajayi, A.O.; Ogunmoyela, T.F. Effect of High-Temperature, Short-Time Cooking Conditions on in Vitro Protein Digestibility, Enzyme Inhibitor Activity and Amino Acid Profile of Selected Legume Grains. Heliyon 2020, 6, e05419. [Google Scholar] [CrossRef]
- Ma, Q.; Hamid, N.; Oey, I.; Kantono, K.; Farouk, M. The Impact of High-Pressure Processing on Physicochemical Properties and Sensory Characteristics of Three Different Lamb Meat Cuts. Molecules 2020, 25, 2665. [Google Scholar] [CrossRef]
- Xu, X.; Chen, X.; Chen, D.; Yu, B.; Yin, J.; Huang, Z. Effects of Dietary Apple Polyphenol Supplementation on Carcass Traits, Meat Quality, Muscle Amino Acid and Fatty Acid Composition in Finishing Pigs. Food Funct. 2019, 10, 7426–7434. [Google Scholar] [CrossRef] [PubMed]
- Madruga, M.; Dantas, I.; Queiroz, A.; Brasil, L.; Ishihara, Y. Volatiles and Water- and Fat-Soluble Precursors of Saanen Goat and Cross Suffolk Lamb Flavour. Molecules 2013, 18, 2150–2165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkukwana, T.T.; Muchenje, V.; Masika, P.J.; Hoffman, L.C.; Dzama, K.; Descalzo, A.M. Fatty Acid Composition and Oxidative Stability of Breast Meat from Broiler Chickens Supplemented with Moringa Oleifera Leaf Meal over a Period of Refrigeration. Food Chem. 2014, 142, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Springer. Long-Term Dietary Alpha-Linolenic Acid Supplement Alleviates Cognitive Impairment Correlate with Activating Hippocampal CREB Signaling in Natural Aging Rats. Available online: https://link.springer.com/article/10.1007/s12035-015-9393-x (accessed on 30 November 2022).
- Haak, L.; Sioen, I.; Raes, K.; Camp, J.V.; Smet, S.D. Effect of pan-frying in different culinary fats on the fatty acid profile of pork. Food Chem. 2007, 102, 857–864. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Hou, S.; Raza, S.H.A.; Wang, Z.; Yang, B.; Sun, S.; Ding, B.; Gui, L.; Simal-Gandara, J.; et al. Effects of different feeding regimes on muscle metabolism and its association with meat quality of Tibetan sheep. Food Chem. 2022, 374, 131611. [Google Scholar] [CrossRef]
- Ge, X.; Zhang, L.; Zhong, H.; Gao, T.; Jiao, Y.; Liu, Y. The effects of various Chinese processing methods on the nutritional and safety properties of four kinds of meats. Innov. Food Sci. Emerg. Technol. 2021, 70, 102674. [Google Scholar] [CrossRef]
- Rodriguez-Estrada, M.T.; Penazzi, G.; Caboni, M.F.; Bertacco, G.; Lercker, G. Effect of Different Cooking Methods on Some Lipid and Protein Components of Hamburgers. Meat Sci. 1997, 45, 365–375. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, G.; Yin, X.; Ge, C.; Liao, G. Effects of Different Cooking Methods on Free Fatty Acid Profile, Water-Soluble Compounds and Flavor Compounds in Chinese Piao Chicken Meat. Food Res. Int. 2021, 149, 110696. [Google Scholar] [CrossRef]
- Saturno, J.F.L.; Dilawar, M.A.; Mun, H.-S.; Kim, D.H.; Rathnayake, D.; Yang, C.-J. Meat Composition, Fatty Acid Profile and Sensory Attributes of Meat from Goats Fed Diet Supplemented with Fermented Saccharina Japonica and Dendropanax Morbifera. Foods 2020, 9, 937. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional Enhancement of Sheep Meat Fatty Acid Profile for Human Health and Wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef]
- Mostert, R.; Hoffman, L.C. Effect of Gender on the Meat Quality Characteristics and Chemical Composition of Kudu (Tragelaphus Strepsiceros), an African Antelope Species. Food Chem. 2007, 104, 565–570. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Liu, X.; Xie, P.; Lei, Y.; Yu, H.; Han, A.; Xie, L.; Jia, H.; Lin, S.; Bai, Y.; et al. Characterization of Volatile Profiles and Correlated Contributing Compounds in Pan-Fried Steaks from Different Chinese Yellow Cattle Breeds through GC-Q-Orbitrap, E-Nose, and Sensory Evaluation. Molecules 2022, 27, 3593. [Google Scholar] [CrossRef]
- Rasinska, E.; Rutkowska, J.; Czarniecka-Skubina, E.; Tambor, K. Effects of Cooking Methods on Changes in Fatty Acids Contents, Lipid Oxidation and Volatile Compounds of Rabbit Meat. LWT 2019, 110, 64–70. [Google Scholar] [CrossRef]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Influence of Thermal Treatment on Formation of Volatile Compounds, Cooking Loss and Lipid Oxidation in Foal Meat. LWT-Food Sci. Technol. 2014, 58, 439–445. [Google Scholar] [CrossRef]
- Journal of Agricultural and Food Chemistry. Effect of the Polyunsaturated Fatty Acid Composition of Beef Muscle on the Profile of Aroma Volatiles. Available online: https://pubs.acs.org/doi/10.1021/jf980718m (accessed on 30 November 2022).
