A Green Blue LED-Driven Two-Liquid-Phase One-Pot Procedure for the Synthesis of Estrogen-Related Quinol Prodrugs
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Considerations
3.2. General Procedure for the Synthesis of Hydro-Peroxides 2a–d
3.3. General Procedure for the Synthesis of Estrogen-Related Quinols 3a–d
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruber, C.J.; Tschugguel, W.; Schneeberger, C.; Huber, J.C. Production and Actions of Estrogens. N. Engl. J. Med. 2002, 346, 340–352. [Google Scholar] [CrossRef]
- Lobo, R.A. Hormone-replacement therapy: Current thinking. Nat. Rev. Endocrinol. 2017, 13, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Prokai, L.; Prokai, K.; Simpkins, J. Preparation of Steroidal Quinols and Their Use for Estrogen Replacement Therapy. U.S. Patent US7300926B2, 27 November 2007. [Google Scholar]
- Lobo, R.A. Benefits and risks of estrogen replacement therapy. Am. J. Obstet. Gynecol. 1995, 173, 982–989. [Google Scholar] [CrossRef] [PubMed]
- D’Alonzo, M.; Bounous, V.E.; Villa, M.; Bigli, N. Current evidence of the oncological benefit-risk profile of hormone replacement therapy. Medicina 2019, 55, 573. [Google Scholar] [CrossRef] [Green Version]
- Cushman, M.; Larson, J.C.; Rosendaal, F.R.; Heckbert, S.R.; Curb, J.D.; Phillips, L.S.; Baird, A.E.; Eaton, C.B.; Stafford, R.S. Biomarkers, menopausal hormone therapy and risk of venous thrombosis: The Women’s Health Initiative. Res. Pract. Thromb. Haemost. 2018, 17, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Bassuk, S.S.; Manson, J.E. The timing hypothesis: Do coronary risks of menopausal hormone therapy vary by age or time since menopause onset. Metab. Clin. Exp. 2016, 65, 794–803. [Google Scholar] [CrossRef] [Green Version]
- Prokai-Tatrai, K.; Prokai, L. A Novel Prodrug Approach for Central Nervous System-Selective Estrogen Therapy. Molecules 2019, 24, 4197–4214. [Google Scholar] [CrossRef] [Green Version]
- Prokai, L.; Nguyen, V.; Szarka, S.; Garg, P.; Sabnis, G.; Bimonte-Nelson, H.A.; McLaughlin, K.J.; Talboom, J.S.; Conrad, C.D.; Shugrue, P.J.; et al. The prodrug DHED selectively delivers 17β-estradiol to the brain for treating estrogen-responsive disorders. Sci. Transl. Med. 2015, 7, 297ra113. [Google Scholar] [CrossRef] [Green Version]
- Prokai-Tatrai, K.; Nguyen, V.; De La Cruz, D.L.; Guerra, R.; Zaman, K.; Rahlouni, F.; Prokai, L. Retina-Targeted Delivery of 17β-Estradiol by the Topically Applied DHED Prodrug. Pharmaceutics 2020, 12, 456–468. [Google Scholar] [CrossRef]
- Prokai-Tatrai, K.; Zaman, K.; Nguyen, V.; De La Cruz, D.L.; Prokai, L. Proteomics-Based Retinal Target Engagement Analysis and Retina-Targeted Delivery of 17β-Estradiol by the DHED Prodrug for Ocular Neurotherapy in Males. Pharmaceutics 2021, 13, 1392–1409. [Google Scholar] [CrossRef]
