Comparative Studies on Essential Oil and Phenolic Content with In Vitro Antioxidant, Anticholinesterase, Antimicrobial Activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. Growing in Eastern Turkey
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sample Preparation
2.2. The Essential Oil Composition of Two Achillea Species
2.3. The Results of LC–MS/MS Analysis
2.4. Determination of Antioxidant Activities from Two Achillea Samples
2.5. Determination of Anticholinesterase Activities of Two Achillea Samples
2.6. Determination of Antimicrobial Activities of Two Achillea Samples
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Extracts
3.3. GC-GC/MS Analysis of Essential Oil
3.4. Determination of Phenolics Using LC-MS/MS
3.5. Determination of Total Phenolics from Samples
3.6. Determination of Antioxidant Activities
3.7. Anticholinesterase Activity of the Samples
3.8. Antimicrobial Activities of the Samples
3.9. Statistical Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Edris, A.E. Pharmaceutical and Therapeutic Potentials of Essential Oils and Their Individual Volatile Constituents: A Review. Phytother. Res. 2007, 21, 308–323. [Google Scholar]
- Sharma, K.; Guleria, S.; Razdan, V.K.; Babu, V. Synergistic Antioxidant and Antimicrobial Activities of Essential Oils of Some Selected Medicinal Plants in Combination and with Synthetic Compounds. Ind. Crops Prod. 2020, 154, 112569. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Sarker, S.D.; Akbarzadeh, A. Chemical Composition of the Essential Oils and Extracts of Achillea Species and Their Biological Activities: A Review. J. Ethnopharmacol. 2017, 199, 257–315. [Google Scholar] [CrossRef] [PubMed]
- Güner, A.; Özhatay, N.; Ekim, T.; Başer, K.H.C. Flora of Turkey and the East Aegean Islands. Supplement 2000, 2, 28. [Google Scholar]
- Başer, K.H.C. Essential Oils of Achillea Species of Turkey. Nat. Volatiles Essent. Oils 2016, 3, 1–14. [Google Scholar]
- Al-Snafi, A.E. Chemical Constituents and Pharmacological Activities of Milfoil (Achillea santolina)—A Review. Int. J. PharmTech Res. 2013, 5, 1373–1377. [Google Scholar]
- Barda, C.; Grafakou, M.E.; Tomou, E.M.; Skaltsa, H. Phytochemistry and Evidence-Based Traditional Uses of the Genus Achillea L.: An Update (2011–2021). Sci. Pharm. 2021, 89, 50. [Google Scholar] [CrossRef]
- Strzępek-Gomółka, M.; Gaweł-Bęben, K.; Kukula-Koch, W. Achillea Species as Sources of Active Phytochemicals for Dermatological and Cosmetic Applications. Oxid. Med. Cell. Longev. 2021, 2021, 6643827. [Google Scholar] [CrossRef]
- Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Czop, M.; Sakipova, Z.; Głowniak, K.; Kukula-Koch, W. Achillea millefolium L. and Achillea Biebersteinii Afan. Hydroglycolic Extracts–Bioactive Ingredients for Cosmetic Use. Molecules 2020, 25, 3368. [Google Scholar] [CrossRef]
- Baytop, T. Türkiye’de Bitkilerle Tedavi [Therapy with Medicinal Plants in Turkey]; Istanbul University Press: Istanbul, Turkey, 1984; p. 371. [Google Scholar]
- Akkol, E.K.; Koca, U.; Pesin, I.; Yilmazer, D. Evaluation of the Wound Healing Potential of Achillea Biebersteinii Afan.(Asteraceae) by in Vivo Excision and Incision Models. Evid.-Based Complement. Altern. 2011, 2011, 474026. [Google Scholar] [CrossRef] [Green Version]
