Root Bark Extract of Oroxylum indicum Vent. Inhibits Solid and Ascites Tumors and Prevents the Development of DMBA-Induced Skin Papilloma Formation
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis
2.1.1. Qualitative Phytochemical Analysis
2.1.2. HPLC-Based Quantification of Chrysin and Baicalein
2.2. Cytotoxicity of O. indicum Extract
2.3. Effect of OIM Extract on Ascites Tumor
2.4. Effect of OIM Extract on Solid Tumor
2.5. Effect of OIM Extract on Hematological Parameters
2.6. Effect of OIM Extract on Skin Papilloma
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Collection of Oroxylum Indicum and Methanol Extraction
4.3. UPLC-Q-TOF-MS Analysis
4.4. Animals
4.5. Cell Lines
4.6. Cytotoxic Analysis of O. indicum on DLA and EAC Cells
4.7. Antitumor Study
4.7.1. Ascites Tumor Model
4.7.2. Solid Tumor Model
4.8. Hematological Parameters
4.9. DMBA–Croton Oil-Induced Papilloma
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alyami, H.S.; Naser, A.Y.; Dahmash, E.Z.; Alyami, M.H.; Belali, O.M.; Assiri, A.M.; Rehman, A.; Alsaleh, A.M.; Alsaleh, H.A.; Hussein, S.H.; et al. Clinical and Therapeutic Characteristics of Cancer Patients in the Southern Region of Saudi Arabia: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 6654. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Sutton, T.L.; Patel, R.K.; Anderson, A.N.; Bowden, S.G.; Whalen, R.; Giske, N.R.; Wong, M.H. Circulating Cells with Macrophage-like Characteristics in Cancer: The Importance of Circulating Neoplastic-Immune Hybrid Cells in Cancer. Cancers 2022, 14, 3871. [Google Scholar] [CrossRef] [PubMed]
- Senga, S.S.; Grose, R.P. Hallmarks of cancer-the new testament. Open Biol. 2021, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Pusuluri, A.; Vogus, D.; Krishnan, V.; Shields, C.W.; Kim, J.; Razmi, A.; Mitragotri, S. Design principles of drug combinations for chemotherapy. J. Control. Release 2020, 323, 36–46. [Google Scholar] [CrossRef] [PubMed]
- van den Boogaard, W.M.C.; Komninos, D.S.J.; Vermeij, W.P. Chemotherapy Side-Effects: Not All DNA Damage Is Equal. Cancers 2022, 14, 627. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Kang, Y.; Chen, L.; Wang, H.; Liu, J.; Zeng, S.; Yu, L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front. Pharmacol. 2020, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- Rezayatmand, H.; Razmkhah, M.; Razeghian-Jahromi, I. Drug resistance in cancer therapy: The Pandora’s Box of cancer stem cells. Stem Cell Res. Ther. 2022, 13, 181. [Google Scholar] [CrossRef]
- Bahar, E.; Han, S.Y.; Kim, J.Y.; Yoon, H. Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers 2022, 14, 1462. [Google Scholar] [CrossRef]
- Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021, 26, 1109. [Google Scholar] [CrossRef]
- Singh, R.S.; Ahmad, M.; Wafai, Z.A.; Seth, V.; Moghe, V.V.; Upadhyaya, P. Anti-inflammatory effects of Dashmula, an Ayurvedic preparation, versus Diclofenac in animal models. J. Chem. Pharm. Res. 2011, 3, 882–888. [Google Scholar]
- Bhalerao, P.P.; Pawade, R.B.; Joshi, S. Evaluation of analgesic activity of Dashamoola formulation by using experimental models of pain. Indian J. Basic Appl. Med. Res. 2015, 4, 245–255. [Google Scholar]
- Deka, D.C.; Kumar, V.; Prasad, C.; Kumar, K.; Gogoi, B.J.; Singh, L.; Srivastava, R.B. Oroxylum indicum—A medicinal plant of North East India: An overview of its nutritional, remedial, and prophylactic properties. J. Appl. Pharm. Sci. 2013, 3 (Suppl. 1), S104–S112. [Google Scholar]
- Mao, A.A. Oroxylum indicum Vent.—A potential anticancer medicinal plant. Indian J. Tradit. Knowl. 2002, 1, 17–21. [Google Scholar]
- Preety, A.; Sharma, S. A review on Oroxylum indicum (L.) Vent: An important medicinal tree. Int. J. Res. Biol. Sci. 2016, 6, 7–12. [Google Scholar]