- Xu, Y.; Shui, M.; Chen, D.; Ma, X.; Feng, T. Optimization of Jinhua Ham Classification Method Based on Volatile Flavor Substances and Determination of Key Odor Biomarkers. Molecules 2022, 27, 7087. [Google Scholar] [CrossRef]
- Wang, F.; Gao, Y.; Wang, H.; Xi, B.; He, X.; Yang, X.; Li, W. Analysis of Volatile Compounds and Flavor Fingerprint in Jingyuan Lamb of Different Ages Using Gas Chromatography–Ion Mobility Spectrometry (GC–IMS). Meat Sci. 2021, 175, 108449. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Zheng, F.; Tian, X.; Feng, T.; Yao, L.; Sun, M.; Shi, L. Evolution Analysis of Free Fatty Acids and Aroma-Active Compounds during Tallow Oxidation. Molecules 2022, 27, 352. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, J.; Zhu, Z.; Lei, Y.; Huang, S.; Huang, M. Effect of Ageing Time on the Flavour Compounds in Nanjing Water-Boiled Salted Duck Detected by HS-GC-IMS. LWT 2022, 155, 112870. [Google Scholar] [CrossRef]
- Madruga, M.S.; Elmore, J.S.; Oruna-Concha, M.J.; Balagiannis, D.; Mottram, D.S. Determination of Some Water-Soluble Aroma Precursors in Goat Meat and Their Enrolment on Flavour Profile of Goat Meat. Food Chem. 2010, 123, 513–520. [Google Scholar] [CrossRef]
- Trifan, A.; Zengin, G.; Brebu, M.; Skalicka-Woźniak, K.; Luca, S.V. Phytochemical Characterization and Evaluation of the Antioxidant and Anti-Enzymatic Activity of Five Common Spices: Focus on Their Essential Oils and Spent Material Extractives. Plants 2021, 10, 2692. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, M.; Fang, F.; Fu, C.; Xing, S.; Qian, C.; Liu, J.; Kan, J.; Jin, C. Effect of Sous Vide Cooking Treatment on the Quality, Structural Properties and Flavor Profile of Duck Meat. Int. J. Gastron. Food Sci. 2022, 29, 100565. [Google Scholar] [CrossRef]
- Li, L.; Belloch, C.; Flores, M. The Maillard Reaction as Source of Meat Flavor Compounds in Dry Cured Meat Model Systems under Mild Temperature Conditions. Molecules 2021, 26, 223. [Google Scholar] [CrossRef]
- Bai, S.; You, L.; Ji, C.; Zhang, T.; Wang, Y.; Geng, D.; Gao, S.; Bi, Y.; Luo, R. Formation of Volatile Flavor Compounds, Maillard Reaction Products and Potentially Hazard Substance in China Stir-Frying Beef Sao Zi. Food Res. Int. 2022, 159, 111545. [Google Scholar] [CrossRef]
- Tian-2014-European Journal of Lipid Science and Technology-Wiley Online Library. Contribution to the Aroma Characteristics of Mutton Process Flavor from Oxidized Suet Evaluated by Descriptive Sensory Analysis, Gas Chromatography, and Electronic Nose through Partial Least Squares Regression. Available online: https://onlinelibrary.wiley.com/doi/10.1002/ejlt.201300473 (accessed on 30 November 2022).
- Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D. The Effects of Diet and Breed on the Volatile Compounds of Cooked Lamb. Meat Sci. 2000, 55, 149–159. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, L.; Zhang, Y.; Song, H.; Raza, A.; Pan, W.; Gong, L.; Jiang, C. Comparison of Different Volatile Extraction Methods for the Identification of Fishy Off-Odor in Fish By-Products. Molecules 2022, 27, 6177. [Google Scholar] [CrossRef]
- Xie, Q.; Xu, B.; Xu, Y.; Yao, Z.; Zhu, B.; Li, X.; Sun, Y. Effects of Different Thermal Treatment Temperatures on Volatile Flavour Compounds of Water-Boiled Salted Duck after Packaging. LWT 2022, 154, 112625. [Google Scholar] [CrossRef]
- Yeo, H.; Balagiannis, D.P.; Koek, J.H.; Parker, J.K. Comparison of Odorants in Beef and Chicken Broth—Focus on Thiazoles and Thiazolines. Molecules 2022, 27, 6712. [Google Scholar] [CrossRef]
- Bleicher, J.; Ebner, E.E.; Bak, K.H. Formation and Analysis of Volatile and Odor Compounds in Meat—A Review. Molecules 2022, 27, 6703. [Google Scholar] [CrossRef]
- Shen, M.; Liu, Q.; Jia, H.; Jiang, Y.; Nie, S.; Xie, J.; Li, C.; Xie, M. Simultaneous Determination of Furan and 2-Alkylfurans in Heat-Processed Foods by Automated Static Headspace Gas Chromatography-Mass Spectrometry. LWT-Food Sci. Technol. 2016, 72, 44–54. [Google Scholar] [CrossRef]
- Liu, H.; Hui, T.; Zheng, X.; Li, S.; Wei, X.; Li, P.; Zhang, D.; Wang, Z. Characterization of Key Lipids for Binding and Generating Aroma Compounds in Roasted Mutton by UPLC-ESI-MS/MS and Orbitrap Exploris GC. Food Chem. 2022, 374, 131723. [Google Scholar] [CrossRef]
- Wall, K.R.; Kerth, C.R.; Miller, R.K.; Alvarado, C. Grilling Temperature Effects on Tenderness, Juiciness, Flavor and Volatile Aroma Compounds of Aged Ribeye, Strip Loin, and Top Sirloin Steaks. Meat Sci. 2019, 150, 141–148. [Google Scholar] [CrossRef]
- O’Neill, C.M.; Cruz-Romero, M.C.; Duffy, G.; Kerry, J.P. Comparative Effect of Different Cooking Methods on the Physicochemical and Sensory Characteristics of High Pressure Processed Marinated Pork Chops. Innov. Food Sci. Emerg. Technol. 2019, 54, 19–27. [Google Scholar] [CrossRef]
- Horwitz, W. CEU Repositorio Institucional: Official Methods of Analysis of AOAC International. Volume I, Agricultural Chemicals, Contaminants, Drugs. Available online: https://repositorioinstitucional.ceu.es/handle/10637/3158 (accessed on 30 November 2022).