- Baggio, C.H.; Otofuji, G.d.M.; Freitas, C.S.; Mayer, B.; Marques, M.C.A.; Mesia-Vela, S. Modulation of Antioxidant Systems by Subchronic Exposure to the Aqueous Extract of Leaves from Achillea millefolium L. in Rats. Nat. Prod. Res. 2016, 30, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Falconieri, D.; Piras, A.; Porcedda, S.; Marongiu, B.; Gonçalves, M.J.; Cabral, C.; Cavaleiro, C.; Salgueiro, L. Chemical Composition and Biological Activity of the Volatile Extracts of Achillea millefolium. Nat. Prod. Commun. 2011, 6, 1934578X1100601030. [Google Scholar] [CrossRef] [Green Version]
- Kaczorová, D.; Karalija, E.; Dahija, S.; Bešta-Gajević, R.; Parić, A.; Ćavar Zeljković, S. Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species. Molecules 2021, 26, 1601. [Google Scholar] [CrossRef]
- Mockute, D.; Judzentiene, A. Variability of the Essential Oils Composition of Achillea millefolium ssp. millefolium Growing Wild in Lithuania. Biochem. Syst. Ecol. 2003, 31, 1033–1045. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Komeilizadeh, H.; Shariatpanahi, M.S.; Jassbi, A.-R.; Masoudi, S. Comparative Study of the Essential Oils of Three Achillea Species from Iran. J. Essent. Oil Res. 1998, 10, 207–209. [Google Scholar] [CrossRef]
- Tuberoso, C.I.; Kowalczyk, A. Chemical Composition of the Essential Oils of Achillea millefolium L. Isolated by Different Distillation Methods. J. Essent. Oil Res. 2009, 21, 108–111. [Google Scholar]
- Turkmenoglu, F.P.; Agar, O.T.; Akaydin, G.; Hayran, M.; Demirci, B. Characterization of Volatile Compounds of Eleven Achillea Species from Turkey and Biological Activities of Essential Oil and Methanol Extract of A. hamzaoglui Arabacı & Budak. Molecules 2015, 20, 11432–11458. [Google Scholar] [PubMed] [Green Version]
- Agar, O.T.; Dikmen, M.; Ozturk, N.; Yilmaz, M.A.; Temel, H.; Turkmenoglu, F.P. Comparative Studies on Phenolic Composition, Antioxidant, Wound Healing and Cytotoxic Activities of Selected Achillea L. Species Growing in Turkey. Molecules 2015, 20, 17976–18000. [Google Scholar]
- Ali, S.I.; Gopalakrishnan, B.; Venkatesalu, V. Pharmacognosy, Phytochemistry and Pharmacological Properties of Achillea millefolium L.: A Review. Phytother. Res. 2017, 31, 1140–1161. [Google Scholar] [CrossRef]
- İşcan, G.; Kirimer, N.; Kürkçüoglu, M.N.; Arabaci, T.; Küpelï, E.; Başer, K.H.C. Biological Activity and Composition of the Essential Oils of Achillea schischkinii Sosn. and Achillea aleppica DC. Subsp. Aleppica. J. Agric. Food Chem. 2006, 54, 170–173. [Google Scholar] [CrossRef]
- Karaalp, C.; Yurtman, A.N.; Karabay Yavasoglu, N.U. Evaluation of Antimicrobial Properties of Achillea L. Flower Head Extracts. Pharm. Biol. 2009, 47, 86–91. [Google Scholar] [CrossRef]
- Kordali, S.; Cakir, A.; Akcin, T.A.; Mete, E.; Akcin, A.; Aydin, T.; Kilic, H. Antifungal and Herbicidal Properties of Essential Oils and n-hexane Extracts of Achillea gypsicola Hub-Mor. and Achillea biebersteinii Afan.(Asteraceae). Ind. Crops Prod. 2009, 29, 562–570. [Google Scholar] [CrossRef]
- Nemeth, E.; Bernath, J. Biological Activities of Yarrow Species (Achillea spp.). Curr. Pharm. Des. 2008, 14, 3151–3167. [Google Scholar] [PubMed]
- Saeidnia, S.; Gohari, A.; Mokhber-Dezfuli, N.; Kiuchi, F. A Review on Phytochemistry and Medicinal Properties of the Genus Achillea. DARU J. Pharm. Sci. 2011, 19, 173. [Google Scholar]
- Suleimenov, Y.M.; Atazhanova, G.; Ozek, T.; Demirci, B.; Kulyjasov, A.; Adekenov, S.; Baser, K.H.C. Essential Oil Composition of Three Species of Achillea from Kazakhstan. Chem. Nat. Compd. 2001, 37, 447–450. [Google Scholar] [CrossRef]
