Phytochemistry and Applications of Cinnamomum camphora Essential Oils
Abstract
:1. Introduction
2. Phytochemistry of EOC
3. Traditional Uses of Cinnamomum camphora
4. Biological Activity
4.1. Antimicrobial Activities
Activity | Effects/Applications | Reference |
---|---|---|
Antimicrobial | Inhibits Choanephora cucurbitarum | [11] |
Inhibits Serratia marcescens, Aspergillus niger, Aspergillus fumigatus and Trichophyton rubrum | [23] | |
Inhibits Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Salmonella enterica subsp. enterica serovar Gallinarum, and Escherichia coli | [27] | |
Inhibits Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, and Pseudomonas aeruginosa | [35] | |
Inhibits Phanerochaete chrysosporium, Gloeophyllum trabeum, Penicillium purpurogenum, Trichoderma harzianum, and Aspergillus fumigatus | [36] | |
Inhibits Colletotrichum gloeosporioides, Botrytis cinerea, and Fusarium graminearum | [37] | |
Anti-inflammatory | Blocks production of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) | [14] |
Inhibits heat-induced erythrocyte hemolysis and hypotonic solution-induced erythrocyte hemolysis | [38] | |
Treats allergic dermatitis, such as atopic dermatitis | [39] | |
Insecticidal | Insecticidal against mosquito and midge (Chaoborus plumicornis) larvae, cabbage white butterfly (Pieris rapae) larvae, termite (Reticulitermes virginicus), fruit fly (Drosophila melanogaster), and fire ant (Solenopsis invicta × richteri) | [10] |
Larvicide for mosquito (Culex pipiens) control | [24] | |
Acaricidal capacity against Tetranychus cinnabarinus | [40] | |
Strong contact toxicity against cotton aphid | [41] | |
Antioxidative | Free radical scavenging activity | [14,42,43] |
Algicidal | Inhibits cell growth of Microcystis aeruginosa and Chlamydomonas reinhardtii Induces chlorophyll degradation and decreases algae photosynthesis | [24,44] |
Allelopathic | Inhibits seed germination and seedling growth of lettuce (Lactuca sativa) and perennial ryegrass (Lolium perenne) | [10] |
4.2. Anti-Inflammatory Activities
4.3. Insecticidal and Acaricidal Activities
4.4. Antioxidative Activities
4.5. Allelopathic and Algicidal Activities
5. Discussion
Funding
Conflicts of Interest
References
- Robi, A.; Sujanapal, P.; Udayan, P. Cinnamomum agasthyamalayanum sp. nov. (Lauraceae) from Kerala, India. Int. J. Adv. Res. 2014, 2, 1012–1016. [Google Scholar]
- Alam, K.; Nawab, M.; Kazmi, M. Pharmacological and therapeutic profile of Käfür (Cinnamomum camphora (L.) J. Presl)—A Review. Hippocrat. J. Unani Med. 2019, 20, 1–16. [Google Scholar]
- Garg, N.; Jain, A. Therapeutic and medicinal uses of Karpura-A review. Int. J. Sci. Res. (IJSR) 2017, 6, 1174–1181. [Google Scholar]
- CABI. Invasive Species Compendium; CAB International: Wallingford, UK; Available online: https://www.cabi.org/isc/datasheet/13519 (accessed on 1 March 2022).
- Malabadi, R.B.; Kolkar, K.P.; Meti, N.T.; Chalannavar, R.K. Camphor tree, Cinnamomum camphora (L.); Ethnobotany and pharmacological updates. Biomedicine 2021, 41, 181–184. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, W. Conservation and applications of camphor tree (Cinnamomum camphora) in China: Ethnobotany and genetic resources. Genet. Resour. Crop Evol. 2016, 63, 1049–1061. [Google Scholar] [CrossRef]
- Korea Ministry of Cultural Sports and Tourism. Available online: https://www.nhc.go.kr:1500/news/general.do?idx=52 (accessed on 1 December 2021).