- Merchenthaler, I.; Lane, M.; Stennett, C.; Zhan, M.; Nguyen, V.; Prokai-Tatrai, K.; Prokai, L. Brain-Selective Estrogen Therapy Prevents Androgen Deprivation-Associated Hot Flushes in a Rat Model. Pharmaceuticals 2020, 13, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Tschiffely, A.E.; Schuh, R.A.; Prokai-Tatrai, K.; Prokai, L.; Ottinger, M.A. A comparative evaluation of treatments with 17β-estradiol and its brain-selective prodrug in a double-transgenic mouse model of Alzheimer’s disease. Horm. Behav. 2016, 83, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thadathil, N.; Xiao, J.; Hori, R.; Alway, S.E.; Khan, M.M. Brain Selective Estrogen Treatment Protects Dopaminergic Neurons and Preserves Behavioral Function in MPTP-induced Mouse Model of Parkinson’s Disease. J. Neuroimmune Pharm. 2021, 16, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Quideau, S.; Pouységu, L.; Deffïeux, D. Oxidative Dearomatization of Phenols: Why, How and What For? Synlett 2008, 4, 467–495. [Google Scholar] [CrossRef]
- Baker Dockrey, S.A.; Lukowski, A.L.; Becker, M.R.; Narayan, A.R.H. Biocatalytic site-and enantioselective oxidative dearomatization of phenols. Nat. Chem. 2018, 10, 119–125. [Google Scholar] [CrossRef]
- Roche, S.P.; Porco, J.A. Dearomatization Strategies in the Synthesis of Complex Natural Products. Angew. Chem. Int. Ed. 2011, 50, 4068–4093. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.; Ye, Y.; Fan, R. Recent Advances in Phenol Dearomatization and Its Application in Complex Syntheses. Synthesis 2013, 45, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bizzarri, B.M.; Fanelli, A.; Piccinino, D.; De Angelis, M.; Dolfa, C.; Palamara, A.T.; Nencioni, L.; Zippilli, C.; Crucianelli, M.; Saladino, R. Synthesis of Stilbene and Chalcone Inhibitors of Influenza A Virus by SBA-15 Supported Hoveyda-Grubbs Metathesis. Catalysts 2019, 9, 983–999. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Li, G.; Hong, L.; Wang, R. Asymmetric dearomatization of phenols. Org. Biomol. Chem. 2016, 14, 2164–2176. [Google Scholar] [CrossRef]
- Wu, W.T.; Zhang, L.; You, S.L. Catalytic asymmetric dearomatization (CADA) reactions of phenol and aniline derivatives. Chem. Soc. Rev. 2016, 45, 1570–1580. [Google Scholar] [CrossRef]
- Carreño, M.C.; González-López, M.; Urbano, A. Oxidative De-aromatization of para-Alkyl Phenols into para-Peroxyquinols and para-Quinols Mediated by Oxone as a Source of Singlet Oxygen. Angew. Chem. Int. Ed. 2006, 45, 2737–2741. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, R.M.; Prakash, O. Oxidation of Phenolic Compounds with Organohypervalent Iodine Reagents. Org. React. 2001, 57, 327–415. [Google Scholar] [CrossRef]
- Parra, A.; Reboredo, S. Chiral Hypervalent Iodine Reagents: Synthesis and Reactivity. Chem. Eur. J. 2013, 19, 17244–17260. [Google Scholar] [CrossRef] [PubMed]
- Sels, B.F.; De Vos, D.E.; Jacobs, P.A. Bromide-Assisted Oxidation of Substituted Phenols with Hydrogen Peroxide to the Corresponding p-Quinol and p-Quinol Ethers over WO42−-Exchanged Layered Double Hydroxides. Angew. Chem. Int. Ed. 2004, 44, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Lupon, P.; Gomez, J.; Bonet, J.J. Photo-oxygenation of Styrenic Estrogens: A New Synthesis of 19-Norsteroids. Angew. Chem. Suppl. 1983, 1025–1034. [Google Scholar] [CrossRef]
