Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of PI Composite Films
2.2. Thermal Properties and Mechanical Properties
2.3. Dielectric Properties
3. Experimental
3.1. Materials
3.2. Preparation of FG/PI Composite Films
3.3. Characterizations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Hernaez, M. Applications of Graphene-Based Materials in Sensors. Sensors 2020, 20, 3196. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials 2019, 9, 422. [Google Scholar] [CrossRef]
- Xiong, L.; Hu, J.; Yang, Z.; Li, X.; Zhang, H.; Zhang, G. Dielectric Properties Investigation of Metal-Insulator-Metal (MIM) Capacitors. Molecules 2022, 27, 3951. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Yang, L.; Shi, S.; Wang, T.; Duan, G.; Liu, X.; Li, Y. Flexible Polydopamine Bioelectronics. Adv. Funct. Mater. 2021, 31, 2103391. [Google Scholar] [CrossRef]
- Ai, D.; Li, H.; Zhou, Y.; Ren, L.L.; Han, Z.B.; Yao, B.; Zhou, W.; Zhao, L.; Xu, J.M.; Wang, Q. Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage. Adv. Energy Mater. 2020, 10, 1903881. [Google Scholar] [CrossRef]
- Chisca, S.; Musteata, V.E.; Sava, I.; Bruma, M. Dielectric behavior of some aromatic polyimide films. Eur. Polym. J. 2011, 47, 1186–1197. [Google Scholar] [CrossRef]
- Arif, M.; Farooqi, Z.H.; Irfan, A.; Begum, R. Gold nanoparticles and polymer microgels: Last five years of their happy and successful marriage. J. Mol. Liq. 2021, 336, 116270. [Google Scholar] [CrossRef]
- Huang, C.; Wang, X.; Yang, P.; Shi, S.; Duan, G.; Liu, X.; Li, Y. Size Regulation of Polydopamine Nanoparticles by Boronic Acid and Lewis Base. Macromol. Rapid Commun. 2022. [Google Scholar] [CrossRef]
- Hu, X.; Li, Z.; Yang, Z.; Zhu, F.; Zhao, W.; Duan, G.; Li, Y. Fabrication of Functional Polycatechol Nanoparticles. ACS Macro Lett. 2022, 11, 251–256. [Google Scholar] [CrossRef]
- Xiao, S.; Zhao, Y.; Jin, S.; He, Z.; Duan, G.; Gu, H.; Xu, H.; Cao, X.; Ma, C.; Wu, J. Regenerable bacterial killing–releasing ultrathin smart hydrogel surfaces modified with zwitterionic polymer brushes. e-Polymers 2022, 22, 719–732. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Zhao, X.; Chen, L.; Peng, S.; Ma, C.; Duan, G.; Liu, Z.; Wang, H.; Yuan, Y. A poly(amidoxime)-modified MOF macroporous membrane for high-efficient uranium extraction from seawater. e-Polymers 2022, 22, 399–410. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Hu, J.; Feng, X.; Zhang, M.; Duan, G.; Zhang, R.; Li, Y. Self-Assembly of Poly (Janus particle) s into Unimolecular and Oligomeric Spherical Micelles. ACS Macro Lett. 2021, 10, 1563–1569. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, W.; Yang, P.; Hu, J.; Duan, G.; Liu, X.; Gu, Z.; Li, Y. Metal-phenolic network green flame retardants. Polymer 2021, 221, 123627. [Google Scholar] [CrossRef]
- Zheng, C.; Zhu, S.; Lu, Y.; Mei, C.; Xu, X.; Yue, Y.; Han, J. Synthesis and characterization of cellulose nanofibers/polyacrylic acid-polyacrylamide double network electroconductive hydrogel. J. For. Eng. 2020, 5, 93–100. [Google Scholar]
- Jing, H.; Yi, L. Construction of bionic structural color coating on wood surface based on polystyrene microspheres. J. For. Eng. 2021, 6, 35–42. [Google Scholar]
- Cherkashina, N.I.; Pavlenko, V.I.; Noskov, A.V.; Shkaplerov, A.N.; Kuritsyn, A.A.; Popova, E.V.; Zaitsev, S.V.; Kuprieva, O.V.; Kashibadze, N.V. Synthesis of PI/POSS nanocomposite films based on track nuclear membranes and assessment of their resistance to oxygen plasma flow. Polymer 2021, 212, 123192. [Google Scholar] [CrossRef]
