Effect of Unavoidable Ion (Ca2+) in Pulp on the Dispersion Behavior of Fine Smithsonite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Turbidity Analysis
2.2. Zeta Analysis
2.3. Solution Chemistry Analysis
2.4. SEM, EDS, and XPS Analysis
2.5. Calculation of Surface Energy of Particles Using Classic DLVO Theory
2.6. Analysis of the Mechanism
3. Materials and Methods
3.1. Materials and Reagents
3.2. Methods
3.2.1. Turbidity Test
3.2.2. Zeta Potential Measurements
3.2.3. SEM and EDS Analysis
3.2.4. XPS Analysis
3.2.5. DLVO Theoretical Calculation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ejtemaei, M.; Gharabaghi, M.; Irannajad, M. A review of zinc oxide mineral beneficiation using flotation method. Adv. Colloid Interface Sci. 2014, 206, 68–78. [Google Scholar] [CrossRef] [PubMed]
- U.S.G. Survey. Statistics and Information on the Worldwide Supply of, Demand for, and Flow of the Mineral Commodity Zinc; United States Geological Survey: Reston, WV, USA, 2022.
- Zhou, H.P.; Yang, Z.; Zhang, Y.; Xie, F.; Luo, X. Flotation separation of smithsonite from calcite by using flaxseed gum as depressant. Miner. Eng. 2021, 167, 106904. [Google Scholar] [CrossRef]
- Navidi Kashani, A.H.; Rashchi, F. Separation of oxidized zinc minerals from tailings:influence of flotation reagents. Miner. Eng. 2008, 21, 967–972. [Google Scholar] [CrossRef]
- Wu, D.D.; Ma, W.; Wen, S.; Deng, J.; Bai, S. Enhancing the sulfidation of smithsonite by superficial dissolution with a novel complexing agent. Miner. Eng. 2017, 114, 1–7. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Forssberg, E. Physicochemical studies of smithsonite flotation using mixed anionic/cationic collector. Miner. Eng. 2007, 20, 621–624. [Google Scholar] [CrossRef]
- Irannajad, M.; Ejtemaei, M.; Gharabaghi, M. The effect of reagents on selective flotation of smithsonite-calcite-quartz. Miner. Eng. 2009, 22, 766–771. [Google Scholar] [CrossRef]
- Shi, Q.; Feng, Q.; Zhang, G.; Deng, H. Electrokinetic properties of smithsonite and its floatability with anionic collector. Colloids Surf. A Physicochem. Eng. Asp. 2012, 410, 178–183. [Google Scholar] [CrossRef]
- Deng, R.D. Study of Ion Presence Behavior and Adsorption Mechanism in Zinc Oxide Ore Pulp; Kunming University of Technology: Kunming, China, 2015. [Google Scholar]
- Chen, Y.F.; Zhang, G.; Wang, M.; Shi, Q.; Liu, D.; Li, Q. Utilization of sodium carbonate to eliminate the adverse effect of Ca2+ on smithsonite sulphidisation flotation. Miner. Eng. 2019, 132, 121–125. [Google Scholar] [CrossRef]
- Li, P.X.; Zhang, G.; Zhao, W.; Han, G.; Feng, Q. Interaction mechanism of Fe3+ with smithsonite surfaces and its response to flotation performance. Sep. Purif. Technol. 2022, 291, 121001. [Google Scholar] [CrossRef]
- Xie, X.; Li, B.; Xie, R.; Tong, X.; Li, Y.; Zhang, S.; Li, J.; Song, Q. Al3+ enhanced the depressant of guar gum on the flotation separation of smithsonite from calcite. J. Mol. Liq. 2022, 368, 120759. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, G.F.; Feng, Q.M.; Deng, H. Effect of solution chemistry on the flotation system of smithsonite and calcite. Inter. J. Miner. Process. 2013, 119, 34–39. [Google Scholar] [CrossRef]
- Ou, L.M.; Liu, G.-S.; Yu, Z.-J.; Lu, Y.-P. Influence and mechanism of ferric and ferrous ions on flotation of smithsonite and quartz. Nonferrous Met. (Miner. Process. Sect.) 2012, 06, 79–82. [Google Scholar]
- Ozkan, A. Coagulation and flocculation characteristics of talc by different flocculants in the presence of cations. Miner. Eng. 2003, 16, 9–61. [Google Scholar] [CrossRef]
- Yoon, S.J. Chemical Properties of Mineral Surfaces and Metal Ion Sorption: A Review. Econ. Environ. Geol. 2012, 45, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Van Lierde, A. Behaviour of quartz suspensions in the presence of calcium ions and acrylate polymers. Int. J. Miner. Process. 1980, 7, 235–243. [Google Scholar] [CrossRef]