- Lupon, P.; Grau, F.; Bonet, J.J. The photooxygenation of Δ9(11)-dehydroestrone and its 3-methyl ether potochemical reactions XX. Preliminary communication. Helv. Chim. Acta 1984, 67, 332–333. [Google Scholar] [CrossRef]
- Planas, A.; Lupon, P.; Cascallo, M.; Bonet, J.J. Photo-oxygenation of Styrenic Estrogens: Product characterization and kinetics of the dye-sensitized photo-oxygenation of 9,11-didehydroestrone derivatives. Helv. Chim. Acta 1989, 72, 715–724. [Google Scholar] [CrossRef]
- Wellauer, J.; Miladinov, D.; Buchholz, T.; Schutz, J.; Stemmler, R.T.; Medlock, J.A.; Bonrath, W.; Sparr, C. Organophotocatalytic Aerobic Oxygenation of Phenols in a Visible-Light Continuous-Flow Photoreactor. Chem. Eur. J. 2021, 27, 9748–9752. [Google Scholar] [CrossRef]
- Afanasenko, A.; Kavun, A.; Thomas, D.; Li, C.J. A One-Pot Approach for Bio-Based Arylamines via a Combined Photooxidative Dearomatization-Rearomatization Strategy. Chem. Eur. J. 2022, 28, 1–7. [Google Scholar] [CrossRef]
- Zippilli, C.; Bizzarri, B.M.; Gabellone, S.; Botta, L.; Saladino, R. Oxidative Coupling of Coumarins by Blue-LED-Driven in situ Activation of Horseradish Peroxidase in a Two-Liquid-Phase System ChemCatChem 2021, 13, 4151–4158. [CrossRef]
- Bankar, S.B.; Bule, M.V.; Singhal, R.S.; Ananthanarayan, L. Glucose oxidase—An overview. Biotechnol. Adv. 2009, 27, 489–501. [Google Scholar] [CrossRef]
- Tieves, F.; Willot, S.J.-P.; van Schie, M.M.C.H.; Rauch, M.C.R.; Younes, S.H.H.; Zhang, W.; Dong, J.; de Santos, P.; Robbins, J.M.; Bommarius, B.; et al. Formate Oxidase (FOx) from Aspergillus oryzae: One Catalyst Enables Diverse H2O2-Dependent Biocatalytic Oxidation Reactions. Angew. Chem. Int. Ed. 2019, 58, 7873–7877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wapshott-Stehli, H.L.; Grunden, A.M. In situ H2O2 generation methods in the context of enzyme biocatalysis. Enzym. Microb. Technol. 2021, 145, 109744. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, S.; Castoldi, L.; Murgia, I.; Senatore, R.; Mazzeo, E.; Wackerlig, J.; Urban, E.; Langer, T.; Pace, V. Recent advancements on the use of 2-methyltetrahydrofuran in organometallic chemistry. Monatsh. Chem. 2017, 148, 37–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismael, A.; Gevorgyan, A.; Skrydstrup, T.; Bayer, A. Renewable Solvents for Palladium-Catalyzed Carbonylation Reactions. Org. Process Res. Dev. 2020, 24, 2665–2675. [Google Scholar] [CrossRef]
- Sedee, A.; van Henegouwen, G.B. Photosensitized Decomposition of Contraceptive Steroids: A Possible Explanation for the Observed (Photo)aIIergy of the Oral Contraceptive Pill. Arch. Pharm. 1985, 318, 111–119. [Google Scholar] [CrossRef]
- Noyes, W.A.; Hammond, G.S.; Pittis, J.N. Advances in Photochemistry; Interscience Publishers: New York, NY, USA; London, UK; Sydney, Australia; pp. 1–483. 1968; Volume 6, pp. 1–483. [Google Scholar]
- Wilkinson, F.; McGamey, D.J.; Olea, A.F. Factors governing the efficiency of singlet oxygen production during oxygen quenching of singlet and triplet states of anthracene derivatives in cyclohexane solution. J. Am. Chew. SOC. 1993, 115, 12144–12151. [Google Scholar] [CrossRef]
