β-Cyclodextrin as the Key Issue in Production of Acceptable Low-Cholesterol Dairy Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Production of Low-Cholesterol Dairy Products
2.2. The Effect of β-CD Treatment on the Color Characteristics of the Final Products
2.3. The Effect of β-CD Treatment on the Texture Characteristics of the Final Products
3. Materials and Methods
3.1. Materials and Reagents
3.2. The Preparation of Low Cholesterol Milk and Cream Base
3.3. Production of Low Cholesterol Dairy Products
3.4. Analysis of Cholesterol Content
3.5. Texture Evaluation
3.6. Characterization of Color Properties
3.7. Statistical Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lordan, R.; Tsoupras, A.; Mitra, B.; Zabetakis, I. Dairy Fats and Cardiovascular Disease: Do We Really Need to Be Concerned? Foods 2018, 7, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, J.A.S.; Lichtenstein, A.H.; Anderson, C.A.M.; Appel, L.J.; Kris-Etherton, P.M.; Meyer, K.A.; Petersen, K.; Polonsky, T.; Van Horn, L. Dietary Cholesterol and Cardiovascular Risk. A Science Advisory from the American Heart Association. Circulation 2020, 141, 39–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Dutkiewicz, E.P.; Huang, Y.C.; Zhou, H.B.; Hsu, C.C. Analytical methods for cholesterol quantification. J. Food Drug Anal. 2019, 27, 375–386. [Google Scholar] [CrossRef]
- Kukula, M.; Kolarič, L.; Šimko, P. Decrease of cholesterol content in milk by sorption onto β-cyclodextrin crosslinked with tartaric acid; condiderations and implications. Acta Chim. Slovaca 2020, 13, 1–6. [Google Scholar] [CrossRef]
- Mazidi, M.; Mikhailidis, D.P.; Sattar, N.; Howard, G.; Graham, I.; Banach, M. Consumption of dairy product and its association with total and cause specific mortality—A population-based cohort study and meta-analysis. Clin. Nutr. 2019, 38, 2833–2845. [Google Scholar] [CrossRef]
- Kolarič, L.; Šimko, P. The effect of treatment conditions on color characteristics and measure of cholesterol removal from milk by beta-cyclodextrin application. Potravinárstvo Slovak J. Food Sci. 2021, 15, 192–198. [Google Scholar] [CrossRef]
- Kolarič, L.; Šimko, P. Application of β-cyclodextrin in the production of low-cholesterol milk and dairy products. Trends Food Sci. Technol. 2022, 119, 13–22. [Google Scholar] [CrossRef]
- Alonso, L.; Calvo, M.V.; Fontecha, J. A scale-up process for the manufacture of reduced-cholesterol butter using beta-cyclodextrin. J. Food Process. Eng. 2019, 42, 13009. [Google Scholar] [CrossRef]
- Gianni, D.E.; Jorcin, S.; Lema, P.; Olazabal, L.; Medrano, A.; Lopez-Pedemonte, T. Effect of ultra-high pressure homogenization combined with β-cyclodextrin in the development of a cholesterol-reduced whole milk. J. Food Process. Preserv. 2020, 44, e14845. [Google Scholar] [CrossRef]
- Ha, H.J.; Lee, J.E.; Chang, Y.H.; Kwak, H.-S. Entrapment of nutrients during cholesterol removal from cream by crosslinked β-cyclodextrin. Int. J. Dairy Technol. 2010, 63, 119–126. [Google Scholar] [CrossRef]
- Soni, K.N. Low Cholesterol Butter and Process of Preparation. Patent A23C15/145 (WO 2012/025931), 1 March 2012. Available online: https://worldwide.espacenet.com/patent/search/family/043638729/publiction/WO2012025931A1?q=WO%202012%2F025931 (accessed on 6 November 2020).