- Xuan, X.; Sun, R.; Zhang, X.; Cui, Y.; Lin, X.; Sun, Y.; Deng, W.; Liao, X.; Ling, J. Novel Application of HS-GC-IMS with PCA for Characteristic Fingerprints and Flavor Compound Variations in NFC Chinese Bayberry (Myrica Rubra) Juice during Storage. LWT 2022, 167, 113882. [Google Scholar] [CrossRef]
Evaluation Index | |||||
---|---|---|---|---|---|
Processing | Smell | Texture | Colour | Appearance | Acceptability |
Pan-fried | 17.00 ± 0.42 a | 16.40 ± 0.40 a | 16.60 ± 0.37 a | 15.60 ± 0.31 ab | 17.00 ± 0.26 a |
Deep-fried | 16.10 ± 0.41 ab | 14.80 ± 0.36 b | 15.50 ± 0.40 b | 14.90 ± 0.38 b | 16.40 ± 0.34 a |
Baked | 15.20 ± 0.33 b | 16.40 ± 0.34 a | 16.40 ± 0.31 ab | 16.40 ± 0.27 a | 16.60 ± 00.27 a |
Boiled | 12.90 ± 0.38 c | 13.10 ± 0.31 c | 12.60 ± 0.27 c | 15.40 ± 0.40 ab | 14.10 ± 0.38 b |
Processing | Shearing Force (N) | Chroma (△E) | Hardness (g) | Elastic (mm) | Cohesion | Chewing Ability (mJ) |
---|---|---|---|---|---|---|
Boiled | 4.70 ± 0.14 a | 77.91 ± 0.18 d | 1431.00 ± 172.40 b | 3.72 ± 0.42 a | 0.73 ± 0.08 a | 34.45 ± 3.37 ab |
Pan-fried | 2.96 ± 0.18 c | 81.79 ± 0.24 a | 1580.67 ± 251.22 b | 2.97 ± 0.43 ab | 0.62 ± 0.08 ab | 28.17 ± 6.55 b |
Deep-fried | 3.77 ± 0.20 b | 82.88 ± 0.34 b | 2625.33 ± 100.09 a | 2.86 ± 0.33 b | 0.61 ± 0.04 ab | 44.33 ± 3.45 a |
Baked | 4.45 ± 0.09 a | 80.73 ± 0.27 c | 1546.67 ± 141.74 b | 3.36 ± 0.16 ab | 0.68 ± 0.04 ab | 34.60 ± 5.83 ab |
Processing | Water (%) | Fat (%) | Protein (%) |
---|---|---|---|
Boiled | 65.93 ± 1.57 a | 6.99 ± 0.51 a | 32.18 ± 1.60 c |
Pan-fried | 60.48 ± 1.12 b | 5.61 ± 0.35 b | 40.47 ± 1.11 a |
Deep-fried | 58.45 ± 2.10 bc | 5.25 ± 0.10 b | 42.64 ± 0.20 a |
Baked | 62.80 ± 0.93 ab | 4.87 ± 0.01 b | 37.10 ± 0.21 b |
Iterms | Pan-Fried | Deep-Fried | Baked | Boiled |
---|---|---|---|---|
Glutamate | 0.25 ± 0.01 a | 0.15 ± 0.01 b | 0.26 ± 0.05 a | 0.03 ± 0.00 c |
Glycine | 2.59 ± 0.05 a | 1.61 ± 0.12 b | 2.30 ± 0.46 ab | 0.08 ± 0.01 c |
Lysine | 0.42 ± 0.02 a | 0.30 ± 0.03 a | 0.40 ± 0.07 a | 0.02 ± 0.01 b |
Aspartate | 0.14 ± 0.03 ab | 0.19 ± 0.06 a | 0.04 ± 0.01 bc | 0.00 ± 0.00 c |
Arginine | 0.51 ± 0.01 a | 0.39 ± 0.03 a | 0.43 ± 0.08 a | 0.03 ± 0.01 b |
Serine | 0.64 ± 0.03 a | 0.50 ± 0.04 a | 0.58 ± 0.11 a | 0.03 ± 0.01 b |
Methionine | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.03 ± 0.00 a | 0.00 ± 0.00 c |
Phenylalanine | 0.26 ± 0.02 a | 0.20 ± 0.03 a | 0.28 ± 0.05 a | 0.02 ± 0.01 b |
Tyrosine | 0.21 ± 0.02 a | 0.18 ± 0.02 a | 0.23 ± 0.04 a | 0.02 ± 0.01 b |
Leucine | 0.50 ± 0.03 a | 0.41 ± 0.06 a | 0.59 ± 0.12 a | 0.02 ± 0.01 b |
Isoleucine | 0.32 ± 0.02 a | 0.26 ± 0.03 a | 0.36 ± 0.07 a | 0.02 ± 0.01 b |
Histidine | 0.45 ± 0.04 ab | 0.36 ± 0.03 b | 0.55 ± 0.08 a | 0.07 ± 0.02 c |
Proline | 0.66 ± 0.03 a | 0.48 ± 0.00 a | 0.48 ± 0.11 a | 0.01 ± 0.01 b |
Valine | 0.46 ± 0.02 a | 0.37 ± 0.04 a | 0.46 ± 0.08 a | 0.02 ± 0.01 b |
Threonine | 0.35 ± 0.02 a | 0.30 ± 0.02 a | 0.36 ± 0.07 a | 0.02 ± 0.01 b |
Alanine | 9.14 ± 0.12 a | 5.96 ± 0.48 b | 6.68 ± 1.19 b | 0.39 ± 0.10 c |
Asparagine | 0.15 ± 0.01 a | 0.13 ± 0.01 a | 0.16 ± 0.02 a | 0.02 ± 0.00 b |
Creatine | 12.83 ± 0.38 a | 8.62 ± 0.98 b | 12.56 ± 1.74 a | 1.59 ± 0.25 c |
Citrulline | 0.06 ± 0.00 a | 0.04 ± 0.00 a | 0.05 ± 0.02 a | 0.00 ± 0.00 b |
