Iridium(I)-Catalyzed Isoindolinone-Directed Branched-Selective Aromatic C–H Alkylation with Simple Alkenes
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
General Procedure for the Synthesis of Product (3a–3p)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Anzini, M.; Cappelli, A.; Vomero, S.; Giorgi, G.; Langer, T.; Bruni, G.; Romeo, M.R.; Basile, A.S. Molecular Basis of Peripheral vs Central Benzodiazepine Receptor Selectivity in a New Class of Peripheral Benzodiazepine Receptor Ligands Related to Alpidem. J. Med. Chem. 1996, 39, 4275–4284. [Google Scholar] [CrossRef] [PubMed]
- Donohoe, T.J. Product class 14:1H- and 2H-isoindoles. Sci. Synth. 2001, 10, 653–692. [Google Scholar]
- Comins, D.L.; Schilling, S.; Zhang, Y. Asymmetric Synthesis of 3-Substituted Isoindolinones: Application to the Total Synthesis of (+)-Lennoxamine. Org. Lett. 2005, 7, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Endo-Umeda, K.; Aoyama, A.; Makishima, M.; Hashimoto, Y.; Ishikawa, M. Styrylphenylphthalimides as Novel Transrepression-Selective Liver X Receptor (LXR) Modulators. ACS Med. Chem. Lett. 2015, 6, 902–907. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Shinji, C.; Ogura, K.; Shimizu, M.; Maeda, S.; Sato, M.; Yoshida, M.; Hashimoto, Y.; Miyachi, H. Design, synthesis, and evaluation of isoindolinone-hydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 4895–4900. [Google Scholar] [CrossRef]
- Speck, K.; Magauer, T. The chemistry of isoindole natural products. Beilstein. J. Org. Chem. 2013, 9, 2048–2078. [Google Scholar] [CrossRef]
- Bhatia, R.K. Isoindole Derivatives: Propitious Anticancer Structural Motifs. Curr. Top. Med. Chem. 2016, 17, 189–207. [Google Scholar] [CrossRef]
- Lunn, M.R.; Root, D.E.; Martino, A.M.; Flaherty, S.P.; Kelley, B.P.; Coovert, D.D.; Burghes, A.H.; Man, T.M.; Morris, G.E.; Zhou, J.; et al. Indoprofen Upregulates the Survival Motor Neuron Protein through a CyclooxygenaseIndependent Mechanism. Chem. Biol. 2004, 11, 1489–1493. [Google Scholar] [CrossRef] [Green Version]
- Miyachi, H.; Azuma, A.; Hioki, E.; Kobayashi, Y.; Iwasaki, S.; Hashimoto, Y. Inducer-specific regulators of tumor necrosis factor alpha production. Chem. Pharm. Bull. 1996, 44, 1980–1982. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Moon, S.C.; Baik, K.U.; Cho, J.Y.; Yoo, E.S.; Byun, Y.S.; Park, M.H. Synthesis and SAR studies for the inhibition of TNF-α production. Part 2. 2-[3-(Cyclopentyloxy)-4-methoxyphenyl]-substituted-1-isoindolinone derivatives. Arch. Pharmacal Res. 2002, 25, 137–142. [Google Scholar] [CrossRef]
- Hamprecht, D.; Micheli, F.; Tedesco, G.; Checchia, A.; Donati, D.; Petrone, M.; Terreni, S.; Wood, M. Isoindolone derivatives, a new class of 5-HT2C antagonists: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2007, 17, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Maguire, G.; Franklin, D. New Molecular Targets for Antianxiety Interventions. J. Clin. Psychopharmacol. 