- Kumar, S.; Kumari, R.; Mishra, S. Pharmacological properties and their medicinal uses of Cinnamomum: A review. J. Pharm. Pharmacol. 2019, 71, 1735–1761. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Geng, Z.; Zhang, W.; Liang, J.; Wang, C.; Deng, Z.; Du, S. The chemical composition of essential oils from Cinnamomum camphora and their insecticidal activity against the stored product pests. Int. J. Mol. Sci. 2016, 17, 1836. [Google Scholar] [CrossRef] [PubMed]
- Satyal, P.; Paudel, P.; Poudel, A.; Dosoky, N.S.; Pokharel, K.K.; Setzer, W.N. Bioactivities and compositional analyses of Cinnamomum essential oils from Nepal: C. camphora, C. tamala, and C. glaucescens. Nat. Prod. Commun. 2013, 8, 1777–1784. [Google Scholar] [CrossRef] [Green Version]
- Pragadheesh, V.; Saroj, A.; Yadav, A.; Chanotiya, C.; Alam, M.; Samad, A. Chemical characterization and antifungal activity of Cinnamomum camphora essential oil. Ind. Crops Prod. 2013, 49, 628–633. [Google Scholar] [CrossRef]
- Hattori, A. Camphor in the Edo era fireworks. Yakushigaku Zasshi 2001, 36, 27–31. [Google Scholar]
- Shi, S.; Wu, Q.; Su, J.; Li, C.; Zhao, X.; Xie, J.; Gui, S.; Su, Z.; Zeng, H. Composition analysis of volatile oils from flowers, leaves and branches of Cinnamomum camphora chvar. Borneol in china. J. Essent. Oil Res. 2013, 25, 395–401. [Google Scholar] [CrossRef]
- Lee, H.J.; Hyun, E.-A.; Yoon, W.J.; Kim, B.H.; Rhee, M.H.; Kang, H.K.; Cho, J.Y.; Yoo, E.S. In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J. Ethnopharmacol. 2006, 103, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Jawaid, T. Cinnamomum camphora (Kapur). Pharmacogn. J. 2012, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, X.-X.; Lin, J.-G.; Liu, J.; Jiang, M.-S.; Chu, L.-X. Chemical composition and antifungal activity of extracts from the xylem of Cinnamomum camphora. BioResources 2014, 9, 2560–2571. [Google Scholar] [CrossRef] [Green Version]
- Babu, K.N.; Sajina, A.; Minoo, D.; John, C.; Mini, P.; Tushar, K.; Rema, J.; Ravindran, P. Micropropagation of camphor tree (Cinnamomum camphora). Plant Cell Tissue Organ Cult. 2003, 74, 179–183. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Benali, T.; Habbadi, K.; Khabbach, A.; Marmouzi, I.; Zengin, G.; Bouyahya, A.; Chamkhi, I.; Chtibi, H.; Aanniz, T.; Achbani, E.H. GC–MS Analysis, Antioxidant and Antimicrobial Activities of Achillea Odorata Subsp. Pectinata and Ruta Montana Essential Oils and Their Potential Use as Food Preservatives. Foods 2020, 9, 668. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Poudel, D.K.; Rokaya, A.; Ojha, P.K.; Timsina, S.; Satyal, R.; Dosoky, N.S.; Satyal, P.; Setzer, W.N. The Chemical Profiling of Essential Oils from Different Tissues of Cinnamomum camphora L. and Their Antimicrobial Activities. Molecules 2021, 26, 5132. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Qin, J.; Wang, P.; Li, Q.; Yu, S.; Zhang, Y.; Wang, Y. Chemical composition and larvicidal activities of essential oil of Cinnamomum camphora (L.) leaf against Anopheles stephensi. Rev. Soc. Bras. Med. Trop. 2020, 53, e20190211. [Google Scholar] [CrossRef] [PubMed]
- Chalchat, J.-C.; Valade, I. Chemical composition of leaf oils of Cinnamomum from Madagascar: C. zeylanicum Blume, C. camphora L. C. fragrans Baillon and C. angustifolium. J. Essent. Oil Res. 2000, 12, 537–540. [Google Scholar] [CrossRef]