- Ai, Y.J.; Zhao, C.; Sun, L.; Wang, X.; Liang, L. Coagulation mechanisms of humic acid in metal ions solution under different pH conditions: A molecular dynamics simulation. Sci. Total Environ. 2020, 702, 135072. [Google Scholar] [CrossRef]
- Hu, Y.; Qin, W.; Chen, C.; Chai, L.; Li, L.; Liu, S.; Zhang, T. Solution chemistry studies on dodecyl amine flotation of smithsonite/calcite. J. Cent. S. Univ. Technol. 1995, 26, 589–594. [Google Scholar]
- Van Cappellen, P.; Charlet, L.; Stumm, W.; Wersin, P. A surface complexation model of the carbonate mineral–aqueous solution interface. Geochim. Cosmochim. Acta. 1993, 57, 3505–3518. [Google Scholar] [CrossRef]
- Ejtemaei, M.; Irannajad, M.; Gharabaghi, M. Role of dissolved mineral species in selective flotation of smithsonite from quartz using oleate as collector. Int. J. Miner. Process. 2012, 114–117, 40–47. [Google Scholar] [CrossRef]
- Fang, Q.X. Effect of calcium and magnesium on dispersion stability of fine ore and its mechanism. Met. Ore Dress. Abroad 1998, 35, 42–45. [Google Scholar]
- Jin, C.X. Study on Influence of Slime on Flotation Behavior of Smithsonite; University of Mining and Technology: Beijing, China, 2017. [Google Scholar]
- Zhou, Y.L.; Hu, Y.H.; Wang, Y.H. Effect of metallic ions on dispersibility of fine diaspore. Trans. Nonferrous. Met. Soc. China 2011, 21, 1166–1171. [Google Scholar] [CrossRef]
- Wang, D.Z. Solution Chemistry of Flotation; Hunan Science and Technology Press: Changsha, China, 1988; pp. 132–134. ISBN -7-5357-0403-4. [Google Scholar]
- Dong, L.; Jiao, F.; Qin, W.; Zhu, H.; Jia, W. Selective depressive effect of sodium fluorosilicate on calcite during scheelite flotation. Miner. Eng. 2019, 131, 262–271. [Google Scholar] [CrossRef]
- Feng, B.; Guo, W.; Peng, J.; Zhang, W. Separation of scheelite and calcite using calcium lignosulphonate as depressant. Sep. Purif. Technol. 2018, 199, 346–350. [Google Scholar] [CrossRef]
- DiFeo, A.; A Finch, J.; Xu, Z. Sphalerite-silica interactions: Effect of pH and calcium ions. Int. J. Miner. Process. 2001, 61, 57–71. [Google Scholar] [CrossRef]
- Hai, N.T.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar]
- Gao, Z.Y.; Jiang, Z.Y.; Sun, W.; Gao, Y.S. Typical roles of metal ions in mineral flotation: A review. Trans. Nonferrous Met. Soc. China 2021, 31, 2081–2101. [Google Scholar] [CrossRef]
- Qiu, G.; Hu, Y.; Wang, D. Particle Interaction and Fine Flotation; Central South University of Technology Press: Changsha, China, 1993. [Google Scholar]
Metal Ions | α1 | α2 | α3 | α4 | KS0 | KS1 | KS2 | KS3 |
---|---|---|---|---|---|---|---|---|
Ca2+ | 1.4 | 2.77 | / | / | 5.22 | 3.82 | / | / |
Sample | Atomic Concentration, % | |||
---|---|---|---|---|
Zn2P | O1s | C1s | Ca2p | |
a | 17.02 | 52.73 | 30.24 | - |
b | 14.93 | 51.27 | 32.57 | 0.60 |
Composition | ZnCO3 | Al2O3 | SiO2 | Fe2O3 | Other | Total |
---|---|---|---|---|---|---|
Content (wt%) | 97.01 | 0.26 | 0.89 | 0.22 | 1.62 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Liu, J.; Liao, Y.; Jin, C.; Ma, Z. Effect of Unavoidable Ion (Ca2+) in Pulp on the Dispersion Behavior of Fine Smithsonite. Molecules 2022, 27, 9026. https://doi.org/10.3390/molecules27249026
Liu Z, Liu J, Liao Y, Jin C, Ma Z. Effect of Unavoidable Ion (Ca2+) in Pulp on the Dispersion Behavior of Fine Smithsonite. Molecules. 2022; 27(24):9026. https://doi.org/10.3390/molecules27249026
Chicago/Turabian StyleLiu, Zhongyi, Jie Liu, Yinfei Liao, Chenxi Jin, and Zilong Ma. 2022. "Effect of Unavoidable Ion (Ca2+) in Pulp on the Dispersion Behavior of Fine Smithsonite" Molecules 27, no. 24: 9026. https://doi.org/10.3390/molecules27249026
APA StyleLiu, Z., Liu, J., Liao, Y., Jin, C., & Ma, Z. (2022). Effect of Unavoidable Ion (Ca2+) in Pulp on the Dispersion Behavior of Fine Smithsonite. Molecules, 27(24), 9026. https://doi.org/10.3390/molecules27249026