2010, 30, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.M.; Morton, D. Recent Advances in C−H Functionalization. J. Org. Chem. 2016, 81, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandeepan, P.; Ackermann, L. Transient Directing Groups for Transformative C–H Activation by Synergistic Metal Catalysis. Chem. 2018, 4, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Hummel, J.R.; Boerth, J.A.; Ellman, J.A. Transition-Metal-Catalyzed C–H Bond Addition to Carbonyls, Imines, and Related Polarized π Bonds. Chem. Rev. 2017, 117, 9163–9227. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Park, W.J.; Jun, C.H. Metal-Organic Cooperative Catalysis in C–H and C–C Bond Activation. Chem. Rev. 2017, 117, 8977–9015. [Google Scholar] [CrossRef] [PubMed]
- Luo, F. Progress in Transition Metal Catalyzed C–H Functionalization Directed by Carboxyl Group. Chin. J. Org. Chem. 2019, 39, 3084–3104. [Google Scholar] [CrossRef]
- Rej, S.; Ano, Y.; Chatani, N. Bidentate Directing Groups: An Efficient Tool in C–H Bond Functionalization Chemistry for the Expedient Construction of C–C Bonds. Chem. Rev. 2020, 120, 1788–1887. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, L. Recent Advances in Directing Group—Induced C–H Activation Reactions. Chin. J. Org. Chem. 2018, 38, 291–303. [Google Scholar]
- Wencel-Delord, J.; Liu, F.; Glorius, F. Towards mild metal-catalyzed C–H bond activation. Chem. Soc. Rev. 2011, 40, 4740–4761. [Google Scholar] [CrossRef]
- Yuan, Y.C.; Bruneau, C.; Roisnel, T.; Gramage-Doria, R. Site-Selective Ruthenium-Catalyzed C−H Bond Arylations with Boronic Acids: Exploiting Isoindolinones as a Weak Directing Group. J. Org. Chem. 2019, 84, 12893–12903. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.C.; Bruneau, C.; Roisnel, T.; Gramage-Doria, R. C−H Bond Alkylation of Cyclic Amides with Maleimides via a SiteSelective-Determining Six-Membered Ruthenacycle. J. Org. Chem. 2019, 84, 16183–16191. [Google Scholar] [CrossRef]
- Yuan, Y.C.; Bruneau, C.; Roisnel, T.; Gramage-Doria, R. Site-selective Ru-catalyzed C–H bond alkenylation with biologically relevant isoindolinones: A case of catalyst performance controlled by subtle stereo-electronic effects of the weak directing group. Catal. Sci. Technol. 2019, 9, 4711–4717. [Google Scholar] [CrossRef]
- Crisenza, G.E.M.; Bower, J.F. Branch Selective Murai-type Alkene Hydroarylation Reactions. Chem. Lett. 2016, 45, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Fernández, D.F.; López, F. Catalytic addition of C–H bonds across C–C unsaturated systems promoted by iridium(I) and its group IX congeners. Chem. Soc. Rev. 2020, 49, 7378–7405. [Google Scholar] [CrossRef]
- Tsuchikama, K.; Kasagawa, M.; Hashimoto, Y.K.; Endo, K.; Shibata, T. Cationic iridium-BINAP complex-catalyzed addition of aryl ketones to alkynes and alkenes via directed C–H bond cleavage. J. Organomet. Chem. 2008, 693, 3939–3942. [Google Scholar] [CrossRef]
- Pan, S.; Ryu, N.; Shibata, T. Ir(I)-Catalyzed C–H Bond Alkylation of C2-Position of Indole with Alkenes: Selective Synthesis of Linear or Branched 2-Alkylindoles. J. Am. Chem. Soc. 2012, 134, 17474–17477. [Google Scholar] [CrossRef]