Glutamine | 13.30 ± 0.98 a | 6.80 ± 0.71 b | 7.29 ± 1.07 b | 0.63 ± 0.18 c |
Creatinine | 0.85 ± 0.06 a | 0.81 ± 0.02 a | 0.61 ± 0.10 b | 0.17 ± 0.02 c |
Tryptophan | 0.28 ± 0.02 a | 0.21 ± 0.01 a | 0.24 ± 0.03 a | 0.06 ± 0.01 b |
Hydroxyproline | 0.10 ± 0.00 a | 0.07 ± 0.00 b | 0.07 ± 0.01 b | 0.00 ± 0.00 c |
Ornithine | 2.04 ± 0.03 a | 0.76 ± 0.12 c | 1.15 ± 0.11 b | 0.09 ± 0.02 d |
Taurine | 5.71 ± 0.34 a | 4.56 ± 0.53 a | 4.89 ± 0.56 a | 0.58 ± 0.15 b |
Choline | 5.06 ± 0.66 b | 7.59 ± 0.94 a | 3.17 ± 0.34 b | 0.18 ± 0.02 c |
Aminoadipic acid | 5.64 ± 0.81 a | 4.20 ± 1.08 a | 1.34 ± 0.59 b | 0.02 ± 0.01 b |
EAAs/(umol/g) | 2.60 ± 0.14 a | 2.06 ± 0.22 a | 2.72 ± 0.48 a | 0.19 ± 0.06 b |
NEAAs/(umol/g) | 60.33 ± 1.56 a | 43.41 ± 3.24 b | 42.83 ± 5.56 b | 3.95 ± 0.80 c |
TAAs/(umol/g) | 62.93 ± 1.70 a | 45.47 ± 3.44 b | 45.56 ± 6.03 b | 4.15 ± 0.86 c |
Fatty Acids | Pan-Fried | Deep-Fried | Baked | Boiled |
---|---|---|---|---|
C8:0 | 5.19 ± 1.22 a | 2.44 ± 0.88 ab | 0.11 ± 0.08 b | 0.33 ± 0.04 b |
C10:0 | 9.77 ± 3.21 | 7.12 ± 0.90 | 7.15 ± 0.99 | 8.64 ± 1.06 |
C12:0 | 8.33 ± 2.24 | 6.61 ± 0.69 | 5.90 ± 0.73 | 7.18 ± 0.87 |
C13:0 | 0.72 ± 0.33 | 0.35 ± 0.11 | 0.39 ± 0.03 | 0.49 ± 0.24 |
C14:0 | 211.02 ± 57.96 | 154.33 ± 19.52 | 134.43 ± 16.15 | 170.25 ± 28.08 |
C15:0 | 57.14 ± 12.85 | 44.22 ± 4.57 | 40.36 ± 5.75 | 53.22 ± 8.72 |
C16:0 | 4324.42 ± 710.22 a | 4043.59 ± 732.95 ab | 2287.36 ± 213.48 b | 2740.59 ± 352.79 ab |
C17:0 | 169.24 ± 36.80 | 133.46 ± 16.74 | 120.78 ± 14.08 | 152.75 ± 23.02 |
C18:0 | 2925.01 ± 499.54 | 2590.03 ± 397.31 | 2015.13 ± 177.06 | 2348.88 ± 293.78 |
C20:0 | 74.71 ± 12.21 a | 77.07 ± 22.74 a | 15.60 ± 2.21 b | 17.52 ± 1.83 b |
C21:0 | 5.01 ± 0.71 a | 4.89 ± 1.61 a | 0.69 ± 0.3 b | 0.80 ± 0.21 b |
C22:0 | 59.86 ± 9.85 a | 65.70 ± 23.07 a | 2.36 ± 0.76 b | 2.78 ± 0.31 b |
C23:0 | 6.97 ± 0.96 a | 7.26 ± 2.38 a | 0.68 ± 0.42 b | 0.91 ± 0.25 b |
C24:0 | 27.38 ± 4.24 a | 29.91 ± 9.52 a | 2.15 ± 0.83 b | 2.36 ± 0.25 b |
SFA | 7884.77 ± 1349.43 | 7166.97 ± 1228.35 | 4632.94 ± 426.06 | 5506.58 ± 710.80 |
C14:1T | 43.79 ± 6.44 | 37.80 ± 4.09 | 41.83 ± 1.47 | 42.28 ± 3.28 |
C14:1 | 30.93 ± 5.64 | 26.36 ± 2.77 | 30.40 ± 1.35 | 30.11 ± 2.02 |
C15:1T | 32.43 ± 3.81 | 28.61 ± 2.22 | 30.10 ± 1.10 | 31.12 ± 1.78 |
C15:1 | 18.42 ± 0.99 | 17.12 ± 0.54 | 18.59 ± 1.14 | 18.62 ± 0.79 |
C16:1T | 55.14 ± 9.53 | 44.78 ± 3.94 | 45.71 ± 3.85 | 55.86 ± 7.37 |
C16:1 | 157.64 ± 27.73 | 125.81 ± 11.60 | 99.45 ± 9.11 | 139.86 ± 26.60 |
C17:1T | 40.25 ± 6.04 | 35.45 ± 3.01 | 38.22 ± 1.51 | 42.86 ± 3.13 |
C17:1 | 93.43 ± 15.55 | 71.70 ± 4.01 | 61.80 ± 6.31 | 69.88 ± 13.68 |
C18:1N12T | 27.93 ± 5.08 | 21.68 ± 2.44 | 20.79 ± 2.59 | 27.37 ± 3.50 |
C18:1N9T | 32.66 ± 5.14 | 26.48 ± 3.36 | 25.41 ± 3.19 | 38.89 ± 3.53 |
C18:1N7T | 207.08 ± 47.22 | 152.89 ± 17.50 | 160.49 ± 21.44 | 213.06 ± 40.43 |
C18:1N12 | 1140.46 ± 165.32 b | 1344.62 ± 278.43 ab | 1075.66 ± 125.38 b | 1840.75 ± 100.95 a |
C18:1N9C | 6183.56 ± 864.63 a | 5692.87 ± 1048.67 ab | 2652.89 ± 241.90 c | 3455.70 ± 588.45 bc |
C18:1N7 | 296.96 ± 49.12 a | 305.30 ± 81.08 a | 76.78 ± 6.72 b | 99.82 ± 16.45 b |
C19:1N12T | 15.08 ± 4.22 | 11.88 ± 3.69 | 8.28 ± 1.82 | 12.33 ± 3.01 |