- Taşkın, D.; Taşkın, T.; Rayaman, E. Phenolic Composition and Biological Properties of Achillea nobilis L. subsp. neilreichii (Kerner) Formanek. Ind. Crops Prod. 2018, 111, 555–562. [Google Scholar] [CrossRef]
- Venditti, A.; Guarcini, L.; Bianco, A.; Rosselli, S.; Bruno, M.; Senatore, F. Phytochemical Analysis of Achillea ligustica All. from Lipari Island (Aeolian Islands). Nat. Prod. Res. 2016, 30, 912–919. [Google Scholar] [CrossRef]
- Chandler, R.; Hooper, S.; Harvey, M.J. Ethnobotany and Phytochemistry of Yarrow, Achillea millefolium, Compositae. Econ. Bot. 1982, 36, 203–223. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A.; Ceylan, R.; Uysal, S.; Mocan, A.; Guler, G.O.; Mahomoodally, M.F.; Glamočlija, J.; Ćirić, A.; Soković, M. Shedding Light on the Biological and Chemical Fingerprints of Three Achillea Species (A. biebersteinii, A. millefolium and A. teretifolia). Food Funct. 2017, 8, 1152–1165. [Google Scholar] [CrossRef]
- Mainka, M.; Czerwińska, M.E.; Osińska, E.; Ziaja, M.; Bazylko, A. Screening of Antioxidative Properties and Inhibition of Inflammation-Linked Enzymes by Aqueous and Ethanolic Extracts of Plants Traditionally Used in Wound Healing in Poland. Antioxidants 2021, 10, 698. [Google Scholar] [CrossRef]
- Moskovitz, J.; Yim, M.B.; Chock, P.B. Free Radicals and Disease. Arch. Biochem. Biophys. 2002, 397, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Nickavar, B.; Kamalinejad, M.; Haj-Yahya, M.; Shafaghi, B. Comparison of the Free Radical Scavenging Activity of Six Iranian Achillea. Species. Pharm. Biol. 2006, 44, 208–212. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Novel Antioxidants in Food Quality Preservation and Health Promotion. Eur. J. Lipid. Sci. Technol. 2010, 112, 930–940. [Google Scholar] [CrossRef]
- Benedek, B.; Kopp, B. Achillea Millefolium L. sl Revisited: Recent Findings Confirm the Traditional Use. Wien Med. Wochenschr. 2007, 157, 312–314. [Google Scholar] [CrossRef]
- Anton, R.; Patri, F.; Silano, V. Plants in Cosmetics: Plants and Plant Preparations Used as Ingredients for Cosmetic Products; Council of Europe Publishing: Strasbourg, France, 2001; Volume II. [Google Scholar]
- Grigore, A.; Colceru-Mihul, S.; Bazdoaca, C.; Yuksel, R.; Ionita, C.; Glava, L. Antimicrobial Activity of an Achillea millefolium L. Multidiscip. Digit. Publ. Inst. Proc. 2020, 57, 34. [Google Scholar]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef] [Green Version]
- Kurtulmus, A.; Fafal, T.; Mert, T.; Saglam, H.; Kivcak, B.; Ozturk, T.; Demirci, B.; Baser, K.H.C. Chemical Composition and Antimicrobial Activity of the Essential Oils of Three Anthemis Species from Turkey. Chem. Nat. Compd. 2009, 45, 900–904. [Google Scholar]
- Demirci, B.; Başer, K.H.C.; Aytaç, Z.; Khan, S.I.; Jacob, M.R.; Tabanca, N. Comparative Study of Three Achillea Essential Oils from Eastern Part of Turkey and Their Biological Activities. Rec. Nat. Prod. 2018, 12, 195–200. [Google Scholar] [CrossRef]
- Ali, A.; Tabanca, N.; Demirci, B.; Blythe, E.K.; Ali, Z.; Baser, K.H.C.; Khan, I.A. Chemical Composition and Biological Activity of Four Salvia Essential Oils and Individual Compounds against Two Species of Mosquitoes. J. Agric. Food Chem. 2015, 63, 447–456. [Google Scholar]
- Tabanca, N.; Kırımer, N.; Demirci, B.; Demirci, F.; Başer, K.H.C. Composition and Antimicrobial Activity of the Essential Oils of Micromeria cristata subsp. phrygia and the Enantiomeric Distribution of Borneol. J. Agric. Food Chem. 2001, 49, 4300–4303. [Google Scholar] [CrossRef]