- Stubbs, B.J.; Specht, A.; Brushett, D. The essential oil of Cinnamomum camphora (L.) Nees and Eberm.—Variation in oil composition throughout the tree in two chemotypes from eastern Australia. J. Essent. Oil Res. 2004, 16, 9–14. [Google Scholar] [CrossRef]
- Chen, J.; Tang, C.; Zhang, R.; Ye, S.; Zhao, Z.; Huang, Y.; Xu, X.; Lan, W.; Yang, D. Metabolomics analysis to evaluate the antibacterial activity of the essential oil from the leaves of Cinnamomum camphora (Linn.) Presl. J. Ethnopharmacol. 2020, 253, 112652. [Google Scholar] [CrossRef] [PubMed]
- Carrubba, A.; Catalano, C. Essential oil crops for sustainable agriculture—A review. In Climate Change, Intercropping, Pest Control and Beneficial Microorganisms; Springer: New York, NY, USA, 2009; pp. 137–187. [Google Scholar]
- Choi, J.K. Longevity Way with Traditional Ethnophamacology in Korea (Tojong Yakcho Jangsubeob); Taeil Publication: Seoul, Korea, 1997. [Google Scholar]
- Pharmacopoeia Commission of the Ministry of Health of the People’s Republic of China. Pharmacopia of the People’s Republic of China; People’s Medical Publishing House: Beijing, China, 2010; Volume I. [Google Scholar]
- Kumar, M.; Ando, Y. Single-wall and multi-wall carbon nanotubes from camphor—A botanical hydrocarbon. Diam. Relat. Mater. 2003, 12, 1845–1850. [Google Scholar] [CrossRef]
- Gomes-Carneiro, M.R.; Felzenszwalb, I.; Paumgartten, F.J. Mutagenicity testing of (±)-camphor, 1, 8-cineole, citral, citronellal, (-)-menthol and terpineol with the Salmonella/microsome assay. Mutat. Res. /Genet. Toxicol. Environ. Mutagenes. 1998, 416, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Donkin, R.A. Dragon’s Brain Perfume: An Historical Geography of Camphor; Brill: Leiden, The Netherlands, 1999; Volume 14, pp. 222–237. [Google Scholar]
- Wang, L.; Zhang, K.; Zhang, K.; Zhang, J.; Fu, J.; Li, J.; Wang, G.; Qiu, Z.; Wang, X.; Li, J. Antibacterial activity of Cinnamomum camphora essential oil on Escherichia coli during planktonic growth and biofilm formation. Front. Microbiol. 2020, 11, 561001. [Google Scholar] [CrossRef]
- Bottoni, M.; Milani, F.; Mozzo, M.; Radice Kolloffel, D.A.; Papini, A.; Fratini, F.; Maggi, F.; Santagostini, L. Sub-Tissue Localization of Phytochemicals in Cinnamomum camphora (L.) J. Presl. Growing in Northern Italy. Plants 2021, 10, 1008. [Google Scholar] [CrossRef]
- Wang, J.; Su, B.; Jiang, H.; Cui, N.; Yu, Z.; Yang, Y.; Sun, Y. Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): A review. Fitoterapia. 2020, 146, 104675. [Google Scholar] [CrossRef]
- Wang, J.; Cao, X.; Song, L.; Ding, Z.; Tang, F.; Yue, Y. Comparative chemical composition and antifungal activity of the essential oils of Cinnamomum camphora L. Presl Leaves from three geographic origins. Food Sci. 2017, 38, 131–136. [Google Scholar]
- Xiao, S.; Yu, H.; Xie, Y.; Guo, Y.; Fan, J.; Yao, W. The anti-inflammatory potential of Cinnamomum camphora (L.) J. Presl essential oil in vitro and in vivo. J. Ethnopharmacol. 2021, 267, 113516. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.-J.; Han, S.-C.; Yoon, S.-H.; Sim, J.-Y.; Maeng, Y.H.; Kang, H.-K.; Yoo, E.-S. Cinnamomum camphora leaves alleviate allergic skin inflammatory responses in vitro and in vivo. Toxicol. Res. 2019, 35, 279–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Dai, G. Acaricidal activity of compounds from Cinnamomum camphora (L.) Presl against the carmine spider mite, Tetranychus cinnabarinus. Pest Manag. Sci. 2015, 71, 1561–1571. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, J.; Song, L.; Cao, X.; Yao, X.; Tang, F.; Yue, Y. GC× GC-TOFMS analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora L. Presl and their insecticidal and repellent activities. Molecules 2016, 21, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, J.; Zeng, C.; Zeng, Z.; Wang, B.; Gong, D. Cinnamomum camphora seed kernel oil ameliorates oxidative stress and inflammation in diet-induced obese rats. J. Food Sci. 2016, 81, H1295–H1300. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kong, L.; Lu, S.; Zou, Z. Application of a combined homogenate and ultrasonic cavitation system for the efficient extraction of flavonoids from cinnamomum camphora leaves and evaluation of their antioxidant activity in vitro. J. Anal. Methods Chem. 2019, 2019, 4892635. [Google Scholar] [CrossRef]
- Yakefu, Z.; Huannixi, W.; Ye, C.; Zheng, T.; Chen, S.; Peng, X.; Tian, Z.; Wang, J.; Yang, Y.; Ma, Z. Inhibitory effects of extracts from Cinnamomum camphora fallen leaves on algae. Water Sci. Technol. 2018, 77, 2545–2554. [Google Scholar] [CrossRef]
- Viljoen, A.; Van Vuuren, S.; Ernst, E.; Klepser, M.; Demirci, B.; Başer, H.; Van Wyk, B.-E. Osmitopsis asteriscoides (Asteraceae)-the antimicrobial activity and essential oil composition of a Cape-Dutch remedy. J. Ethnopharmacol. 2003, 88, 137–143. [Google Scholar] [CrossRef]
- Gonzalo, O.E.; Raúl, S.; María, I.B.; David, H.-P.; Omar, S.-M. Antifeedant effects of common terpenes from Mediterranean aromatic plants on Leptinotarsa decemlineata. J. Soil Sci. Plant Nutr. 2017, 17, 475–485. [Google Scholar]
Constituent | Camphor-Type * [11] | Borneol-Type * [13] | Cineol-Type * [24] | Linalool-Type * [27] |
---|---|---|---|---|
α-Pinene | 3.7 | 8.3 | 4.7 | 2.2 |
Camphene | 2.2 | 4.3 | 0.2 | 0.5 |
α-Thujene | 0.2 | 0.5 | - | |
Sabenene | 0.5 | 1.1 | 17.4 | |
β-Pinene | 1.4 | 2.2 | 3.4 | 0.7 |
α-Phellandrene | 0.7 | 0.7 | - | 5.1 |
p-Mentha-2,4(8)-diene | 1.9 | - | - | |
o-Cymene | 0.2 | 0.1 | - | - |
m-Cymene | - | - | - | |
1,8-Cineole | 1.1 | 4.6 | 53.5 | 16.8 |
α-trans-Ocimene | 0.1 | - | - | 0.5 |
γ-Terpinolene | 0.1 | - | - | 0.5 |
2,2,5-Trimethylhexane-3,4-dione | - | - | - | |
4,7-Dimethyl-4,4a,5,6-tetrahydrocyclopenta[c]pyran-1,3-dione | - | - | - | |
2,5,9-Trimethyldecane | - | - | - | |
Isoterpinolene | 0.5 | - | - | - |
Linalool | - | - | - | 26.6 |
1,3,8-p-Menthatriene | - | - | - | |
D-Camphor | 73.8 | 0.8 | - | 5.0 |
Terpinen-4-ol | 0.8 | - | - | 1.1 |
endo-Borneol | 0.4 | 66.8 | 0.1 | 8.1 |
α-Terpineol | - | 0.4 | 9.5 | 8.7 |
p-Menth-1-en-4-ol | - | - | - | |
p-Menth-1-en-8-ol | - | - | - | |
Elixene | - | - | - | |
Dihydro-cis-α-copaene-8-ol | - | - | - | |
α-Bourbonene | - | - | - | |
1,5-Dimethyl-8-isopropenyl-1,5-cyclodeca-diene | - | - | - | |
Caryophyllene | - | - | 1.2 | 3.3 |
Aromadendrene | - | - | - | |
γ-Elemene | - | 0.2 | 0.1 | 1.3 |
α-Caryophyllene | - | 1.8 | 0.5 | 1.9 |
β-Selinene | - | - | 1.2 | |
Others | 17.7 | |||
Total | 99.3 | 98.0 | 99.2 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Kim, D.-S.; Park, S.-H.; Park, H. Phytochemistry and Applications of Cinnamomum camphora Essential Oils. Molecules 2022, 27, 2695. https://doi.org/10.3390/molecules27092695
Lee S-H, Kim D-S, Park S-H, Park H. Phytochemistry and Applications of Cinnamomum camphora Essential Oils. Molecules. 2022; 27(9):2695. https://doi.org/10.3390/molecules27092695
Chicago/Turabian StyleLee, Sang-Hwan, Dae-Shin Kim, Seong-Hee Park, and Hyun Park. 2022. "Phytochemistry and Applications of Cinnamomum camphora Essential Oils" Molecules 27, no. 9: 2695. https://doi.org/10.3390/molecules27092695