C19:1N9T | 1428.81 ± 161.53 a | 1624.17 ± 343.70 a | 241.78 ± 28.81 b | 333.36 ± 16.61 b |
C20:1T | 39.52 ± 5.76 a | 38.67 ± 10.32 a | 13.09 ± 0.67 b | 13.38 ± 0.91 b |
C20:1 | 721.69 ± 106.97 a | 797.2 8 ± 228.70 a | 169.60 ± 25.86 b | 204.91 ± 17.45 b |
C22:1N9T | 14.71 ± 2.58 | 12.03 ± 1.22 | 12.42 ± 0.52 | 12.97 ± 0.86 |
C22:1N9 | 30.26 ± 4.33 | 23.64 ± 2.53 | 23.97 ± 1.13 | 24.77 ± 1.55 |
C24:1 | 33.77 ± 2.74 a | 25.63 ± 1.09 b | 24.90 ± 1.19 b | 25.23 ± 0.72 b |
MUFA | 10644.52 ± 1374.73 a | 10464.76 ± 2035.59 a | 4872.17 ± 439.29 b | 6733.15 ± 764.07 b |
C18:2N6T | 13.55 ± 3.35 | 10.50 ± 1.27 | 9.50 ± 1.50 | 13.82 ± 2.69 |
C18:2N6 | 4730.83 ± 654.90 a | 4998.37 ± 1441.40 a | 308.67 ± 54.75 b | 359.51 ± 38.55 b |
C18:3N6 | 4.76 ± 1.12 | 6.69 ± 2.98 | 2.22 ± 0.37 | 2.55 ± 0.39 |
C18:3N3 | 175.95 ± 39.56 a | 146.90 ± 28.92 a | 31.69 ± 7.87 b | 34.02 ± 5.01 b |
C20:2 | 14.25 ± 1.54 a | 13.92 ± 2.28 a | 7.41 ± 0.44 b | 8.37 ± 0.71 b |
C20:3N6 | 20.31 ± 1.66 | 21.31 ± 2.33 | 15.67 ± 1.59 | 17.75 ± 1.45 |
C20:3N3 | 131.90 ± 9.65 | 141.27 ± 7.06 | 123.12 ± 21.23 | 144.49 ± 14.80 |
C20:4N6 | 160.58 ± 16.40 | 153.70 ± 6.96 | 121.71 ± 27.18 | 123.71 ± 25.84 |
C22:2 | 5.64 ± 0.56 a | 3.94 ± 0.23 b | 3.96 ± 0.32 b | 4.03 ± 0.14 b |
C20:5N3 | 100.23 ± 9.29 | 104.39 ± 8.18 | 96.85 ± 12.37 | 109.60 ± 9.45 |
C22:4 | 11.50 ± 0.61 | 10.06 ± 0.55 | 9.49 ± 0.78 | 10.48 ± 0.99 |
C22:5N6 | 6.90 ± 0.32 a | 6.02 ± 0.29 ab | 5.54 ± 0.43 b | 5.96 ± 0.40 ab |
C22:5N3 | 117.09 ± 8.96 | 118.03 ± 5.77 | 106.98 ± 14.67 | 120.80 ± 13.75 |
C22:6N3 | 47.99 ± 3.14 | 50.59 ± 3.62 | 46.03 ± 7.69 | 52.00 ± 4.90 |
PUFAs | 5527.22 ± 738.56 a | 5771.79 ± 1506.62 a | 881.43 ± 148.66 b | 998.73 ± 114.14 b |
UFAs | 16171.75 ± 2103.85 a | 16236.54 ± 3539.91 a | 5753.60 ± 521.22 b | 7731.88 ± 811.79 b |
PUFAs/SFAs | 0.71 ± 0.06 a | 0.78 ± 0.08 a | 0.19 ± 0.03 b | 0.18 ± 0.02 b |
n-6/n-3 | 8.56 ± 0.23 a | 8.93 ± 1.78 a | 1.13 ± 0.03 b | 1.13 ± 0.04 b |
Volatiles | NO. | Compounds | Retention Indexwas | Retention Times (s) | Drift Times (ms) | Odor Descriptions | Peak Volume | p | ||
---|---|---|---|---|---|---|---|---|---|---|
Pan-Fried | Deep-Fried | Baked | ||||||||
Aldehydes | 1 | Butanal | 592.6 | 136.125 | 1.30114 | Cocoa green | 172.48 ± 9.20 b | 255.80 ± 22.93 a | 132.32 ± 4.81 c | <0.01 |
2 | 3-methylbutanal | 654.8 | 161.289 | 1.41245 | fruity chocolate | 5318.01 ± 792.62 a | 6204.64 ± 290.44 a | 216.94 ± 48.09 b | <0.01 | |
3 | Pentanal | 729.1 | 205.451 | 1.18641 | Bready nutty | 274.37 ± 9.23 | 285.98 ± 10.44 | — | 0.222 | |
4 | 3-Methyl-2-butenal | 782.5 | 250.446 | 1.09537 | sweet fruity | 84.39 ± 3.94 b | 161.63 ± 19.13 a | 32.93 ± 6.59 c | <0.01 | |
5 | hexanal M | 792.4 | 259.566 | 1.25737 | fresh green | 1535.10 ± 103.10 | 1537.42 ± 25.36 | 1434.85 ± 53.74 | 0.194 | |
6 | hexanal D | 791.7 | 258.989 | 1.56569 | fresh green | 4758.95 ± 630.97 b | 2309.95 ± 111.08 c | 5737.36 ± 80.22 a | <0.01 | |
7 | Heptanal M | 901.8 | 386.032 | 1.32714 | fresh fatty | 1395.98 ± 48.07 a | 852.00 ± 2.20 b | 1488.75 ± 76.51 a | <0.01 | |
8 | Heptanal D | 901.3 | 385.382 | 1.69514 | Fresh fatty | 898.92 ± 70.98 a | 256.41 ± 7.35 b | 940.34 ± 94.12 a | <0.01 | |