- Polatoglu, K.; Demirci, F.; Demirci, B.; Gören, N.; Baser, K.H.C. Antibacterial Activity and the Variation of Tanacetum parthenium (L.) Schultz Bip. Essential Oils from Turkey. J. Oleo Sci. 2010, 59, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaeili, A.; Nematollahi, F.; Rustaiyan, A.; Moazami, N.; Masoudi, S.; Bamasian, S. Volatile Constituents of Achillea pachycephala, A. Oxyodonta and A. Biebersteinii from Iran. Flavour Fragr. J. 2006, 21, 253–256. [Google Scholar]
- Ghani, A.; Azizi, M.; Hassanzadeh-Khayyat, M.; Pahlavanpour, A.A. Essential Oil Composition of Achillea eriophora, A. Nobilis, A. biebersteinii and A. wilhelmsii from Iran. J. Essent. Oil-Bear. Plants 2008, 11, 460–467. [Google Scholar] [CrossRef]
- Bader, A.; Flamini, G.; Cioni, P.L.; Morelli, I. Essential Oil Composition of Achillea Santolina L. and Achillea biebersteinii Afan. Collected in Jordan. Flavour Fragr. J. 2003, 18, 36–38. [Google Scholar] [CrossRef]
- Oskay, E.; Yesilada, A. Four Flavonoids and Three Other Constituents from Achillea biebersteinii. J. Nat. Prod. 1984, 47, 742. [Google Scholar] [CrossRef]
- Sevïndiïk, E.; Aydin, S.; Apaydin, E.E.; Surmen, M. Essential Oil Composition and Antimicrobial Activity of Achillea biebersteinii Afan. (Asteraceae) from Erzincan Region, Turkey. Not. Sci. Biol. 2018, 10, 328–332. [Google Scholar] [CrossRef] [Green Version]
- Sevindik, E.; Abacı, Z.T.; Yamaner, C.; Ayvaz, M. Determination of the Chemical Composition and Antimicrobial Activity of the Essential Oils of Teucrium polium and Achillea millefolium Grown under North Anatolian Ecological Conditions. Biotechnol. Biotechnol. Equip. 2016, 30, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Tabanca, N.; Demirci, B.; Gürbüz, İ.; Demirci, F.; Becnel, J.J.; Wedge, D.E.; Başer, K.H.C. Essential Oil Composition of Five Collections of Achillea biebersteinii from Central Turkey and Their Antifungal and Insecticidal Activity. Nat. Prod. Commun. 2011, 6, 1934578X1100600526. [Google Scholar] [CrossRef] [Green Version]
- Orav, A.; Arak, E.; Raal, A. Phytochemical Analysis of the Essential Oil of Achillea millefolium L. from Various European Countries. Nat. Prod. Res. 2006, 20, 1082–1088. [Google Scholar]
- Stevanovic, Z.D.; Pljevljakušic, D.; Ristic, M.; Šoštaric, I.; Kresovic, M.; Simic, I.; Vrbnièanin, S. Essential Oil Composition of Achillea millefolium agg. Populations Collected from Saline Habitats in Serbia. J. Essent. Oil-Bear. Plants 2015, 18, 1343–1352. [Google Scholar]
- Candan, F.; Unlu, M.; Tepe, B.; Daferera, D.; Polissiou, M.; Sökmen, A.; Akpulat, H.A. Antioxidant and Antimicrobial Activity of the Essential Oil and Methanol Extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J. Ethnopharmacol. 2003, 87, 215–220. [Google Scholar] [CrossRef]
- Kocak, A.; Bağcı, E.; Bakoğlu, A. Chemical Composition of Essential Oils of Achillea teretifolia Willd. and A. millefolium L. subsp. millefolium Growing in Turkey. Asian J. Chem. 2010, 22, 3653–3658. [Google Scholar]
- Dias, M.I.; Barros, L.; Duenas, M.; Pereira, E.; Carvalho, A.M.; Alves, R.C.; Oliveira, M.; Santos-Buelga, C.; Ferreira, I. Chemical Composition of Wild and Commercial Achillea millefolium L. and Bioactivity of the Methanolic Extract, Infusion and Decoction. Food Chem. 2013, 141, 4152–4160. [Google Scholar] [CrossRef]