- Kim, S.Y.; Bae, H.Y.; Kim, H.Y.; Ahn, J.; Kwak, H.S. Properties of cholesterol-reduced camembert cheese made by crosslinked β-cyclodextrin. Int. J. Dairy Technol. 2008, 61, 364–371. [Google Scholar] [CrossRef]
- Elwahsh, N.A.A. Manufacture of Cholesterol-Reduced Double Cream Cheese from Buffalo’s Milk. J. Food Dairy Sci. 2018, 9, 395–398. [Google Scholar] [CrossRef]
- Nguyen, A.T.L.; Boakye, P.G.; Besong, S.S.; Tomasula, P.M.; Alamu-Lumor, E.S. Improvement of physicochemical properties of reduced-cholesterol butter by the addition of β-sitosteryl oleate. J. Food Sci. 2021, 86, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Galante, M.; Pavón, Y.; Lazzaroni, S.; Soazo, M.; Costa, S.; Boeris, V.; Risso, P.; Rozycki, S. Effect of cholesterol-reduced and zinc fortification treatments on physicochemical, functional, textural, microstructural and sensory properties of soft cheese. Int. J. Dairy Technol. 2017, 70, 533–541. [Google Scholar] [CrossRef]
- Zunnurain, M.N.; Baig, H.A. The effect of beta cyclodextrin on the removal of cholesterol from buffalo milk. Pak. J. Sci. Ind. Res. Ser. B Biol. Sci. 2017, 60, 87–91. [Google Scholar] [CrossRef]
- Tao, C.; Benheng, G.; Xue, J.; Zhenmin, L.; Junli, M.; Lu, R.; Hui, W.; Yang, X.; Peng, Y. Production Technology for Low-Cholesterol. Milk. Patent A23C7/04 (CN 104642538), 27 December 2013. Available online: https://worldwide.espacenet.co m/patent/search/family/053234593/publication/CN104642538A?q=CN104642538A (accessed on 6 November 2020).
- Kwak, H.S.; Jung, C.S.; Seok, J.S.; Ahn, J. Cholesterol removal and flavor development in cheddar cheese. Asian-Australas. J. Anim. Sci. 2003, 16, 409–416. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2019–2028; OECD Publishing, Paris/Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: https://www.oecd-ilibrary.org/docserver/agr_outlook-2019-en.pdf?expires=1646399885&id=id&accname=guest&checksum=D60FD4C8106A7D52C6CEE9DAE3D7D044 (accessed on 6 November 2020).
- Dias, H.M.A.M.; Berbicz, F.; Pedrochi, F.; Baesso, M.L.; Matioli, G. Butter cholesterol removal using different complexation methods with beta-cyclodextrin, and the contribution of photoacoustic spectroscopy to the evaluation of the complex. Food Res. Int. 2010, 43, 1104–1110. [Google Scholar] [CrossRef]
- Manuelian, C.L.; Curró, S.; Penasa, M.; Cassandro, M.; de Marchi, M. Characterization of major and trace minerals, fatty acid composition, and cholesterol content of protected designation of origin cheeses. J. Dairy Sci. 2017, 100, 3384–3395. [Google Scholar] [CrossRef] [Green Version]
- Kolarič, L.; Šimko, P. Simultaneous determination of cholesterol, stigmasterol, and β-sitosterol contents in milk and dairy products. J. Food Process. Preserv. 2022, 46, 16146. [Google Scholar] [CrossRef]
- Matencio, A.; Navarro-Orcajada, S.; García-Carmona, F.; López-Nicolás, J.M. Applications of cyclodextrins in food science. A review. Trends Food Sci. Technol. 2020, 104, 132–143. [Google Scholar] [CrossRef]
- Alonso, L.; Fox, P.F.; Calvo, M.V.; Fontecha, J. Effect of beta cyclodextrin on the reduction of cholesterol in ewe’s milk manchego cheese. Molecules 2018, 23, 1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, E.M.; Kim, S.H.; Ahn, J.; Kwak, H.S. Comparison of cholesterol-reduced cream cheese manufactured using crosslinked β-cyclodextrin to regular cream cheese. Asian-Australas. J. Anim. Sci. 2008, 21, 131–137. [Google Scholar] [CrossRef]