- Wilkinson, F.; Ayman, A.A.-S. Mechanism of Quenching of Triplet States by Molecular Oxygen: Biphenyl Derivatives in Different Solvents. J. Phys. Chem. A 1999, 103, 5425–5435. [Google Scholar] [CrossRef]
- Fischer, J.; Nun, P.; Coeffard, V. Visible-Light-Driven Transformations of Phenols via Energy Transfer. Catal. Synth. 2020, 52, 1617–1624. [Google Scholar] [CrossRef]
- Buzzetti, L.; Crisenza, G.E.M.; Melchiorre, P. Mechanistic Studies in Photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 3730–3747. [Google Scholar] [CrossRef]
- Pfoertner, K.-H. Photochemistry. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Li, J.; Mailhot, G.; WuNansheng, F. Deng Photochemical efficiency of Fe(III)-EDDS complex: •OH radical production and 17β-estradiol degradation. J. Photochem. Photobiol. A Chem. 2010, 212, 1–7. [Google Scholar] [CrossRef]
- Yamamoto, A.; Kodama, S.; Matsunaga, A.; Nakazawa, H.; Hayakawa, K. Fluorescence-Detected Circular Dichroism by Modulated Beam in the Wavelength Axial Direction. A J. Sterochemistry 2002, 7, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Soto, C.; Contreras, D.; Yez, J.; Otipka, R.; Toral, M.I.; Pino, D. Determination and co-estimate of the chlormadinone acetate and 17α-ethinyl estradiol in pharmaceutical formulation and drinking water samples by digital derivative spectrophotometry. J. Chil. Chem. Soc. 2014, 59, 2485–2489. [Google Scholar] [CrossRef] [Green Version]
- Li, W.J.; Chang, L.; Liu, Q.; Ning, D.; Yao, X.Y.; Li, Y.; Ruan, W.J. Enzyme-Assisted Metal–Organic Framework Sensing System for Diethylstilbestrol Detection. Eur. J. Chem. 2017, 23, 15498–15504. [Google Scholar] [CrossRef]
- Raghavan, N.V.; Steenken, S. Electrophilic reaction of the hydroxyl radical with phenol. Determination of the distribution of isomeric dihydroxycyclohexadienyl radicals. J. Am. Chem. Soc. 1980, 102, 3495–3499. [Google Scholar] [CrossRef]
- Zhang, J.; Nosaka, Y. Quantitative Detection of OH Radicals for Investigating the Reaction Mechanism of Various Visible-Light TiO2 Photocatalysts in Aqueous Suspension. J. Phys. Chem. C 2013, 117, 1383–1391. [Google Scholar] [CrossRef]
- Maier, A.C.; Iglebaek, E.H.; Jonsson, M. Confirming the Formation of Hydroxyl Radicals in the Catalytic Decomposition of H2O2 on Metal Oxides Using Coumarin as a Probe. ChemCatChem 2019, 11, 5435–5438. [Google Scholar] [CrossRef]
- Leandri, V.; Gardner, J.M.; Jonsson, M. Coumarin as a Quantitative Probe for Hydroxyl Radical Formation in Heterogeneous Photocatalysis. J. Phys. Chem. C 2019, 123, 6667–6674. [Google Scholar] [CrossRef]
- Li, L.; Hao, C.; Zhai, R.; He, W.; Deng, C. Study on the mechanism of free radical scavenger TEMPO blocking in coal oxidation chain reaction. Fuel 2023, 331 Pt 2, 125853. [Google Scholar] [CrossRef]
- Miyosh, N.; Tomit, G. Quenching of Singlet Oxygen by Sodium Azide in Reversed Micellar Systems. Z. Fur. Naturforsch.–B J. Chem. 1979, 34, 339–343. [Google Scholar] [CrossRef]
