Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = X. sorbifolium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1370 KB  
Article
Response of Typical Shrubs Growth and Soil Nutrients to Graphene Addition in Impoverished Land of the Ulan Buh Desert
by Ren Mu, Jun Qiao, Chuijiu Kong, Xuting Hao, Guangfu Xu, Jingfu Han and Xinle Li
Plants 2024, 13(22), 3214; https://doi.org/10.3390/plants13223214 - 15 Nov 2024
Viewed by 858
Abstract
Graphene can promote plant growth and improve soil conditions, but its effectiveness in enhancing infertile soils in arid regions remains unclear. This study selected three typical shrubs from the Ulan Buh Desert Nitraria tangutorum, Xanthoceras sorbifolium, and Amygdalus mongolica as research [...] Read more.
Graphene can promote plant growth and improve soil conditions, but its effectiveness in enhancing infertile soils in arid regions remains unclear. This study selected three typical shrubs from the Ulan Buh Desert Nitraria tangutorum, Xanthoceras sorbifolium, and Amygdalus mongolica as research subjects. Five graphene addition levels were set: 0 mg/L (C0), 25 mg/L (C1), 50 mg/L (C2), 100 mg/L (C3), and 200 mg/L (C4).A pot experiment was conducted in June 2023 to investigate the effects of graphene addition on shrub growth and soil nutrients. The results showed that the optimal graphene addition levels for A. mongolica, X. sorbifolium, and N. tangutorum were C2, C2, and C3, respectively. Compared with the control, the total biomass of the different shrubs increased by 185.31%, 50.86%, and 161.10%, respectively. However, when the graphene addition exceeded the optimal level, shrub biomass showed a decreasing trend with increasing graphene concentration. Total shrub biomass was positively correlated with soil available nitrogen and potassium, while redundancy analysis indicated that soil organic matter was the primary factor influencing shrub growth. This suggests that graphene promotes shrub growth by affecting soil organic matter and available nutrients. Therefore, graphene addition can enhance soil fertility in barren lands in arid regions and significantly promote shrub growth. However, due to soil leaching effects, this growth-promoting effect may decrease over time. Full article
Show Figures

Figure 1

15 pages, 1895 KB  
Article
Screening and Mechanism of Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides in X. sorbifolia Seed Meal: A Computer-Assisted Experimental Study Method
by Yihan Mu, Dongwei Liu, Huaping Xie, Xinyu Zhang, Xue Han and Zhaolin Lv
Molecules 2022, 27(24), 8792; https://doi.org/10.3390/molecules27248792 - 12 Dec 2022
Cited by 2 | Viewed by 2267
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitors are used extensively to control hypertension. In this study, a computer-assisted experimental approach was used to screen ACE-inhibiting peptides from X. sorbifolum seed meal (XSM). The process conditions for XSM hydrolysis were optimized through the orthogonal experimental method combined [...] Read more.
Angiotensin-I-converting enzyme (ACE) inhibitors are used extensively to control hypertension. In this study, a computer-assisted experimental approach was used to screen ACE-inhibiting peptides from X. sorbifolum seed meal (XSM). The process conditions for XSM hydrolysis were optimized through the orthogonal experimental method combined with a database. The optimal conditions for ACE inhibition included an alkaline protease dose of 5%, 45 °C, 15 min and pH 9.5. The hydrolysate was analyzed by LC-MS/MS, and 10 optimal peptides were screened. Molecular docking results revealed four peptides (GGLPGFDPA, IMAVLAIVL, ETYFIVR, and INPILLPK) with ACE inhibitory potential. At 0.1 mg/mL, the synthetic peptides GGLPGFDPA, ETYFIVR, and INPILLPK provided ACE inhibition rates of 24.89%, 67.02%, and 4.19%, respectively. GGLPGFDPA and ETYFIVR maintained high inhibitory activities during in vitro digestions. Therefore, the XSM protein may be a suitable material for preparing ACE inhibitory peptides, and computer-assisted experimental screening is an effective, accurate and promising method for discovering new active peptides. Full article
Show Figures