- Kwak, H.S.; Nam, C.G.; Ahn, J. Low cholesterol mozzarella cheese obtained from homogenized and β-cyclodextrin-treated milk. Asian-Australas. J. Anim. Sci. 2001, 14, 268–275. [Google Scholar] [CrossRef]
- Milovanovic, B.; Tomovic, V.; Djekic, I.; Miocinovic, J.; Solowiej, B.G.; Lorenzo, J.M.; Barba, F.J.; Tomasevic, I. Colour assessment of milk and milk products using computer vision system and colorimeter. Int. Dairy J. 2021, 120, 105084. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Razavi, S.M.A. Influence of thermosonication treatment on the average size of fat globules, emulsion stability, rheological properties and color of camel milk cream. LWT-Food Sci. Technol. 2020, 132, 109852. [Google Scholar] [CrossRef]
- Tazrart, K.; Zaidi, F.; Lamacchia, C.; Haros, M. Effect of durum wheat semolina substitution with broad bean flour (Vicia faba) on the Maccheronccini pasta quality. Eur. Food Res. Technol. 2016, 242, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, P.; Sharma, V.; Arora, S.; Rao, P.S. Effect of cholesterol removal on compositional and the physicochemical characteristics of anhydrous cow milk fat (cow ghee). Int. J. Food Prop. 2019, 22, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Jung, T.H.; Ahn, J.; Kwak, H.S. Properties of cholesterol-reduced butter made with β-cyclodextrin and added evening primrose oil and phytosterols. J. Dairy Sci. 2006, 89, 4503–4510. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.Y.; Ahn, J.; Kwak, H.S. Functional properties of cholesterol-removed whipping cream treated by β-cyclodextrin. J. Dairy Sci. 2003, 86, 2767–2772. [Google Scholar] [CrossRef]
- Jung, H.J.; Ko, E.J.; Kwak, H.S. Comparison of physicochemical and sensory properties between cholesterol-removed gouda cheese and gouda cheese during ripening. Asian-Australas. J. Anim. Sci. 2013, 26, 1773–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolarič, L.; Šimko, P. Effect of processing conditions on measure of cholesterol removal from milk and cream. Monatsh. Chem. 2022, 1–7. [Google Scholar] [CrossRef]
- Chakraborty, P.; Shivhare, U.S.; Basu, S. Effect of milk composition on sensory attributes and instrumental properties of Indian Cottage Cheese (Chhana). NFS J. 2021, 23, 8–16. [Google Scholar] [CrossRef]
- Elsamani, M.O.; Habbani, S.S.; Babiker, E.E.; Ahmed, I.A.M. Biochemical, microbial and sensory evaluation of white soft cheese made from cow and lupin milk. LWT-Food Sci. Technol. 2014, 59, 553–559. [Google Scholar] [CrossRef]
- Granato, D.; de Araújo Calado, V.M.; Jarvis, B. Observations on the use of statistical methods in Food Science and Technology. Food Res. Int. 2014, 55, 137–149. [Google Scholar] [CrossRef]
β-CD Concentration (%) | Cholesterol Content (mg/kg) 1 | Cholesterol Removal (%) 1 | Yield (%) | |
---|---|---|---|---|
Milk (pasteurized, 3.5% fat content) | 0.0 | 134.54 ± 0.75 | - | - |
1.0 | 3.68 ± 0.45 | 97.3 ± 0.3 | - | |
1.5 | 3.14 ± 0.12 | 97.7 ± 0.1 | - | |
2.0 | 2.57 ± 0.29 | 98.1 ± 0.2 | - | |
2.5 | 3.33 ± 0.11 | 97.5 ± 0.1 | - | |
Cream (pasteurized, 40% fat content) | 0.0 | 1227.64 ± 15.60 | - | - |
5.0 | 108.31 ± 6.64 | 95.6 ± 0.7 | - | |
8.0 | 149.01 ± 14.18 | 94.0 ± 0.6 | - | |
10.0 | 165.79 ± 11.64 | 93.3 ± 0.5 | - | |
12.0 | 159.03 ± 13.91 | 93.6 ± 0.9 | - | |
Butter | 0.0 | 2483.44 ± 30.34 | - | 33.6 |
5.0 | 108.66 ± 10.37 | 95.6 ± 0.4 | 34.0 | |