- Salomon, L.; Lorenz, P.; Ehrmann, B.; Spring, O.; Stintzing, F.C.; Kammerer, D.R. Impact of Environmental Conditions on Growth and the Phenolic Profile of Achillea atrata L. Processes 2021, 9, 853. [Google Scholar]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS Screening of Bioactive Components from Rhus coriaria L. (Sumac) Fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozin, B.; Mimica-Dukic, N.; Bogavac, M.; Suvajdzic, L.; Simin, N.; Samojlik, I.; Couladis, M. Chemical Composition, Antioxidant and Antibacterial Properties of Achillea collina Becker ex Heimerl sl and A. pannonica Scheele Essential Oils. Molecules 2008, 13, 2058–2068. [Google Scholar] [CrossRef] [Green Version]
- Koşar, M.; Göger, F.; Başer, K.H.C. In Vitro Antioxidant Properties and Phenolic Composition of Salvia virgata Jacq. from Turkey. J. Agric. Food Chem. 2008, 56, 2369–2374. [Google Scholar] [CrossRef]
- Büyüktuncel, E. Toplam Fenolik Içerik ve Antioksidan Kapasite Tayininde Kullanılan Başlıca Spektrofotometrik Yöntemler. Marmara Pharm. J. 2013, 17, 93–103. [Google Scholar]
- Kedare, S.B.; Singh, R. Genesis and Development of DPPH Method of Antioxidant Assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar]
- Rubio, C.P.; Hernández-Ruiz, J.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Ceron, J.J. Spectrophotometric Assays for Total Antioxidant Capacity (TAC) in Dog Serum: An Update. BMC Vet. Res. 2016, 12, 166. [Google Scholar] [CrossRef] [Green Version]
- Barut, E.N.; Barut, B.; Engin, S.; Yıldırım, S.; Yaşar, A.; Türkiş, S.; Özel, A.; Sezen, F.S. Antioxidant Capacity, Anti-Acetylcholinesterase Activity and Inhibitory Effect on Lipid Peroxidation in Mice Brain Homogenate of Achillea millefolium. Turk. J. Biochem. 2017, 42, 493–502. [Google Scholar] [CrossRef]
- Bariş, Ö.; Güllüce, M.; Şahin, F.; Özer, H.; Kiliç, H.; Özkan, H.; Sökmen, M.; Özbek, T. Biological Activities of the Essential Oil and Methanol Extract of Achillea biebersteinii Afan.(Asteraceae). Turk. J. Biol. 2006, 30, 65–73. [Google Scholar]
- Boiangiu, R.S.; Brinza, I.; Hancianu, M.; Erdogan Orhan, I.; Eren, G.; Gündüz, E.; Ertas, H.; Hritcu, L.; Cioanca, O. Cognitive Facilitation and Antioxidant Effects of an Essential Oil Mix on Scopolamine-Induced Amnesia in Rats: Molecular Modeling of In Vitro and In Vivo Approaches. Molecules 2020, 25, 1519. [Google Scholar]
- Huynh, R.A.; Mohan, C. Alzheimer’s Disease: Biomarkers in the Genome, Blood, and Cerebrospinal Fluid. Front. Neurol. 2017, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinho, B.R.; Ferreres, F.; Valentão, P.; Andrade, P.B. Nature as a Source of Metabolites with Cholinesterase-Inhibitory Activity: An Approach to Alzheimer’s Disease Treatment. J. Pharm. Pharmacol. 2013, 65, 1681–1700. [Google Scholar] [CrossRef]
- Gibbons, S. Plants as a Source of Bacterial Resistance Modulators and Anti-Infective Agents. Phytochem. Rev. 2005, 4, 63–78. [Google Scholar] [CrossRef]
- Kwapong, A.A.; Stapleton, P.; Gibbons, S. Inhibiting Plasmid Mobility: The Effect of Isothiocyanates on Bacterial Conjugation. Int. J. Antimicrob. Agents 2019, 53, 629–636. [Google Scholar] [CrossRef]
- Tamo, S.B. Candida Infections: Clinical Features, Diagnosis and Treatment. Infect. Dis. Clin. Microbiol. 2020, 2, 91–103. [Google Scholar]
- Toplan, G.G.; Göger, F.; Taşkın, T.; Genç, G.E.; Civaş, A.; İşcan, G.; Mat, A.; Başer, K.H.C. Phytochemical Composition and Pharmacological Activities of Teucrium polium L. Collected from Eastern Turkey. Turk. J. Chem. 2022, 46, 269–282. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Chen, J.; Cai, Y.; Lei, Y.; Chen, L.; Pei, L.; Zhou, D.; Liang, X.; Ruan, J. Antioxidant, Free Radical Scavenging, Anti-Inflammatory and Hepatoprotective Potential of the Extract from Parathelypteris Nipponica (Franch. et Sav.) Ching. J. Ethnopharmacol. 2010, 130, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- CLSI (NCCLS) M27-A2; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. NCCLS: Wayne, PA, USA, 2002.