- Dou, L.; Lin, Y.-H.; Nan, C.-W. An Overview of Linear Dielectric Polymers and Their Nanocomposites for Energy Storage. Molecules 2021, 26, 6148. [Google Scholar] [CrossRef]
- Jiang, X.W.; Bin, Y.Z.; Matsuo, M. Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization. Polymer 2005, 46, 7418–7424. [Google Scholar] [CrossRef]
- Qiu, G.; Ma, W.; Wu, L. Low dielectric constant polyimide mixtures fabricated by polyimide matrix and polyimide microsphere fillers. Polym. Int. 2020, 69, 485–491. [Google Scholar] [CrossRef]
- Shi, T.; Zheng, Z.H.; Liu, H.; Wu, D.Z.; Wang, X.D. Flexible and foldable composite films based on polyimide/phosphorene hybrid aerogel and phase change material for infrared stealth and thermal camouflage. Compos. Sci. Technol. 2022, 217, 109127. [Google Scholar] [CrossRef]
- Peng, S.; Sun, Y.; Ma, C.; Duan, G.; Liu, Z.; Ma, C. Recent advances in dynamic covalent bond-based shape memory polymers. e-Polymers 2022, 22, 285–300. [Google Scholar] [CrossRef]
- Madni, A.; Kousar, R.; Naeem, N.; Wahid, F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod. 2021, 6, 11–25. [Google Scholar] [CrossRef]
- Patel, A.; Shah, A.R. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. J. Bioresour. Bioprod. 2021, 6, 108–128. [Google Scholar] [CrossRef]
- Zhao, H.; Miao, Q.; Huang, L.; Zhou, X.; Chen, L. Preparation of long bamboo fiber and its reinforced polypropylene membrane composites. J. For. Eng. 2021, 6, 96–103. [Google Scholar]
- Zhang, Q.; Xue, T.; Tian, J.; Yang, Y.; Fan, W.; Liu, T. Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation. Compos. Sci. Technol. 2022, 226, 109541. [Google Scholar] [CrossRef]
- Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, B.-P.; Lu, Z.-H.; Wang, Z.-Y.; Fei, C.-L.; Yin, D.; Xiong, R.; Shi, J.; Chi, Q.-G.; Lei, Q.-Q. Polyimide/nanosized CaCu3Ti4O12 functional hybrid films with high dielectric permittivity. Appl. Phys. Lett. 2013, 102, 042904. [Google Scholar] [CrossRef]
- Xu, W.; Ding, Y.; Jiang, S.; Ye, W.; Liao, X.; Hou, H. High permittivity nanocomposites fabricated from electrospun polyimide/BaTiO3 hybrid nanofibers. Polym. Compos. 2016, 37, 794–801. [Google Scholar] [CrossRef]
- Gu, J.; Lv, Z.; Wu, Y.; Guo, Y.; Tian, L.; Qiu, H.; Li, W.; Zhang, Q. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos. Part A-Appl. Sci. Manuf. 2017, 94, 209–216. [Google Scholar] [CrossRef]
- Guo, Y.; Lyu, Z.; Yang, X.; Lu, Y.; Ruan, K.; Wu, Y.; Kong, J.; Gu, J. Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. Part B-Eng. 2019, 164, 732–739. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, Z.; He, H.; Zhou, H.; Liu, Y.; Chen, Y.; Liu, Z.; Gong, L.; Zhang, L.; Zhang, Q. High-kappa Polyimide-Based Dielectrics by Introducing a Functionalized Metal-Organic Framework. Inorg. Chem. 2022, 61, 3412–3419. [Google Scholar] [CrossRef]
- Zhou, W.; Long, L.; Li, Y. Mechanical and electromagnetic wave absorption properties of C-f-Si3N4 ceramics with PyC/SiC interphases. J. Mater. Sci. Technol. 2019, 35, 2809–2813. [Google Scholar] [CrossRef]
- Li, P.; Yu, J.; Jiang, S.; Fang, H.; Liu, K.; Hou, H. Dielectric, mechanical and thermal properties of all-organic PI/PSF composite films by in situ polymerization. e-Polymers 2020, 20, 226–232. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, L.; Jiang, S.; Ding, Y.; Xu, W.; Hou, H. Electrospun nanofiber reinforced all-organic PVDF/PI tough composites and their dielectric permittivity. Mater. Lett. 2015, 160, 515–517. [Google Scholar] [CrossRef]