Figure 1

14 pages, 4639 KB  
Article
Identification and Characterization of AP2/ERF Transcription Factors in Yellow Horn
by Fang Hu, Yunxiang Zhang and Jinping Guo
Int. J. Mol. Sci. 2022, 23(23), 14991; https://doi.org/10.3390/ijms232314991 - 30 Nov 2022
Cited by 11 | Viewed by 2564
Abstract
The AP2/ERF gene family involves numerous plant processes, including growth, development, metabolism, and various plant stress responses. However, several studies have been conducted on the AP2/ERF gene family in yellow horn, a new type of oil woody crop and an essential oil crop [...] Read more.
The AP2/ERF gene family involves numerous plant processes, including growth, development, metabolism, and various plant stress responses. However, several studies have been conducted on the AP2/ERF gene family in yellow horn, a new type of oil woody crop and an essential oil crop in China. According to sequence alignment and phylogenetic analyses, one hundred and forty-five AP2/ERF genes were detected from the yellow horn genome. They were divided into four relatively conserved subfamilies, including 21 AP2 genes, 119 ERBP genes, 4 RAV genes, and 1 Soloist gene. Gene analysis of XsAP2/ERF TFs showed 87 XsAP2/ERF TFs lacked introns. There were 75 pairs of collinearity relationships between X. sorbifolium and Arabidopsis, indicating a close similarity. In addition, the expression patterns of XsAP2/ERF TFs under cold treatments confirmed that the XsAP2/ERF TFs play essential roles in abiotic stress response. The expression of eight XsAP2/ERF transcription factors was verified in different tissues and under various stress treatments using RT-qPCR. This study establishes a starting point for further research to explore the potential mechanisms of identifying candidate AP2/ERF TFs that could respond to the abiotic stress of yellow horn. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 3107 KB  
Article
Population Genetics and Development of a Core Collection from Elite Germplasms of Xanthoceras sorbifolium Based on Genome-Wide SNPs
by Yali Wang and Yi Li
Forests 2022, 13(2), 338; https://doi.org/10.3390/f13020338 - 18 Feb 2022
Cited by 7 | Viewed by 2670
Abstract
Xanthoceras sorbifolium is one of the most important species of woody oil. In this study, whole genome re-sequencing of 119 X. sorbifolium germplasms was conducted and, after filtering, 105,685,557 high-quality SNPs were identified, which were used to perform population genetics and core collection [...] Read more.
Xanthoceras sorbifolium is one of the most important species of woody oil. In this study, whole genome re-sequencing of 119 X. sorbifolium germplasms was conducted and, after filtering, 105,685,557 high-quality SNPs were identified, which were used to perform population genetics and core collection development analyses. The results from the phylogenetic, population structure, and principal component analyses showed a high level of agreement, with 119 germplasms being classified into three main groups. The germplasms were not completely classified based on their geographical origins and flower colors; furthermore, the genetic backgrounds of these germplasms were complex and diverse. The average polymorphsim information content (PIC) values for the three inferred groups clustered by structure analysis and the six classified color groups were 0.2445 and 0.2628, respectively, indicating a low to medium informative degree of genetic diversity. Moreover, a core collection containing 29.4% (35) out of the 119 X. sorbifolium germplasms was established. Our results revealed the genetic diversity and structure of X. sorbifolium germplasms, and the development of a core collection will be useful for the efficient improvement of breeding programs and genome-wide association studies. Full article
(This article belongs to the Special Issue Advances in Woody Oil Species: Past, Present and Future)
Show Figures

