Meroterpenoids and Steroids from the Marine-Derived Fungus Trametes sp. ZYX-Z-16
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation of Compounds
2.2. Bioassays of Compounds
2.2.1. α-Glucosidase and Acetylcholinesterase Inhibitory Activity
2.2.2. Antibacterial Activity
2.2.3. Antifungal Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction, and Isolation
3.4. Bioassay of Enzyme Inhibition, Antibacterial, and Antifungal Activity
3.5. Computation Section
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wang, H.N.; Sun, S.S.; Liu, M.Z.; Yan, M.C.; Zhang, Z. Natural bioactive compounds from marine fungi (2017–2020). J. Asian. Nat. Prod. Res. 2021, 24, 203–230. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2022, 39, 1122–1171. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2017, 34, 235–294. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Lu, H.; Lan, J.; Ahammad, K.H.; Cao, S.G. A review: Halogenated compounds from marine fungi. Molecules 2021, 26, 458. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Yang, L.; Kong, F.D.; Zhao, J.H.; Yao, L.; Yuchi, Z.G.; Ma, Q.Y.; Xie, Q.Y.; Zhou, L.M.; Guo, M.F.; et al. Three new quinazoline-containing indole alkaloids from the marine-derived fungus Aspergillus sp. HNMF114. Front. Microbiol. 2021, 12, 680879. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.D.; Zhang, S.L.; Zhou, S.Q.; Ma, Q.Y.; Xie, Q.Y.; Chen, J.P.; Li, J.H.; Zhou, L.M.; Yuan, J.Z.; Zhong, H.; et al. Quinazoline-containing indole alkaloids from the marine-derived fungus Aspergillus sp. HNMF114. J. Nat. Prod. 2019, 82, 3456–3463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhou, L.M.; Kong, F.D.; Ma, Q.Y.; Xie, Q.Y.; Li, J.H.; Dai, H.F.; Guo, L.; Zhao, Y.X. Altertoxins with quorum sensing inhibitory activities from the marine-derived fungus Cladosporium sp. KFD33. Mar. Drugs 2020, 18, 67. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.T.; Yang, L.; Kong, F.D.; Ma, Q.Y.; Xie, Q.Y.; Dai, H.F.; Yu, Z.F.; Zhao, Y.X. Cytotoxic indole-diterpenoids from the marine-derived fungus Penicillium sp. KFD28. Mar. Drugs 2021, 19, 613. [Google Scholar] [CrossRef]
- Zhou, L.M.; Kong, F.D.; Fan, P.; Ma, Q.Y.; Xie, Q.Y.; Li, J.H.; Zheng, H.Z.; Zheng, Z.H.; Yuan, J.Z.; Dai, H.F.; et al. Indole-diterpenoids with protein tyrosine phosphatase inhibitory activities from the marine-derived fungus Penicillium sp. KFD28. J. Nat. Prod. 2019, 82, 1030–1036. [Google Scholar] [CrossRef]
- Kong, F.D.; Fan, P.; Zhou, L.M.; Ma, Q.Y.; Xie, Q.Y.; Zheng, H.Z.; Zheng, Z.H.; Zhang, R.S.; Yuan, J.Z.; Dai, H.F.; et al. Penerpenes A–D, four indole terpenoids with potent protein tyrosine phosphatase inhibitory activity from the marine-derived fungus Penicillium sp. KFD28. Org. Lett. 2019, 21, 4864–4867. [Google Scholar] [CrossRef]