- CLSI (NCCLS) M7-A7; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard, Seventh Edition; NCCLS: Wayne, PA, USA, 2006.
Samples | Yield a | DPPH b | CUPRAC c | FRAP Assay d | TPC e | AChE Inh% f |
---|---|---|---|---|---|---|
AB-n-hexane | 0.154 | 3.0 ± 0.2 a | 0.066 ± 0.002 * | 0.004 ± 0.002 * | 9.2 ± 2.5 a | NA |
AB-Chloroform | 0.166 | 6.9 ± 0.3 b | 0.083 ± 0.004 * | 0.038 ± 0.004 * | 22.1 ± 2.3 b | NA |
AB-Methanol | 2.803 | 59.7 ± 2.5 c | 0.098 ± 0.003 * | 0.321 ± 0.010 * | 38.8 ± 1.9 c | 73.460 ± 0.900 * |
AB-Water | 1.44 | 55.3 ± 0.7 d | 0.097 ± 0.001 * | 0.304 ± 0.008 * | 34.4 ± 1.3 d | 94.349 ± 0.220 * |
AMM-n-hexane | 0.443 | NA | 0.046 ± 0.008 * | 0.031 ± 0.007 * | 13.2 ± 0.7 e | NA |
AMM-Chloroform | 0.433 | 2.6 ± 0.9 e | 0.093 ± 0.001 * | 0.067 ± 0.008 * | 24.1 ± 0.6 f | NA |
AMM-Methanol | 3.64 | 59.2 ± 0.4 f | 0.096 ± 0.002 * | 0.373 ± 0.022 * | 29.2 ± 1.4 g | 64.762 ± 0.830 * |
AMM-Water | 0.92 | 56.8 ± 0.7 g | 0.084 ± 0.001 * | 0.098 ± 0.013 * | 39.1 ± 0.9 h | 84.254 ± 1.268 * |
BHT | 1.1 ± 0.12 | |||||
BHA | 1.622 ± 0.12 | |||||
Galantamine | 96.54 ± 0.09 |
RRIa | RRIb | Compounds | AB% | AMM% | IM |
---|---|---|---|---|---|
1032 | 1025c | α-Pinene | 1.4 | 4.3 | tR, MS |
1035 | 1027c | α-Thujene | 0.1 | 0.3 | MS |
1043 | 1036c | Santolinatriene | 0.6 | - | MS |
1076 | 1069c | Camphene | 1.9 | 0.5 | tR, MS |
1118 | 1110c | β-Pinene | 1.0 | 2.9 | tR, MS |
1132 | 1122c | Sabinene | 0.3 | 1.8 | tR, MS |
1138 | 1122c | Thuja-2,4 (10)-dien | - | 0.1 | MS |
1176 | 1168c | α-Phellandrene | 0.1 | - | tR, MS |
1188 | 1178c | α-Terpinene | 0.2 | 0.4 | tR, MS |
1195 | 1193c | Dehydro-1,8-cineole | tr | - | tR, MS |
1203 | 1198c | Limonene | 0.3 | 0.4 | tR, MS |
1213 | 1211c | 1,8-Cineole | 32.5 | 12.3 | tR, MS |
1234 | 1234d,h | Isochrysanthenone | tr | - | MS |
1255 | 1245c | γ-Terpinene | 0.4 | 1.1 | tR, MS |
1280 | 1270c | p-Cymene | 1.6 | 2.4 | tR, MS |
1290 | 1282c | Terpinolene | 0.1 | 0.3 | tR, MS |
1403 | 1395c | Yomogi alcohol | 0.5 | - | MS |
1452 | 1444c | 1-Octen-3-ol | - | 0.1 | tR, MS |
1497 | 1491c | α-Copaene | - | 0.2 | MS |
1499 | 1496c | Campholenal | 0.2 | - | MS |
1516 | 1510c | Artemisia alcohol | 0.1 | - | MS |
1529 | α-Bourbonene | - | tr | MS | |
1532 | 1515c | Camphor | 13.7 | 1.3 | tR, MS |
1538 | 1538h | trans-Chrysanthenyl acetate | - | 0.3 | MS |
1544 | 1547g | Dihydroachillene | 0.1 | - | MS |
1553 | 1543c | Linalool | 0.4 | 0.5 | tR, MS |
1556 | 1-Nonen-3-ol | - | 0.1 | MS | |
1571 | 1571d | trans-p-Menth-2-en-1-ol | 0.8 | 0.1 | MS |
1583 | 1561c, 1582e | cis-Chrysanthenyl acetate | 0.1 | 1.7 | MS |
1586 | 1576c | Pinocarvone | 0.2 | 0.4 | MS |
1590 | 1579c | Bornyl acetate | 0.5 | 0.5 | tR, MS |
1611 | 1601c | Terpinen-4-ol | 1.5 | 2.2 | tR, MS |
1612 | 1599c | β-Caryophyllene | 0.1 | 1.8 | tR, MS |
1617 | 1603c | Hotrienol | tr | - | MS |
1638 | 1614c | cis-p-Menth-2-en-1-ol | 0.6 | - | MS |
1648 | 1632c | Myrtenal | 0.2 | 0.4 | MS |
1651 | 1651c | Sabina ketone | 0.2 | - | MS |
1664 | 1661c | trans-Pinocarveol | 0.3 | 0.6 | tR, MS |
1686 | 1679c | Lavandulol | - | 1.2 | tR, MS |
1687 | 1667c 1681d | α-Humulene | - | 0.3 | tR, MS |
1689 | 1689e | trans-Piperitol | 0.5 | - | MS |
1690 | 1675c | Cryptone | tr | - | MS |