9 | methional M | 916.4 | 407.933 | 1.08419 | Musty potato | 125.99 ± 337.31 | 133.32 ± 44.31 | 110.18 ± 25.38 | 0.661 | |
10 | methional D | 921.6 | 416.002 | 1.39781 | Musty potato | 167.08 ± 37.37 | 243.00 ± 12.92 | — | 0.029 | |
11 | (E)-2-heptenal | 918.2 | 410.679 | 1.25196 | Fruity green | 207.87 ± 6.21 | 289.93 ± 7.94 | — | <0.01 | |
12 | benzaldehyde M | 980.5 | 519.474 | 1.15413 | fruity cherry | 2400.08 ± 30.65 b | 2348.76 ± 92.87 b | 2621.80 ± 64.76 a | 0.006 | |
13 | benzaldehyde D | 979.3 | 516.947 | 1.28859 | fruity cherry | 488.48 ± 21.42 c | 605.59 ± 32.95 b | 899.90 ± 7.51 a | <0.01 | |
14 | benzaldehyde T | 980.1 | 518.652 | 1.46891 | strong sharp | 1157.42 ± 53.55 | 1234.71 ± 123.72 | 1312.12 ± 133.86 | 0.298 | |
15 | Octanal M | 1013.6 | 581.571 | 1.40125 | orange peel | 961.46 ± 52.94 a | 490.44 ± 8.27 b | 978.22 ± 81.28 a | <0.01 | |
16 | Octanal D | 1012.8 | 580.234 | 1.82611 | orange peel | 317.81 ± 31.92 a | 121.10 ± 9.48 b | 334.52 ± 44.68 a | <0.01 | |
17 | 2-octenal ( E) | 1069.4 | 691.019 | 1.33185 | fresh cucumber | 170.20 ± 22.73 a | 69.02 ± 3.05 b | 48.03 ± 5.30 b | <0.01 | |
18 | n-Nonanal M | 1104.7 | 770.689 | 1.47201 | Orange fatty | 1244.31 ± 73.52 a | 579.87 ± 13.80 c | 1090.93 ± 80.22 b | <0.01 | |
19 | n-Nonanal D | 1104.4 | 770.007 | 1.50718 | Orange fatty | 412.58 ± 36.15 b | 242.85 ± 13.36 c | 508.71 ± 42.09 a | <0.01 | |
20 | n-Nonanal T | 1103.9 | 768.833 | 1.95134 | Orange fatty | 180.96 ± 30.13 a | 55.28 ± 9.78 b | 143.80 ± 21.58 a | 0.001 | |
Esters | 21 | methyl acetate | 500.6 | 105.943 | 1.18735 | Green etherial | 113.52 ± 2.26 a | 117.49 ± 3.81 a | 68.22 ± 5.38 b | <0.01 |
22 | ethyl 2-hydroxypropanoate | 837.1 | 305.129 | 1.13711 | sharp tart | — | — | 34.18 ± 1.24 | ||
23 | 2-Hexen-1-ol M | 853.2 | 323.333 | 1.18651 | fruity green | 395.99 ± 11.07 a | 207.55 ± 7.33 b | 199.65 ± 5.11 b | <0.01 | |
24 | 2-Hexen-1-ol D | 851.9 | 321.877 | 1.52421 | fruity green | 133.13 ± 8.03 | 120.65 ± 9.26 | — | 0.366 | |
25 | ethyl 3-methylbutyrate | 854.6 | 325.033 | 1.25525 | fruity sweet | 126.85 ± 6.00 | 201.40 ± 17.07 | — | 0.015 | |
26 | Ethyl acetoacetate | 919.9 | 413.216 | 1.599 | fresh fruity | 96.89 ± 1.69 | 186.44 ± 12.36 | — | 0.002 | |
27 | methyl hexanoate | 962.4 | 485.091 | 1.28844 | fruity fatty | 67.47 ± 3.15 b | 100.44 ± 6.73 b | 223.32 ± 21.88 a | <0.01 | |
28 | Methyl 2-furoate | 962.8 | 485.778 | 1.15747 | fruity mushroom | 439.62 ± 39.06 ab | 499.30 ± 18.35 ab | 643.19 ± 69.03 a | 0.054 | |
29 | isobutyl isovalerate | 991.7 | 541.691 | 1.38165 | sweet fruity | 170.65 ± 8.05 b | 96.71 ± 6.33 c | 377.16 ± 19.65 a | <0.01 | |
30 | butyl 2-methylbutanoate | 1046.1 | 643.088 | 1.3726 | fruity tropical | 53.25 ± 5.48 | 29.34 ± 1.57 | — | 0.014 | |
31 | diethyl malonate | 1070.8 | 694.023 | 1.24932 | sweet fruity | 437.74 ± 7.71 b | 578.92 ± 14.21 a | 174.23 ± 9.45 c | <0.01 | |
Alcohols | 32 | Isopropanol M | 460.5 | 94.992 | 1.09257 | alcohol musty | 349.23 ± 11.82 | 380.01 ± 14.60 | 372.96 ± 8.58 | 0.240 |
33 | Ethanol | 463.4 | 95.743 | 1.0544 | strong alcoholic | 1161.29 ± 43.50 ab | 1252.38 ± 18.68 a | 1069.51 ± 13.12 b | 0.011 | |
34 | 1-butanol M | 665.2 | 165.902 | 1.18135 | fusel oil | 1595.46 ± 42.12 a | 1336.97 ± 4.94 b | 1566.99 ± 81.70 a | 0.026 | |