- Zhang, F.; Kong, F.D.; Ma, Q.Y.; Xie, Q.Y.; Zhou, L.M.; Zhao, Y.X.; Guo, L. Polyketides with quorum sensing inhibitory activity from the marine-derived fungus Aspergillus sp. ZF-79. J. Asian. Nat. Prod. Res. 2019, 22, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, T.M. Marine macrolides with antibacterial and/or antifungal activity. Mar. Drugs 2019, 17, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.H.; Chen, J.Q.; Zhang, X.L.; Chen, Z.L.; Li, T.; She, Z.G.; Ding, W.J.; Li, C.Y. Four new isocoumarins and a new natural tryptamine with antifungal activities from a mangrove endophytic fungus Botryosphaeria ramosa L29. Mar. Drugs 2019, 17, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, C.L.; Kong, F.D.; Ma, Q.Y.; Xie, Q.Y.; Yuan, J.Z.; Zhou, L.M.; Dai, H.F.; Yu, Z.F.; Zhao, Y.X. Chemical constituents of the marine-derived fungus Aspergillus sp. SCS-KFD66. Mar. Drugs 2018, 16, 468. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.H.; Li, X.M.; Zhang, F.Z.; Wang, Y.N.; Wang, B.G. Talascortenes A–G, highly oxygenated diterpenoid acids from the sea-anemone-derived endozoic fungus Talaromyces scorteus AS-242. J. Nat. Prod. 2020, 83, 2528–2536. [Google Scholar] [CrossRef]
- Durães, F.; Szemerédi, N.; Kumla, D.; Pinto, M.; Kijjoa, A.; Spengler, G.; Sousa, E. Metabolites from marine-derived fungi as potential antimicrobial adjuvants. Mar. Drugs 2021, 19, 475. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.; Yang, K.; Li, S. Characterization of a new chitosanase from a marine Bacillus sp. and the anti-oxidant activity of its hydrolysate. Mar. Drugs 2020, 18, 126. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.W.; Gong, B.Q.; Yuan, J.; Li, H.J.; Mahmud, T.; Huang, Y.; Li, J.F.; Yang, D.P.; Lan, W.J. L-phenylalanine alters the privileged secondary metabolite production in the marine-derived fungus Trichoderma erinaceum F1-1. J. Nat. Prod. 2019, 83, 79–87. [Google Scholar] [CrossRef]
- Fernando, I.S.; Nah, J.W.; Jeon, Y.J. Potential anti-inflammatory natural products from marine algae. Environ. Toxicol. Phar. 2016, 48, 22–30. [Google Scholar] [CrossRef]
- Li, C.J.; Chen, P.N.; Li, H.J.; Mahmud, T.; Wu, D.L.; Xu, J.; Lan, W.J. Potential antidiabetic fumiquinazoline alkaloids from the marine-derived fungus Scedosporium apiospermum F41-1. J. Nat. Prod. 2020, 83, 1082–1091. [Google Scholar] [CrossRef]
- Canché Chay, C.I.; Gómez Cansino, R.; Espitia Pinzón, C.I.; Torres-Ochoa, R.O.; Martínez, R. Synthesis and anti-tuberculosis activity of the marine natural product caulerpin and its analogues. Mar. Drugs 2014, 12, 1757–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bălașa, A.F.; Chircov, C.; Grumezescu, A.M. Marine biocompounds for neuroprotection—A review. Mar. Drugs 2020, 18, 290. [Google Scholar] [CrossRef] [PubMed]
- Shabana, S.; Lakshmi, K.R.; Satya, A.K. An updated review of secondary metabolites from marine fungi. Mini-Rev. Med. Chem. 2021, 21, 602–642. [Google Scholar] [CrossRef] [PubMed]
- Nyanhongo, G.S.; Gűbitz, G.; Sukyai, P.; Leitner, C.; Haltrich, D.; Ludwig, R. Oxidoreductases from Trametes spp. in biotechnology: A wealth of catalytic activity. Food. Technol. Biotech. 2007, 45, 250–268. [Google Scholar]
- Knežević, A.; Milovanović, I.; Stajić, M.; Vukojević, J. Potential of Trametes species to degrade lignin. Int. Biodeter. Biodegr. 2013, 85, 52–56. [Google Scholar] [CrossRef]