- Shahid, M.; Farooqi, Z.H.; Begum, R.; Arif, M.; Wu, W.; Irfan, A. Hybrid Microgels for Catalytic and Photocatalytic Removal of Nitroarenes and Organic Dyes From Aqueous Medium: A Review. Crit. Rev. Anal. Chem. 2020, 50, 513–537. [Google Scholar] [CrossRef]
- Arif, M.; Tahir, F.; Fatima, U.; Begum, R.; Farooqi, Z.H.; Shahid, M.; Ahmad, T.; Faizan, M.; Naseem, K.; Ali, Z. Catalytic degradation of methyl orange using bimetallic nanoparticles loaded into poly(N-isopropylmethacrylamide) microgels. Mater. Today Commun. 2022, 33, 104077. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Yang, S.-Y.; Huang, Y.-L.; Tien, H.-W.; Chin, W.-K.; Ma, C.-C.M. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J. Mater. Chem. 2011, 21, 13569–13575. [Google Scholar] [CrossRef]
- Xu, W.; Ding, Y.; Jiang, S.; Zhu, J.; Ye, W.; Shen, Y.; Hou, H. Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning. Eur. Polym. J. 2014, 59, 129–135. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Zhang, H.; Bai, Y.; Niu, Y.; Wang, H. Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers. Appl. Phys. Lett. 2012, 101, 012903. [Google Scholar] [CrossRef]
- Fan, W.; Zuo, L.Z.; Zhang, Y.F.; Chen, Y.; Liu, T.X. Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure. Compos. Sci. Technol. 2018, 156, 186–191. [Google Scholar] [CrossRef]
- Li, Y.; Pei, X.; Shen, B.; Zhai, W.; Zhang, L.; Zheng, W. Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 2015, 5, 24342–24351. [Google Scholar] [CrossRef]
- Mo, T.C.; Wang, H.W.; Chen, S.Y.; Yeh, Y.C. Synthesis and characterization of polyimide/multi-walled carbon nanotube nanocomposites. Polym. Compos. 2008, 29, 451–457. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, X.; Zhu, Y.; Hui, D.; Qiu, Y. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Compos. Part B-Eng. 2014, 56, 408–412. [Google Scholar] [CrossRef]
- Okutan, M.; Mert, H.; Boran, F.; Ergun, A.; Deligoz, H. Synthesis of a novel fluorinated graphene oxide hybrid material based on poly(2,3,4,5,6-pentafluorostyrene) and its use as a filler for thermoplastic polyurethane film. Colloids Surf. a-Physicochem. Eng. Asp. 2022, 640, 128504. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 41–42. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Feng, Q.; Cao, Q.; Li, M.; Liu, F.; Tang, N.; Du, Y. Synthesis and photoluminescence of fluorinated graphene quantum dots. Appl. Phys. Lett. 2013, 102, 013111. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Halbig, C.E.; Rietsch, P.; Eigler, S. Towards the Synthesis of Graphene Azide from Graphene Oxide. Molecules 2015, 20, 21050–21057. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, M. Graphene Nanocomposites. Molecules 2019, 24, 2440. [Google Scholar] [CrossRef]
- Feng, W.; Long, P.; Feng, Y.; Li, Y. Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications. Adv. Sci. 2016, 3, 1500413. [Google Scholar] [CrossRef]
- Inagaki, M.; Kang, F. Graphene derivatives: Graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2014, 2, 13193–13206. [Google Scholar] [CrossRef]
- Singh, S.K.; Srinivasan, S.G.; Neek-Amal, M.; Costamagna, S.; van Duin, A.C.T.; Peeters, F.M. Thermal properties of fluorinated graphene. Phys. Rev. B 2013, 87, 104114. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Li, Z.; Gong, P.; Liu, X.; Zhang, L.; Ren, J.; Wang, H.; Yang, S. Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 2012, 50, 5403–5410. [Google Scholar] [CrossRef]
- You, X.; Feng, Q.; Yang, J.; Huang, K.; Hu, J.; Dong, S. Preparation of high concentration graphene dispersion with low boiling point solvents. J. Nanoparticle Res. 2019, 21, 19. [Google Scholar] [CrossRef]