8.0 | 136.99 ± 8.55 | 94.5 ± 0.3 | 31.0 | |
10.0 | 118.44 ± 13.51 | 95.2 ± 0.5 | 33.0 | |
12.0 | 72.77 ± 1.44 | 96.7 ± 0.5 | 33.5 | |
Cottage cheese | 0.0 | 382.18 ± 10.40 | - | 33.9 |
1.0 | 8.09 ± 1.96 | 97.9 ± 0.5 | 32.5 | |
1.5 | 13.38 ± 0.84 | 96.5 ± 0.2 | 29.5 | |
2.0 | 12.56 ± 1.59 | 96.7 ± 0.4 | 30.3 | |
2.5 | 10.97 ± 1.33 | 97.7 ± 0.4 | 33.7 | |
Soft cheese | 0.0 | 387.50 ± 18.06 | - | 28.6 |
1.5 | 71.28 ± 0.57 * | 81.6 ± 0.2 * | 27.1 | |
2.0 | 47.29 ± 2.68 * | 87.8 ± 0.7 * | 25.5 | |
2.5 | 9.09 ± 0.88 | 97.7 ± 0.2 | 25.1 |
Concentration of β-CD (%) | L* 1 | a* 1 | b* 1 | ΔE | |
---|---|---|---|---|---|
Milk (pasteurized, 3.5% fat content) | 0.0 | 97.46 ± 0.04 | 0.12 ± 0.02 | 0.36 ± 0.03 | - |
1.0 | + 96.87 ± 0.03 | + 0.06 ± 0.01 | + 0.48 ± 0.01 | 0.37 | |
1.5 | + 96.79 ± 0.03 | + 0.05 ± 0.01 | + 0.50 ± 0.01 | 0.47 | |
2.0 | + 96.77 ± 0.03 | + 0.05 ± 0.01 | + 0.47 ± 0.02 | 0.49 | |
2.5 | + 96.61 ± 0.04 | 0.16 ± 0.01 | + 0.57 ± 0.01 | 0.77 | |
Cream (pasteurized, 40% fat content) | 0.0 | 97.61 ± 0.06 | 0.12 ± 0.01 | 0.27 ± 0.02 | - |
5.0 | 97.17 ± 0.02 | + 0.17 ± 0.00 | 0.28 ± 0.01 | 0.25 | |
8.0 | + 96.44 ± 0.11 | + 0.03 ± 0.00 | + 0.56 ± 0.05 | 1.55 | |
10.0 | + 96.63 ± 0.03 | 0.11 ± 0.01 | + 0.68 ± 0.04 | 1.30 | |
12.0 | + 96.71 ± 0.02 | + 0.15 ± 0.00 | + 0.80 ± 0.02 | 1.31 | |
Butter | 0.0 | 72.45 ± 0.88 | 0.58 ± 0.04 | 15.25 ± 0.23 | - |
5.0 | 73.03 ± 0.39 | 0.69 ± 0.06 | 15.70 ± 0.31 | 0.57 | |
8.0 | + 74.80 ± 0,80 | 0.59 ± 0.06 | + 16.81 ± 0.31 | 7.96 | |
10.0 | + 74.54 ± 0.47 | + 0.97 ± 0.05 | + 16.75 ± 0.14 | 6.77 | |
12.0 | + 76.37 ± 0.45 | + 0.95 ± 0.08 | + 16.50 ± 0.07 | 17.07 | |
Cottage cheese | 0.0 | 83.25 ± 0.59 | 0.38 ± 0.02 | 6.07 ± 0.04 | - |
1.0 | 82.94 ± 0.43 | + 0.22 ± 0.02 | + 5.98 ± 0.09 | 0.27 | |
1.5 | + 85.77 ± 0.15 | + 0.26 ± 0.02 | 6.16 ± 0.15 | 6.37 | |
2.0 | 84.67 ± 0.54 | + 0.27 ± 0.02 | 5.72 ± 0.25 | 2.15 | |
2.5 | 83.99 ± 0.72 | + 0.30 ± 0.01 | 5.71 ± 0.23 | 0.68 | |
Soft cheese | 0.0 | 80.38 ± 0.34 | 1.91 ± 0.04 | 8.67 ± 0.07 | - |
1.5 | 79.32 ± 0.33 | 1.82 ± 0.02 | 8.65 ± 0.17 | 1.13 | |
2.0 | + 78.52 ± 0.41 | + 1.38 ± 0.05 | + 6.70 ± 0.18 | 7.63 | |
2.5 | + 76.64 ± 0.11 | + 1.56 ± 0.03 | + 7.26 ± 0.12 | 2.67 |
Concentration of β-CD (%) | Firmness (g) 1 | Consistency (g.s.) 1 | |
---|---|---|---|
Milk (pasteurized, 3.5% fat content) | 0.0 | 33.73 ± 0.18 | 245.10 ± 1.20 |
1.0 | 34.17 ± 0.14 | 245.82 ± 1.37 | |
1.5 | 34.37 ± 0.09 | 246.16 ± 2.04 | |
2.0 | 34.12 ± 0.22 | 244.63 ± 1.32 | |
2.5 | 34.06 ± 0.27 | 245.06 ± 0.88 | |
Cream (pasteurized, 40% fat content) | 0.0 | 33.79 ± 0.13 | 243.92 ± 0.57 |
5.0 | 33.22 ± 0.07 | 240.82 ± 0.68 * | |
8.0 | 33.21 ± 0.30 | 239.95 ± 1.36 * | |
10.0 | 33.24 ± 0.04 | 240.82 ± 0.68 * | |
12.0 | 33.00 ± 0.17 | 238.93 ± 0.90 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolarič, L.; Kántorová, P.; Šimko, P. β-Cyclodextrin as the Key Issue in Production of Acceptable Low-Cholesterol Dairy Products. Molecules 2022, 27, 2919. https://doi.org/10.3390/molecules27092919
Kolarič L, Kántorová P, Šimko P. β-Cyclodextrin as the Key Issue in Production of Acceptable Low-Cholesterol Dairy Products. Molecules. 2022; 27(9):2919. https://doi.org/10.3390/molecules27092919
Chicago/Turabian StyleKolarič, Lukáš, Petra Kántorová, and Peter Šimko. 2022. "β-Cyclodextrin as the Key Issue in Production of Acceptable Low-Cholesterol Dairy Products" Molecules 27, no. 9: 2919. https://doi.org/10.3390/molecules27092919