- Sevov, C.S.; Hartwig, J.F. Iridium-Catalyzed Intermolecular Asymmetric Hydroheteroarylation of Bicycloalkenes. J. Am. Chem. Soc. 2013, 135, 2116–2119. [Google Scholar] [CrossRef] [Green Version]
- Sevov, C.S.; Hartwig, J.F. Iridium-Catalyzed Oxidative Olefination of Furans with Unactivated Alkenes. J. Am. Chem. Soc. 2014, 136, 10625–10631. [Google Scholar] [CrossRef] [Green Version]
- Ebe, Y.; Nishimura, T. Iridium-Catalyzed Branch-Selective Hydroarylation of Vinyl Ethers via C–H Bond Activation. J. Am. Chem. Soc. 2015, 137, 5899–5902. [Google Scholar] [CrossRef]
- Shirai, T.; Yamamoto, Y. Cationic Iridium/S-Me-BIPAM-Catalyzed Direct Asymmetric Intermolecular Hydroarylation of Bicycloalkenes. Angew. Chem. Int. Ed. 2015, 54, 9894–9897. [Google Scholar] [CrossRef]
- Hatano, M.; Ebe, Y.; Nishimura, T.; Yorimitsu, H. Asymmetric Alkylation of N-Sulfonylbenzamides with Vinyl Ethers via C–H Bond Activation Catalyzed by Hydroxoiridium/Chiral Diene Complexes. J. Am. Chem. Soc. 2016, 138, 4010–4013. [Google Scholar] [CrossRef]
- Yamauchi, D.; Nishimura, T.; Yorimitsu, H. Asymmetric hydroarylation of vinyl ethers catalyzed by a hydroxoiridium complex: Azoles as effective directing groups. Chem. Commun. 2017, 53, 2760–2763. [Google Scholar] [CrossRef]
- Ebe, Y.; Onoda, M.; Nishimura, T.; Yorimitsu, H. Iridium-Catalyzed Regio- and Enantioselective Hydroarylation of Alkenyl Ethers by Olefin Isomerization. Angew. Chem. Int. Ed. 2017, 56, 1–6. [Google Scholar]
- Crisenza, G.E.; McCreanor, N.G.; Bower, J.F. Branch-Selective, Iridium-Catalyzed Hydroarylation of Monosubstituted Alkenes via a Cooperative Destabilization Strategy. J. Am. Chem. Soc. 2014, 136, 10258–10261. [Google Scholar] [CrossRef]
- Crisenza, G.E.; Sokolova, O.O.; Bower, J.F. Branch-Selective Alkene Hydroarylation by Cooperative Destabilization: Iridium-Catalyzed ortho-Alkylation of Acetanilides. Angew. Chem. Int. Ed. 2015, 54, 14866–14870. [Google Scholar] [CrossRef] [Green Version]
- Greĺaud, S.; Cooper, P.; Feron, L.J.; Bower, J.F. Branch-Selective and Enantioselective Iridium-Catalyzed Alkene Hydroarylation via Anilide-Directed C–H Oxidative Addition. J. Am. Chem. Soc. 2018, 140, 9351–9356. [Google Scholar] [CrossRef] [Green Version]
- Romero-Arenas, A.; Hornillos, V.; Iglesias-Sigüenza, J.; Fernańdez, R.; López-Serrano, J.; Ros, A.; Lassaletta, J.M. Ir-Catalyzed Atroposelective Desymmetrization of Heterobiaryls: Hydroarylation of Vinyl Ethers and Bicycloalkenes. J. Am. Chem. Soc. 2020, 142, 2628–2639. [Google Scholar] [CrossRef]
- Jordan, R.F.; Taylor, D.F. Zirconium-catalyzed coupling of propene and alpha picoline. J. Am. Chem. Soc. 1989, 111, 778–779. [Google Scholar] [CrossRef]
- Kuninobu, Y.; Matsuki, T.; Takai, K. Rhenium-Catalyzed Regioselective Alkylation of Phenols. J. Am. Chem. Soc. 2009, 131, 9914–9915. [Google Scholar] [CrossRef]
- Gao, K.; Yoshikai, N. Regioselectivity-Switchable Hydroarylation of Styrenes. J. Am. Chem. Soc. 2011, 133, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.S.; Yoshikai, N. Aldimine-Directed Branched-Selective Hydroarylation of Styrenes. Angew. Chem., Int. Ed. 2013, 52, 1240–1244. [Google Scholar] [CrossRef] [PubMed]