1706 | 1694c | α-Terpineol | 2.8 | 2.7 | tR, MS |
1719 | 1700c | Borneol | 2.6 | 0.8 | tR, MS |
1722 | 1722f | Cabreuva oxide II | - | tr | MS |
1726 | 1708c | Germacrene D | 0.9 | 1.1 | MS |
1744 | 1724c | Phellandral | 0.4 | - | MS |
1746 | 1738d | p-Mentha-1,5-dien-8-ol | 0.2 | 0.6 | MS |
1747 | 1730c | Piperitone | 14.4 | 0.6 | tR, MS |
1758 | 1751c 1758d | cis-Piperitol | 0.5 | - | MS |
1765 | 1762c 1764d | cis-Chrysanthenol | - | 0.5 | MS |
1769 | 1768f | Cabreuva oxide-IV | - | tr | MS |
1772 | 1756c | δ-Cadinene | - | 0.5 | tR, MS |
1776 | 1763c | γ-Cadinene | - | tr | MS |
1797 | 1790c | Myrtenol | 0.1 | 0.4 | MS |
1802 | 1784c | Cumin aldehyde | 0.1 | - | MS |
1845 | 1826c | (E)-Anethole | - | 0.7 | MS |
1845 | 1836c | trans-Carveol | 0.2 | - | tR, MS |
1864 | 1848c | p-Cymen-8-ol | 0.2 | 0.3 | tR, MS |
2008 | 1986c | Caryophyllene oxide | 0.3 | 4.2 | tR, MS |
2037 | 2036c | Salvial-4(14)-en-1-one | - | tr | MS |
2041 | 2036c | (E)-Nerolidol | - | 2.7 | tR, MS |
2057 | p-Mentha-1,4-dien-7-ol | 0.5 | - | MS | |
2061 | 2061e | β-trans-Bejarol | - | 0.7 | MS |
2084 | 2057c, 2084d | Octanoic acid | 0.5 | - | MS |
2104 | 2089c, 2103d | Guaiol | - | 1.0 | MS |
2122 | 2122e | cis-Bejarol | - | 0.3 | MS |
2123 | 2130d | Salviadienol | - | tr | MS |
2131 | 2125c | Hexahydrofarnesyl acetone | tr | - | tR, MS |
2144 | 2127c | Spathulenol | 0.3 | 1.9 | tR, MS |
2174 | 2159c | Nonanoic acid | - | 0.8 | MS |
2187 | 2176c | γ-Eudesmol | - | 0.9 | MS |
2209 | 2187c | T-Muurolol | - | 0.3 | MS |
2246 | 2223c | α-Eudesmol | - | 0.5 | MS |
2255 | 2238c | β-Eudesmol | 0.5 | 8.9 | MS |
2260 | 2260e | 15-Hexadecanolide | 0.2 | - | MS |
2286 | 2274c | Decanoic acid | tr | 4.6 | MS |
2300 | 2300e | Tricosane | 0.3 | - | tR, MS |
2316 | 2316d | Caryophylladienol I | - | 1.3 | MS |
2323 | 1-Bisabolone | - | tr | MS | |
2324 | 2324f | Caryophylladienol II (=caryophylla-2(12),6(13)-dien-5α-ol) | - | 2.6 | MS |
2353 | 2361d | Caryophyllenol I (=Caryophylla-2(12),6-dien-5α-ol) | - | 2.4 | MS |
2369 | 2371c, 2384d | Eudesma-4(15), 7-dien-1β-ol | - | 0.4 | MS |
2392 | 2392c, 2392d | Caryophyllenol II (=Caryophylla-2(12),6-dien-5β-ol) | - | 1.5 | MS |
2500 | 2500d | Pentacosane | 0.2 | - | MS |
2503 | 2487c, 2496d | Dodecanoic acid (=lauric acid) | - | 0.4 | tR, MS |
2931 | 2913 | Hexadecanoic acid (=palmitic acid) | 0.4 | 4.7 | MS |
Monoterpene hydrocarbons | 8.1 | 13.8 | |||
Oxygenated monoterpenes | 73.5 | 25.17 | |||
Sesquiterpene hydrocarbons | 1.0 | 3.9 | |||
Oxygenated sesquiterpenes | 1.1 | 29.6 | |||
Diterpenes | - | - | |||
Others | 2.4 | 10.5 | |||
Identified compound | 56 | 64 | |||
Total % | 86.1 | 86.8 |
RT | [M − H]− | MS2 | Compound | Extract | Refs. |
---|---|---|---|---|---|
3.7 | 191 | 173, 127 | Quinic acid | M6, M11 | [55] |
4.1 | 133 | 115 | Malic acid | M6, M11 | [55] |
6.8 | 353 | 239, 191, 127 | Chlorogenic acid derivative | M6, M11 | [55] |
7.1 | 315 | 153 | Protocatechuic acid hexoside | M6, M11 | [56] |
8.1 | 479 | 317 | Similar to myricetin glucoside | M6 | |
8.3 | 463 | 301 | Quercetin glucoside | M6, M11 | [55] |
9.0 | 609 | 300 | Quercetin rutinoside | M11 | [55] |
9.9 | 447 | 285 | Luteolin glucoside | M6, M11 | [55] |
10.0 | 493 | 331, 315, 287, 270 | Similar to methylmyricetin glucoside | M6 | |
11.1 | 477 | 301, 179, 151 | Quercetin glucuronide | M6 | [28,57] |
11.5 | 477 | 314, 285, 271, 243 | Isorhamnetin glucoside | M6 | [55] |
11.7 | 431 | 268 | Apigenin glucoside | M6, M11 | [55] |
11.8 | 515 | 353, 191, 179, 135 | Dicaffeoylquinic acid | M6 | [55] |