- Muñoz-Castiblanco, T.; Mejía-Giraldo, J.C.; Puertas-Mejía, M.A. Trametes genus, a source of chemical compounds with anticancer activity in human osteosarcoma: A systematic review. J. Appl. Pharm. Sci. 2020, 10, 121–129. [Google Scholar]
- Knežević, A.; Stajić, M.; Sofrenić, I.; Stanojković, T.; Milovanović, I.; Tešević, V.; Vukojević, J. Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLoS ONE 2018, 13, e0203064. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, K.; Sato, F.; Itabashi, T.; Wachi, H.; Takeda, H.; Wakana, D.; Yaguchi, D.; Kawai, K.; Hosoe, T. Asnovolins A–G, spiromeroterpenoids isolated from the fungus Aspergillus novofumigatus, and suppression of fibronectin expression by Asnovolin E. J. Nat. Prod. 2016, 79, 2167–2174. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.M.; Liu, Y.; Zhang, P.; Wang, J.X.; Wang, B.G. Chermesins A–D: Meroterpenoids with a drimane-type spirosesquiterpene skeleton from the marine algal-derived endophytic fungus Penicillium chermesinum EN-480. J. Nat. Prod. 2016, 79, 806–811. [Google Scholar] [CrossRef]
- Hayashi, H.; Oka, Y.; Kai, K.; Akiyama, K. New chrodrimanin congeners, chrodrimanins D–H, from YO-2 of Talaromyces sp. Biosci. Biotech. Bioch. 2012, 76, 1765–1768. [Google Scholar] [CrossRef] [Green Version]
- Dethoup, T.; Manoch, L.; Kijjoa, A.; Pinto, M.; Gales, L.; Damas, A.M.; Silva, A.M.S.; Eaton, G.; Herz, W. Merodrimanes and other constituents from Talaromyces thailandiasis. J. Nat. Prod. 2007, 70, 1200–1202. [Google Scholar] [CrossRef] [PubMed]
- Chobot, V.; Opletal, L.; Jáhodář, L.; Patel, A.V.; Dacke, C.G.; Blunden, G. Ergosta-4,6,8,22-tetraen-3-one from the edible fungus, Pleurotus ostreatus (oyster fungus). Phytochemistry 1997, 45, 1669–1671. [Google Scholar] [CrossRef]
- Zhao, Z.Z.; Han, K.Y.; Li, Z.H.; Feng, T.; Chen, H.P.; Liu, J.K. Cytotoxic ergosteroids from the fungus Stereum hirsutum. Phytochem. Lett. 2019, 30, 143–149. [Google Scholar] [CrossRef]
- Amagata, T.; Tanaka, M.; Yamada, T.; Doi, M.; Minoura, K.; Ohishi, H.; Yamori, T.; Numata, A. Variation in cytostatic constituents of a sponge-derived Gymnascella dankaliensis by manipulating the carbon source. J. Nat. Prod. 2007, 70, 1731–1740. [Google Scholar] [CrossRef]
- Togashi, H.; Mizushina, Y.; Takemura, M.; Sugawara, F.; Koshino, H.; Esumi, Y.; Uzawa, J.; Kumagai, H.; Matsukage, A.; Yoshida, S.; et al. 4-hydroxy-17-methylincisterol, an inhibitor of DNA polymerase-α activity and the growth of human cancer cells in vitro. Biochem. Pharmacol. 1998, 56, 583–590. [Google Scholar] [CrossRef]
- Zheng, C.J.; Shao, C.L.; Wang, K.L.; Zhao, D.L.; Wang, Y.N.; Wang, C.Y. Secondary metabolites and their bioactivities of a soft coral-derived fungus Aspergillus versicolor (ZJ-2008015). Chin. J. Mar. Drugs 2012, 31, 7–13. [Google Scholar]