Figure 1

14 pages, 32504 KB  
Article
Potential Suitable Habitat of Two Economically Important Forest Trees (Acer truncatum and Xanthoceras sorbifolium) in East Asia under Current and Future Climate Scenarios
by Yaoxing Wu, Yong Yang, Cheng Liu, Yixuan Hou, Suzhi Yang, Liangsheng Wang and Xiuqing Zhang
Forests 2021, 12(9), 1263; https://doi.org/10.3390/f12091263 - 16 Sep 2021
Cited by 14 | Viewed by 3391
Abstract
Acer truncatum Bunge and Xanthoceras sorbifolium Bunge are small deciduous trees distributed in East Asia and have high ecological and nutrient value due to their strong environmental adaptability and seed oil abundant in nervonic acid and unsaturated fatty acids. However, their natural distribution [...] Read more.
Acer truncatum Bunge and Xanthoceras sorbifolium Bunge are small deciduous trees distributed in East Asia and have high ecological and nutrient value due to their strong environmental adaptability and seed oil abundant in nervonic acid and unsaturated fatty acids. However, their natural distribution remains unclear, which will also be affected by the changing climatic conditions. The main purpose of this study was to map and predict the current and future potential suitable habitats of these two species using MaxEnt based on the presence location of species and environmental variables. The results showed that A. truncatum was more suitable for warm and humid climates and was more durable to climate change compared to X. sorbifolium. Under the current environmental conditions, the suitable habitat of A. truncatum was mainly concentrated in Inner Mongolia Plateau, Loess Plateau, Sichuan Basin, Northeast Plain, North China Plain, Korean Peninsula, as well as Japan, with an area of 115.39 × 104 km2. X. sorbifolium was mainly distributed in Inner Mongolia Plateau and Loess Plateau with an area of 146.15 × 104 km2. Under future climate scenarios, the model predicted that higher concentrations of greenhouse gas emissions could result in greater expansion of the potential distribution of both species. Meanwhile, the study also revealed that the two species migrated to the north by east to varying degrees with the change in suitable habitats. This work could provide scientific basis for resource protection and utilization of the two economic forest trees. Full article
(This article belongs to the Special Issue Forest Tree Adaptation under Climate Change)
Show Figures

Figure 1

17 pages, 8147 KB  
Article
Discovery and Profiling of microRNAs at the Critical Period of Sex Differentiation in Xanthoceras sorbifolium Bunge
by Xu Wang, Yaqi Zheng, Shuchai Su and Yan Ao
Forests 2019, 10(12), 1141; https://doi.org/10.3390/f10121141 - 13 Dec 2019
Cited by 17 | Viewed by 3569
Abstract
Research Highlights: The critical period of sex differentiation in Xanthoceras sorbifolium was investigated. Multiple microRNAs (miRNAs) were identified to influence female and male flower development, with some complementary functions. Background and Objectives: Xanthoceras sorbifolium Bunge is widely cultivated owing to its multipurpose usefulness. [...] Read more.
Research Highlights: The critical period of sex differentiation in Xanthoceras sorbifolium was investigated. Multiple microRNAs (miRNAs) were identified to influence female and male flower development, with some complementary functions. Background and Objectives: Xanthoceras sorbifolium Bunge is widely cultivated owing to its multipurpose usefulness. However, as a monoecious plant, the low female–male flowers ratio and consequent low seed yield are the main bottlenecks for industrial-scale development of seed utilization. MiRNAs play crucial regulatory roles in flower development and sex differentiation; therefore, we evaluated the roles of miRNAs in the critical period of sex differentiation in X. sorbifolium. Materials and Methods: Four small RNA libraries for female and male flower buds of the critical period of sex differentiation were constructed from paraffin-embedded sections. The miRNAs were characterized by high-throughput sequencing, and differentially expressed miRNAs were validated by reverse transcription-quantitative polymerase chain reaction. Results: There were obvious differences in male and female pistil and stamen flower buds, with elongated inflorescence and clear separation of flower buds marking the critical period of sex differentiation. A total of 1619 conserved miRNAs (belonging to 34 families) and 219 novel miRNAs were identified. Among these, 162 conserved and 14 novel miRNAs exhibited significant differential expression in the four libraries, and 1677 putative target genes of 112 differentially expressed miRNAs were predicted. These target genes were involved in diverse developmental and metabolic processes, including 17 miRNAs directly associated with flower and gametophyte development, mainly associated with carbohydrate metabolism and glycan biosynthesis and metabolism pathways. Some miRNA functions were confirmed, and others were found to be complemented. Conclusions: Multiple miRNAs closely related to sex differentiation in X. sorbifolium were identified. The theoretical framework presented herein might guide sex ratio regulation to enhance seed yield. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

Back to TopTop