35 | 1-butanol D | 666.4 | 166.444 | 1.37795 | fusel oil | 3341.67 ± 94.91 | 4721.94 ± 99.88 | — | 0.001 | |
36 | 2-Ethoxyethanol | 739 | 213.137 | 1.0971 | - | 338.72 ± 12.99 b | 434.88 ± 13.90 a | 183.93 ± 9.12 c | <0.01 | |
37 | 1-pentanol M | 774.5 | 243.12 | 1.25023 | fusel oil | 797.03 ± 5.15 a | 638.31 ± 10.08 b | 641.65 ± 14.79 b | <0.01 | |
38 | 1-pentanol D | 772.9 | 241.702 | 1.4093 | fusel oil | 299.21 ± 28.04 a | 137.41 ± 16.11 b | 242.90 ± 27.82 a | 0.010 | |
39 | 1-pentanol T | 773.2 | 241.966 | 1.50852 | fusel oil | 301.82 ± 8.05 a | 212.15 ± 0.71 b | 154.28 ± 7.45 c | <0.01 | |
40 | (Z)-3-Hexen-1-ol | 874.3 | 349.051 | 1.22316 | fresh green | 125.73 ± 3.94 | 202.08 ± 3.90 | — | <0.01 | |
41 | n-Hexanol | 880.9 | 357.439 | 1.32517 | green fruity | 91.01 ± 4.76 b | 109.44 ± 4.37 b | 160.51 ± 10.52 a | 0.001 | |
42 | 2-Heptanol | 922.6 | 417.547 | 1.37468 | fresh lemon | 71.35 ± 11.40 | 110.68 ± 8.87 | — | 0.053 | |
43 | 1-Heptanol | 962.7 | 485.59 | 1.38815 | solvent-like | 146.66 ± 7.55 a | 125.59 ± 1.32 b | 74.25 ± 6.65 c | <0.01 | |
Ketone | 44 | 2-Propanone | 494 | 104.05 | 1.12552 | solvent ethereal | 10025.42 ± 55.97 a | 9727.94 ± 46.71 b | 9711.63 ± 83.47 b | 0.023 |
45 | 2-Butanone M | 581 | 131.877 | 1.07811 | acetone-like | 2522.22 ± 22.85 a | 2031.50 ± 64.10 c | 2224.84 ± 16.02 b | <0.01 | |
46 | 2-Butanone D | 580.1 | 131.591 | 1.16366 | acetone-like | 603.57 ± 12.89 c | 798.66 ± 19.62 b | 850.49 ± 10.02 a | <0.01 | |
47 | 2-Butanone T | 581 | 131.888 | 1.24956 | acetone-like | 3713.07 ± 25.54 b | 4364.15 ± 78.26 a | 3293.61 ± 131.89 c | <0.01 | |
48 | 2-pentanone | 681.7 | 173.549 | 1.12621 | Sweet fruity | 445.79 ± 6.97 | 389.71 ± 11.76 | — | 0.015 | |
49 | 2-heptanone M | 890.3 | 369.786 | 1.26005 | Cheese fruity | 593.24 ± 7.56 a | 611.82 ± 9.57 a | 272.62 ± 11.05 b | <0.01 | |
50 | 2-heptanone D | 889.1 | 368.161 | 1.63693 | Cheese fruity | 310.52 ± 3.14 b | 385.84 ± 8.38 a | 54.52 ± 4.15 c | <0.01 | |
51 | Cyclohexanone | 899.7 | 383.019 | 1.15248 | minty acetone | 100.71 ± 0.66 b | 120.14 ± 2.75 a | 128.17 ± 3.32 a | 0.001 | |
52 | 1-octen-3-one M | 962.6 | 485.408 | 1.26112 | herbal mushroom | 322.33 ± 27.37 | 42.38 ± 3.99 | — | <0.01 | |
53 | 1-octen-3-one D | 961.2 | 482.982 | 1.67736 | herbal mushroom | 852.58 ± 36.02 a | 291.64 ± 7.53 b | 146.48 ± 4.97 c | 0.001 | |
Pyrazine | 54 | Methylpyrazine | 836 | 303.923 | 1.08311 | nutty cocoa | 712.77 ± 5.93 | 961.00 ± 14.00 | — | <0.01 |
55 | 2,5-dimethylpyrazine M | 925 | 421.354 | 1.11583 | cocoa roasted nuts | 289.22 ± 97.16 | 508.72 ± 214.08 | — | 0.002 | |
56 | 2,5-dimethylpyrazine D | 922.3 | 416.987 | 1.50065 | cocoa roasted nuts | 3176.17 ± 8.49 | 4835.77 ± 34.11 | — | 0.003 | |
57 | 2-ethyl-3-methylpyrazine | 1025.5 | 603.381 | 1.17094 | nutty peanut | 1611.58 ± 76.27 | 2470.46 ± 175.81 | — | 0.011 | |
58 | 2-ethyl-3,5-dimethylpyrazine | 1090 | 736.361 | 1.23234 | burnt almonds | 319.11 ± 6.04 | 555.82 ± 42.56 | — | 0.005 | |
Organic acid | 59 | hexanoic acid | 1040.8 | 632.652 | 1.29394 | sour fatty | 41.30 ± 2.53 b | 38.66 ± 1.87 b | 51.56 ± 2.05 a | 0.013 |
Furan | 60 | 2-ethylfuran | 662.2 | 164.548 | 1.05125 | solvent ethereal | — | — | 438.41 ± 50.14 | |