12.4 | 315 | 300, 271 | Isorhamnetin | M6 | [55,56] |
16.8 | 285 | 133 | Luteolin | M11 | [55] |
19.8 | 269 | 149, 117 | Apigenin | M11 | [56] |
Bacteria Panel | Strain No. | D6-h | D6-c | D6-m | D6-i | D6-o | D11-h | D11-c | D11-m | D11-i | St-3 | St-4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Escherichia coli | NRRL B-3008 | 1 | 1 | 0.5 | 1 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 2 | 1 |
Staphylococcus aureus | ATCC 6538 | 0.25 | 0.25 | 0.125 | 1 | 0.5 | 1 | 0.25 | 0.25 | 1 | 0.1 | 0.5 |
Pseudomonas aeruginosa | ATCC 27853 | >2 | >2 | >2 | 2 | 1 | >2 | >2 | >2 | >2 | 64 | 32 |
Salmonella typhimurium | ATCC 13311 | 0.25 | 0.5 | 0.5 | 2 | 0.25 | 0.5 | 0.5 | 0.5 | 1 | 1 | 1 |
Serratia marcescens | NRRL B-2544 | 0.5 | 0.5 | 0.5 | >2 | 0.5 | 1 | 0.25 | 0.25 | 1 | 32 | 8 |
Klebsiella pneumoniae | NCTC 9633 | 0.5 | 0.5 | 0.5 | >2 | 0.25 | >2 | >2 | >2 | >2 | 0.5 | 2 |
Candida Panel | Strain No. | D6-h | D6-c | D6-m | D6-i | D6-o | D11-h | D11-c | D11-m | D11-i | St-1 | St-2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C. albicans | ATCC 10231 | 0.125 | 0.25 | 0.25 | >2 | 0.25 | 0.062 | 0.125 | 0.25 | >2 | 0.25 | 0.06 |
C. albicans | ATCC 90028 | 0.125 | 0.25 | 0.5 | 1 | 0.0625 | 0.062 | 0.062 | 0.125 | 1 | 0.5 | 0.03 |
C. tropicalis | NRRL Y-12968 | 0.125 | 0.125 | 0.25 | >2 | 0.25 | 0.015 | 0.062 | 0.25 | 2 | 0.25 | 0.03 |
C. tropicalis | ATCC 750 | 0.0625 | 0.0625 | 0.25 | 1 | 0.125 | 0.015 | 0.062 | 0.5 | >2 | 0.25 | 0.03 |
C. utilis | NRRL Y-900 | 0.031 | 0.031 | 0.0625 | 0.5 | 0.25 | 0.015 | 0.015 | 0.5 | 2 | 0.06 | 0.06 |
C. parapsilosis | ATCC 22019 | 0.0625 | 0.0625 | 0.125 | 0.5 | 0.031 | 0.015 | 0.031 | 0.25 | 2 | 0.25 | 0.03 |
C. krusei | ATCC 6258 | 0.125 | 0.0625 | 0.125 | 0.25 | 0.25 | 0.5 | 0.25 | 0.5 | >2 | 0.5 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toplan, G.G.; Taşkın, T.; İşcan, G.; Göger, F.; Kürkçüoğlu, M.; Civaş, A.; Ecevit-Genç, G.; Mat, A.; Başer, K.H.C. Comparative Studies on Essential Oil and Phenolic Content with In Vitro Antioxidant, Anticholinesterase, Antimicrobial Activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. Growing in Eastern Turkey. Molecules 2022, 27, 1956. https://doi.org/10.3390/molecules27061956
Toplan GG, Taşkın T, İşcan G, Göger F, Kürkçüoğlu M, Civaş A, Ecevit-Genç G, Mat A, Başer KHC. Comparative Studies on Essential Oil and Phenolic Content with In Vitro Antioxidant, Anticholinesterase, Antimicrobial Activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. Growing in Eastern Turkey. Molecules. 2022; 27(6):1956. https://doi.org/10.3390/molecules27061956
Chicago/Turabian StyleToplan, Gizem Gülsoy, Turgut Taşkın, Gökalp İşcan, Fatih Göger, Mine Kürkçüoğlu, Ayşe Civaş, Gülay Ecevit-Genç, Afife Mat, and Kemal Hüsnü Can Başer. 2022. "Comparative Studies on Essential Oil and Phenolic Content with In Vitro Antioxidant, Anticholinesterase, Antimicrobial Activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. Growing in Eastern Turkey" Molecules 27, no. 6: 1956. https://doi.org/10.3390/molecules27061956
APA StyleToplan, G. G., Taşkın, T., İşcan, G., Göger, F., Kürkçüoğlu, M., Civaş, A., Ecevit-Genç, G., Mat, A., & Başer, K. H. C. (2022). Comparative Studies on Essential Oil and Phenolic Content with In Vitro Antioxidant, Anticholinesterase, Antimicrobial Activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. Growing in Eastern Turkey. Molecules, 27(6), 1956. https://doi.org/10.3390/molecules27061956