- Huang, X.C.; Guo, Y.W.; Song, G.Q. Fortisterol, a novel steroid with an unusual seven-membered lactone ring B from the Chinese marine sponge Biemna fortis Topsent. J. Asian. Nat. Prod. Res. 2006, 8, 485–489. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Liu, L.Y.; Dong, Z.J.; Li, Z.H.; Liu, J.K. Six novel steroids from culture of basidiomycete Polyporus ellisii. Nat. Product. Bioprosp. 2012, 2, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.F.; Lu, J.; Xiang, L.; Matsuura, A.; Zhang, Y.; Huang, Q.M.; Qi, J.H. Ganodermasides C and D, two new anti-aging ergosterols from spores of the medicinal mushroom Ganoderma lucidum. Bioorgan. Med. Chem. 2011, 75, 800–803. [Google Scholar]
- Weng, Y.; Xiang, L.; Matsuura, A.; Zhang, Y.; Huang, Q.; Qi, J. Ganodermasides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorgan. Med. Chem. 2010, 18, 999–1002. [Google Scholar] [CrossRef]
- Geris, R.; Simpson, T.J. Meroterpenoids produced by fungi. Nat. Prod. Rep. 2009, 26, 1063–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.B.; Li, L.Y.; Wang, W.; Che, Q.; Li, D.H.; Gu, Q.Q.; Zhu, T.J. Chrodrimanins I and J from the antarctic moss-derived fungus Penicillium funiculosum GWT2-24. J. Nat. Prod. 2015, 78, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Rank, C.; Phipps, R.K.; Harris, P.; Fristrup, P.; Larsen, T.O.; Gotfredsen, C.H. Novofumigatonin, a new orthoester meroterpenoid from Aspergillus novofumigatus. Org. Lett. 2008, 10, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Oka, Y.; Kai, K.; Akiyama, K. A new meroterpenoid, chrodrimanin C, from YO-2 of Talaromyces sp. Biosci. Biotech. Bioch. 2012, 76, 745–748. [Google Scholar] [CrossRef]
- Yamazaki, H.; Ugaki, N.; Matsuda, D.; Tomoda, H. Absolute stereochemistry of pentacecilides, new inhibitors of lipid droplet formation in mouse macrophages, produced by Penicillium cecidicola FKI-3765-1. J. Antibio. 2010, 63, 315–318. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, H.; Nakayama, W.; Takahashi, O.; Kirikoshi, R.; Izumikawa, Y.; Iwasaki, K.; Toraiwa, K.; Rotinsulu, H.; Wewengkang, D.; Sumilat, D.; et al. Verruculides A and B, two new protein tyrosine phosphatase 1B inhibitors from an Indonesian ascidian-derived Penicillium verruculosum. Bioorg. Med. Chem. Lett. 2015, 25, 3087–3090. [Google Scholar] [CrossRef]
- Kong, F.D.; Ma, Q.Y.; Huang, S.Z.; Wang, P.; Wang, J.F.; Zhou, L.M.; Yuan, J.Z.; Dai, H.F.; Zhao, Y.X. Chrodrimanins K–N and related meroterpenoids from the fungus Penicillium sp. SCS-KFD09 isolated from a marine worm, Sipunculus nudus. J. Nat. Prod. 2017, 80, 1039–1047. [Google Scholar] [CrossRef]
- Ye, R.G.; Fan, Y.H.; Ma, C.M. Identification and enrichment of α-glucosidase-inhibiting dihydrostilbene and flavonoids from Glycyrrhiza uralensis leaves. J. Agric. Food Chem. 2017, 6565, 510–515. [Google Scholar] [CrossRef]
- Tong, F.; Hou, S.C.; Xu, H.N.; Liu, Z.X.; Gao, J.F.; Li, T.; Zhou, X.G.; Hu, C. 3-Aryl-6-(4-fluorobenzyl)-7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives as acetylcholinesterase inhibitory: Synthesis, characterization and biological activity. Chin. J. Med. Chem. 2022, 32, 661–668. [Google Scholar]