61 | 5-methylfurfuryl alcohol | 962.5 | 485.317 | 1.57392 | sweet caramellic | 164.83 ± 2.90 a | 85.94 ± 2.29 b | 51.47 ± 5.73 c | <0.01 | |
Hydroxy ketone | 62 | 3-hydroxy-2-butanone M | 710.1 | 191.471 | 1.06034 | sweet buttery | 1751.54 ± 50.45 a | 932.73 ± 52.11 b | 1887.01 ± 36.97 a | <0.01 |
63 | 3-hydroxy-2-butanone D | 708 | 190.028 | 1.3319 | sweet buttery | 1465.10 ± 77.40 a | 663.79 ± 13.39 b | 1445.86 ± 123.58 a | 0.001 | |
64 | 4-Hydroxy-4-methyl-2-pentanone | 860.3 | 331.775 | 1.13711 | - | 87.08 ± 14.26 b | 98.89 ± 10.98 b | 167.15 ± 15.80 a | 0.013 | |
Sulfur compounds | 65 | allyl isothiocyanate | 905.5 | 391.422 | 1.09622 | strong pungent | 171.97 ± 12.09 b | 277.89 ± 5.37 a | 85.65 ± 2.88 c | <0.01 |
66 | Furfuryl methyl sulfide | 979.7 | 517.755 | 1.38815 | onion garlic | 121.97 ± 5.77 b | 165.86 ± 10.44 a | 101.04 ± 2.11 b | 0.002 |
Index | Scores | |
---|---|---|
Appearance | Uniform size, no damage on the surface | 13–20 |
The size is relatively uniform, and the surface is slightly damaged | 9–12 | |
Uneven size, serious surface damage | 0–8 | |
Colour | The surface is golden yellow, with uniform color and luster | 13–20 |
The surface is light yellow, with uneven color and luster | 9–12 | |
The surface is burnt black, with uneven color and no luster | 0–8 | |
Texture | Crispy outside, tender inside, moderate hardness, juicy | 13–20 |
Crisp outside and tender inside, slightly hard or soft, more juice | 9–12 | |
The meat is very dry, hard or soft, with little juice | 0–8 | |
Smell | Pure fragrance, no smell of mutton | 13–20 |
Average fragrance, a little mutton smell | 9–12 | |
No fragrance, heavy mutton smell | 0–8 | |
Acceptability | Easy to accept | 13–20 |
Easier to accept | 9–12 | |
Not easy to accept | 0–8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Han, L.; Han, W.; Gui, L.; Yuan, Z.; Hou, S.; Wang, Z.; Yang, B.; Raza, S.H.A.; Alowais, A.F.S.; et al. Effect of Different Heat Treatments on the Quality and Flavor Compounds of Black Tibetan Sheep Meat by HS-GC-IMS Coupled with Multivariate Analysis. Molecules 2023, 28, 165. https://doi.org/10.3390/molecules28010165
Liu J, Han L, Han W, Gui L, Yuan Z, Hou S, Wang Z, Yang B, Raza SHA, Alowais AFS, et al. Effect of Different Heat Treatments on the Quality and Flavor Compounds of Black Tibetan Sheep Meat by HS-GC-IMS Coupled with Multivariate Analysis. Molecules. 2023; 28(1):165. https://doi.org/10.3390/molecules28010165
Chicago/Turabian StyleLiu, Jiqian, Lijuan Han, Wenzheng Han, Linsheng Gui, Zhenzhen Yuan, Shengzhen Hou, Zhiyou Wang, Baochun Yang, Sayed Haidar Abbas Raza, Abdulaziz Faisal Saleh Alowais, and et al. 2023. "Effect of Different Heat Treatments on the Quality and Flavor Compounds of Black Tibetan Sheep Meat by HS-GC-IMS Coupled with Multivariate Analysis" Molecules 28, no. 1: 165. https://doi.org/10.3390/molecules28010165
APA StyleLiu, J., Han, L., Han, W., Gui, L., Yuan, Z., Hou, S., Wang, Z., Yang, B., Raza, S. H. A., Alowais, A. F. S., Alraddadi, A. A., & Alanazi, A. M. (2023). Effect of Different Heat Treatments on the Quality and Flavor Compounds of Black Tibetan Sheep Meat by HS-GC-IMS Coupled with Multivariate Analysis. Molecules, 28(1), 165. https://doi.org/10.3390/molecules28010165