- Song, G.Y.; Wylie, W.N.O.; Hou, Z.M. Enantioselective C–H Bond Addition of Pyridines to Alkenes Catalyzed by Chiral Half-Sandwich Rare-Earth Complexes. J. Am. Chem. Soc. 2014, 136, 12209–12212. [Google Scholar] [CrossRef]
- Banerjee, A.; Santra, S.K.; Mohanta, P.R.; Patel, B.K. Cobalt-Catalyzed Enantioselective Directed C–H Alkylation of Indole with Styrenes. Org. Lett. 2015, 17, 22–25. [Google Scholar]
- Zell, D.; Bursch, M.; Müller, V.; Grimme, S.; Ackermann, L. Full Selectivity Control in Cobalt(III)-Catalyzed C−H Alkylations by Switching of the C−H Activation Mechanism. Angew. Chem. Int. Ed. 2017, 56, 10378–10382. [Google Scholar] [CrossRef] [PubMed]
- Loup, J.; Zell, D.; Ackermann, L. Asymmetric Iron-Catalyzed C−H Alkylation Enabled by Remote Ligand meta-Substitution. Angew. Chem. Int. Ed. 2017, 56, 14197–14201. [Google Scholar] [CrossRef]
- Pesciaioli, F.; Dhawa, U.; Ackermann, L. Enantioselective Cobalt(III)-Catalyzed C−H Activation Enabled by Chiral Carboxylic Acid Cooperation. Angew. Chem. Int. Ed. 2018, 57, 15425–15429. [Google Scholar] [CrossRef]
- Liu, Y.H.; Xie, P.P.; Shi, B.F. Cp*Co(III)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C–H Activation. J. Am. Chem. Soc. 2021, 143, 19112–19120. [Google Scholar] [CrossRef]
- Huang, G.P.; Liu, P. Mechanism and Origins of Ligand-Controlled Linear Versus Branched Selectivity of Iridium-Catalyzed Hydroarylation of Alkenes. ACS Catal. 2016, 6, 809–820. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, L.; Cao, Y.; Huang, G.P. Mechanism and Origins of Regio- and Enantioselectivities of Iridium-Catalyzed Hydroarylation of Alkenyl Ethers. J. Org. Chem. 2018, 83, 2937–2947. [Google Scholar] [CrossRef]
Entry | Ligand (5 mol%) | Solvent | Yield (%) b | rr (b/l) c |
---|---|---|---|---|
1 | rac-L1 | 1,4-dioxane | 87 (81) | >20:1 |
2 | rac-BINAP | 1,4-dioxane | <5 | -- |
3 | rac-BIPHEP | 1,4-dioxane | 12 | 10:1 |
4 | dppf | 1,4-dioxane | 25 | 11:1 |
5 | dppb | 1,4-dioxane | 20 | >20:1 |
6 | dppe | 1,4-dioxane | 10 | 6:1 |
7 | rac-L1 | CPME | 78 | >20:1 |
8 | rac-L1 | toluene | 51 | >20:1 |
9 | rac-L1 | DCE | 48 | >20:1 |
10 | rac-L1 | PhCl | 46 | >20:1 |
11 | rac-L1 | m-xylene | 63 | >20:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, M.; Shu, Y.; Tang, J.; Yang, F.; Xing, D. Iridium(I)-Catalyzed Isoindolinone-Directed Branched-Selective Aromatic C–H Alkylation with Simple Alkenes. Molecules 2022, 27, 1923. https://doi.org/10.3390/molecules27061923
Xiong M, Shu Y, Tang J, Yang F, Xing D. Iridium(I)-Catalyzed Isoindolinone-Directed Branched-Selective Aromatic C–H Alkylation with Simple Alkenes. Molecules. 2022; 27(6):1923. https://doi.org/10.3390/molecules27061923
Chicago/Turabian StyleXiong, Maoqian, Yuhang Shu, Jie Tang, Fan Yang, and Dong Xing. 2022. "Iridium(I)-Catalyzed Isoindolinone-Directed Branched-Selective Aromatic C–H Alkylation with Simple Alkenes" Molecules 27, no. 6: 1923. https://doi.org/10.3390/molecules27061923