- Miyoshia, N.; Uedaa, M.; Fukeb, K.; Tanimotoa, Y.; Itoha, M.; Tomitac, G. Lifetime of Singlet Oxygen and Quenching by NaN3 in Mixed Solvents. Z. Fur. Naturforsch.–B J. Chem. 1982, 37, 649–652. [Google Scholar] [CrossRef]
- Bancirova, M. Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and Cypridina luciferin analogues. Luminescence 2011, 26, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Della Greca, M.; Pinto, G.; Pistillo, P.; Pollio, A.; Previtera, L.; Temussia, F. Biotransformation of ethinylestradiol by microalgae. Chemosphere 2008, 70, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Maumy, M.; Capdevielle, P. Chemical Evidence for Peroxy Radicals Intermediacy in Copper(II) Reaction with Hydroperoxides. Tetrahedron 1993, 49, 1455–1462. [Google Scholar] [CrossRef]
Entry | Light | Solvents | Photosensitizer (1.0 mol%) | Conversion a (%) | Yield a (%) |
---|---|---|---|---|---|
1 | Blue-LED | 2-MeTHF:PBS (2:1) | meso-TPP | 20 | 12 |
2 b | Blue-LED | 2-MeTHF:PBS (2:1) | meso-TPP | 20 | 13 |
3 | Blue-LED | 2-MeTHF | meso-TPP | - | - |
4 | Dark | 2-MeTHF:PBS (2:1) | meso-TPP | - | - |
5 | Blue-LED | 2-MeTHF:PBS (2:1) | - | - | - |
6 | Blue-LED | 2-MeTHF:PBS (2:1) | Ir(ppy)3 | 18 | 10 |
7 | Blue-LED | 2-MeTHF:PBS (2:1) | Rose Bengal | 19 | 2 |
Entry | Solvents | Conversion b | Yield b(%) |
---|---|---|---|
1 c | 2-MeTHF-PBS (2:1) | 90 | 87 |
2 c | 2-MeTHF (+5% PBS) | 90 | 85 |
3 d | 2-MeTHF (+5% NaHCO3 ss) | 48 | 40 |
4 e | 2-MeTHF (+5% AcOH aq.0.5%) | 38 | 32 |
5 c | EtOAc (+5% PBS) | 65 | 56 |
6 c | CH2Cl2 (+5% PBS) | >98 | >98 |
7 c | HFIP (+5% PBS) | 86 | 74 |
Entry | Cpd | Structure | Conversion b (%) | Product b (%) |
---|---|---|---|---|
1 c | 1c | >98% | ||
2 | 1a | 65 | ||
3 | 1b | 90 | ||
4 | 1c | 80 | ||
5 | 1d | 50 |
Entry | Addition Time (h) | Reaction Time (h) | Conversion b (%) | Yield b (%) |
---|---|---|---|---|
1 | 0 | 24 | 15 | 10 c |
2 | 2 | 24 | 70 | 50 |
3 | 3 | 24 | 90 | 84 |
4 | 24 | 48 | 90 | 88 |
Entry | Cpd | Structure | Conversion b (%) | Product b (%) |
---|---|---|---|---|
1 | 1a | 66 | ||
2 | 1b | 89 | ||
3 | 1c | 83 | ||
4 | 1d | 53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Marchi, E.; Botta, L.; Bizzarri, B.M.; Saladino, R. A Green Blue LED-Driven Two-Liquid-Phase One-Pot Procedure for the Synthesis of Estrogen-Related Quinol Prodrugs. Molecules 2022, 27, 8961. https://doi.org/10.3390/molecules27248961
De Marchi E, Botta L, Bizzarri BM, Saladino R. A Green Blue LED-Driven Two-Liquid-Phase One-Pot Procedure for the Synthesis of Estrogen-Related Quinol Prodrugs. Molecules. 2022; 27(24):8961. https://doi.org/10.3390/molecules27248961
Chicago/Turabian StyleDe Marchi, Elisa, Lorenzo Botta, Bruno Mattia Bizzarri, and Raffaele Saladino. 2022. "A Green Blue LED-Driven Two-Liquid-Phase One-Pot Procedure for the Synthesis of Estrogen-Related Quinol Prodrugs" Molecules 27, no. 24: 8961. https://doi.org/10.3390/molecules27248961
APA StyleDe Marchi, E., Botta, L., Bizzarri, B. M., & Saladino, R. (2022). A Green Blue LED-Driven Two-Liquid-Phase One-Pot Procedure for the Synthesis of Estrogen-Related Quinol Prodrugs. Molecules, 27(24), 8961. https://doi.org/10.3390/molecules27248961