- Robinson, J.T.; Burgess, J.S.; Junkermeier, C.E.; Badescu, S.C.; Reinecke, T.L.; Perkins, F.K.; Zalalutdniov, M.K.; Baldwin, J.W.; Culbertson, J.C.; Sheehan, P.E.; et al. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. [Google Scholar] [CrossRef]
- Sattar, T. Current Review on Synthesis, Composites and Multifunctional Properties of Graphene. Top. Curr. Chem. 2019, 377, 10. [Google Scholar] [CrossRef]
- Long, L.; Xu, J.; Luo, H.; Xiao, P.; Zhou, W.; Li, Y. Dielectric response and electromagnetic wave absorption of novel macroporous short carbon fibers/mullite composites. J. Am. Ceram. Soc. 2020, 103, 6869–6880. [Google Scholar] [CrossRef]
- Fang, D.; Yao, K.; Ding, Y.; Li, P.; Hou, H. High dielectric polyimide composite film filled with a heat-resistant organic salt. Compos. Commun. 2019, 14, 29–33. [Google Scholar] [CrossRef]
- Kou, S.; Yu, S.; Sun, R.; Wong, C.P. High-dielectric-constant graphite oxide-polyimide composites as embedded dielectrics. IEEE 2012, 7, 86–89. [Google Scholar]
Sample | T-5% (°C) | Residue-800 °C | Tg (°C) | Stress (MPa) | Strain | Modulus (GPa) |
---|---|---|---|---|---|---|
PI | 562.3 | 61.27% | 284.1 | 159.7 | 8.2% | 3.6 |
PI/rFG-0.5% | 560.3 | 60.54% | 284.5 | 168.4 | 8.1% | 3.8 |
PI/rFG-1% | 557.1 | 59.85% | 285.3 | 183.5 | 7.4% | 4.4 |
PI/rFG-1.5% | 555.5 | 59.06% | 287.4 | 178.5 | 6.9% | 4.8 |
PI/rFG-2% | 550.7 | 59.36% | 288.7 | 175.9 | 5.4% | 5.5 |
PI/rFG-3% | 545.5 | 59.13% | 289.3 | 170.2 | 4.6% | 5.8 |
PI/rFG-4% | 541.3 | 58.75% | 291.1 | 155.3 | 3.6% | 6.1 |
PI/rFG-6% | 534.5 | 58.27% | 293.2 | 145.8 | 3.1% | 6.5 |
PI/rFG-8% | 530.1 | 57.88% | 294.5 | 130.1 | 2.3% | 7.3 |
Filler | Filler Content | Dielectric Permittivity | Dielectric Loss | Breakdown Strength (kV/mm) | Energy Storage Density (J/cm3) | Ref. |
---|---|---|---|---|---|---|
PSF | 40 wt. % | 6.40 | 0.015 | 152 | 0.64 | [33] |
PVDF | 50 wt. % | 8.85 | 0.018 | - | - | [34] |
MOF | 20% wt. % | 8.80 | 0.034 | 208 | 0.39 | [31] |
Ag@SiO2 | 50 vol. % | 11.70 | 0.015 | - | - | [39] |
BaTiO3 | 50 vol. % | 29.66 | 0.009 | 59.5 | 0.465 | [28] |
LiTFSI | 30 vol. % | 38.18 | 1.600 | 42 | 0.30 | [59] |
GO | 1 wt. % | 68.00 | 0.600 | - | - | [60] |
MWCNTs | 20 vol. % | 217 | 1.580 | 45 | 1.957 | [38] |
CCTO | 16.4 vol. % | 171.00 | 0.450 | - | - | [27] |
rFG | 0 vol. % | 3.47 | 0.009 | 210 | 0.664 | This work |
0.5% | 3.77 | 0.019 | 200 | 0.663 | ||
1% | 4.06 | 0.028 | 185 | 0.616 | ||
1.5% | 4.19 | 0.035 | 160 | 0.476 | ||
2% | 5.11 | 0.037 | 140 | 0.543 | ||
3% | 96.50 | 0.040 | 115 | 5.651 | ||
4% | 136.54 | 0.052 | 90 | 4.897 | ||
6% | 171.02 | 0.410 | 65 | 3.198 | ||
8% | 235.74 | 0.534 | 40 | 1.648 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hu, T.; Hu, R.; Jiang, S.; Zhang, C.; Hou, H. Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene. Molecules 2022, 27, 8896. https://doi.org/10.3390/molecules27248896
Zhang Y, Hu T, Hu R, Jiang S, Zhang C, Hou H. Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene. Molecules. 2022; 27(24):8896. https://doi.org/10.3390/molecules27248896
Chicago/Turabian StyleZhang, Yuyin, Tian Hu, Rubei Hu, Shaohua Jiang, Chunmei Zhang, and Haoqing Hou. 2022. "Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene" Molecules 27, no. 24: 8896. https://doi.org/10.3390/molecules27248896
APA StyleZhang, Y., Hu, T., Hu, R., Jiang, S., Zhang, C., & Hou, H. (2022). Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene. Molecules, 27(24), 8896. https://doi.org/10.3390/molecules27248896