- Guo, J.J.; Dai, B.L.; Chen, N.P.; Jin, L.X.; Jiang, F.S.; Ding, Z.S.; Qian, C.D. The anti-staphylococcus aureus activity of the phenanthrene fraction from fibrous roots of Bletilla striata. Bmc. Complem. Altern. M. 2016, 16, 491. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.H.; Huang, R.; Miao, C.P.; Chen, Y.W. Two new steroids from an endophytic fungus Phomopsis sp. Chem. Biodivers. 2013, 10, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Willoughby, P.H.; Jansma, M.J.; Hoye, T.R. A guide to small-molecule structure assignment through computation of (1H and 13C) NMR chemical shifts. Nat. Protoc. 2014, 9, 643–660. [Google Scholar] [CrossRef]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef]
- Bruhn, T.; Schaumloffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef] [PubMed]
No. | 1 | 2 | ||
---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 32.6, CH2 | α 1.77 m | 34.4, CH2 | α 2.25 m |
β 1.87 | β 1.48 overlap | |||
2 | 32.4, CH2 | β 2.94 dd (16.5, 11.7) | 29.1, CH2 | 2.35 t (8.2) |
α 2.71 dd (16.5, 7.8) | ||||
3 | 177.9, C | 174.2, C | ||
4 | 87.2, C | 75.0, C | ||
5 | 49.3, CH | 1.80 m | 48.1, CH | 1.57 overlap |
6 | 32.6, CH2 | 1.77 m | 23.0, CH2 | α 2.01 m |
β 1.74 m | ||||
7 | 69.6, CH | 3.95 m | 28.8, CH2 | α 1.48 overlap |
β 1.90 overlap | ||||
8 | 50.1, CH | 2.07 m | 39.2, CH | 1.90 overlap |
9 | 99.5, C | 99.8, C | ||
10 | 45.0, C | 45.0, C | ||
11 | 45.9, CH2 | α 2.30 d (13.9) | 37.1, CH2 | α 2.18 d (13.4) |
β 1.94 d (13.9) | β 2.07 d (13.4) | |||
12 | 11.6, CH3 | 1.14 d (7.3) | 16.3, CH3 | 0.61 d (5.8) |
13 | 17.7, CH3 | 1.40 s | 22.8, CH3 | 1.36 s |
14 | 34.1, CH3 | 1.50 s | 32.4, CH3 | 1.37 s |
15 | 24.5, CH3 | 1.52 s | 34.8, CH3 | 1.43 s |
16 | 52.0, CH3 | 3.69 s | ||
1′ | 46.4, C | 48.1, C | ||
2′ | 183.4, C | 179.6, C | ||
3′ | 110.2, C | 107.9, C | ||
4′ | 195.8, C | 184.2, C | ||
5′ | 59.4, CH | 3.34 m | 132.4, C | |
6′ | 44.1, CH | 2.40 dq (13.4, 6.7) | 155.2, C | |
7′ | 22.0, CH3 | 1.25 s | 35.0, CH3 | 1.59 s |
8′ | 8.2, CH3 | 1.72 s | 8.3, CH3 | 1.77 s |
9′ | 173.3, C | 167.6, C | ||
10′ | 14.6, CH3 | 1.03, d, (6.7) | 16.9, CH3 | 2.06 s |
11′ | 52.7, CH3 | 3.74 s | 52.4, CH3 | 3.84 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.; Yang, L.; Ma, Q.; Xie, Q.; Dai, H.; Sun, K.; Zhao, Y. Meroterpenoids and Steroids from the Marine-Derived Fungus Trametes sp. ZYX-Z-16. Molecules 2022, 27, 8782. https://doi.org/10.3390/molecules27248782
Ren Z, Yang L, Ma Q, Xie Q, Dai H, Sun K, Zhao Y. Meroterpenoids and Steroids from the Marine-Derived Fungus Trametes sp. ZYX-Z-16. Molecules. 2022; 27(24):8782. https://doi.org/10.3390/molecules27248782
Chicago/Turabian StyleRen, Ziming, Li Yang, Qingyun Ma, Qingyi Xie, Haofu Dai, Kunlai Sun, and Youxing Zhao. 2022. "Meroterpenoids and Steroids from the Marine-Derived Fungus Trametes sp. ZYX-Z-16" Molecules 27, no. 24: 8782. https://doi.org/10.3390/molecules27248782
APA StyleRen, Z., Yang, L., Ma, Q., Xie, Q., Dai, H., Sun, K., & Zhao, Y. (2022). Meroterpenoids and Steroids from the Marine-Derived Fungus Trametes sp. ZYX-Z-16. Molecules, 27(24), 8782. https://doi.org/10.3390/molecules27248782