- Khandhar, M.; Shah, M.; Santani, D.; Jain, S. Antiulcer Activity of the Root Bark of Oroxylum indicum against Experimental Gastric Ulcers. Pharm. Biol. 2006, 44, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Zaveri, M.; Gohil, P.; Jain, S. Immunostimulant activity of n-butanol fraction of root bark of Oroxylum indicum Vent. J. Immunotoxicol. 2006, 3, 83–99. [Google Scholar] [CrossRef]
- Mishra, S.L.; Sinhamahapatra, P.K.; Nayak, A.; Das, R.; Sannigrahi, S. In vitro Antioxidant Potential of Different Parts of Oroxylum indicum: A Comparative Study. Indian J. Pharm. Sci. 2010, 72, 267–269. [Google Scholar]
- Sastry, A.V.S.; Sastry, V.G.; Mallikarjun, P.; Srinivas, K. Chemical and Pharmacological Evaluation of Aqueous Extract of Root Bark of “Oroxylum Indicum” Vent. Int. J. Pharm. Technol. 2011, 3, 1796–1806. [Google Scholar]
- Dhru, B.; Bhatt, D.; Jethva, K.; Zaveri, M. In vitro Cytotoxicity Studies of the Anti-Cancer Potential of Fractions of Root Bark of Oroxylum Indicum in Human Breast Carcinoma Cells. Int. J. Pharm. Sci. Rev. Res. 2016, 38, 18–21. [Google Scholar]
- Yee, N.S.; Ignatenko, N.; Finnberg, N.; Lee, N.; Stairs, D. Animal models of cancer biology. Cancer Growth Metastasis 2015, 8 (Suppl. 1), 115–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruby, A.J.; Kuttan, G.; Dinesh Babu, K.; Rajasekharan, K.N.; Kuttan, R. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 1995, 94, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-M.; Zhao, L.; Li, H.; Xu, H.; Chen, W.-W.; Tao, L. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol. Med. 2014, 11, 92–100. [Google Scholar] [PubMed]
- Jaganathan, S.K.; Mondhe, D.; Wani, Z.A.; Pal, H.C.; Mandal, M. Effect of Honey and Eugenol on Ehrlich Ascites and Solid Carcinoma. J. Biomed. Biotechnol. 2010, 2010, 5. [Google Scholar] [CrossRef] [Green Version]
- Ozaslan, M.; Karagoz, I.D.; Kilic, I.H.; Guldur, M.E. Ehrlich ascites carcinoma. Afr. J. Biotechnol. 2011, 10, 2375–2378. [Google Scholar]
- Osman, A.-M.M.; Alqahtani, A.A.; Damanhouri, Z.A.; Al-Harthy, S.E.; ElShal, M.F.; Ramadan, W.S.; Kamel, F.; Osman, M.A.M.; Khan, L.M. Dimethylsulfoxide excerbates cisplatin-induced cytotoxicity in Ehrlich ascites carcinoma cells. Cancer Cell Int. 2015, 15, 104. [Google Scholar] [CrossRef] [Green Version]
- Islam, F.; Khatun, H.; Ghosh, S.; Ali, M.M.; Khanam, J.A. Bioassay of Eucalyptus extracts for anticancer activity against Ehrlich ascites carcinoma (eac) cells in Swiss albino mice. Asian Pac. J. Trop. Biomed. 2012, 2, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Gayatri, S.; Maheswara Reddy, C.U.; Chitra, K.; Parthasarathy, V. Assessment of in vitro cytotoxicity and in vivo antitumor activity of Sphaeranthus amaranthoides burm.f. Pharmacogn. Res. 2015, 7, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Skipper, H.E.; Schabel, F.M., Jr.; Wilcox, W.S. Experimental Evaluation of Potential Anticancer Agents. Xiii. On the Criteria and Kinetics Associated with “Curability” of Experimental Leukemia. Cancer Chemother. Rep. 1964, 35, 3–111. [Google Scholar]
- Teicher, B.A. Tumor models for efficacy determination. Mol. Cancer Ther. 2006, 5, 2435–2443. [Google Scholar] [CrossRef]
- Schein, P.S.; Scheffler, B. Barriers to efficient development of cancer therapeutics. Clin. Cancer Res. 2006, 12 Pt 1, 3243–3248. [Google Scholar] [CrossRef] [Green Version]
- Talmadge, J.E.; Singh, R.K.; Fidler, I.J.; Raz, A. Murine Models to Evaluate Novel and Conventional Therapeutic Strategies for Cancer. Am. J. Pathol. 2007, 170, 793–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, T.D.; Kuttan, G.; Padikkala, J. Cytotoxic and anti-tumour properties of certain taxa of Umbelliferae with special reference to Centella asiatica (L.) Urban. J. Ethnopharmacol. 1995, 48, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Natesan, S.; Badami, S.; Dongre, S.H.; Godavarthi, A. Antitumor Activity and Antioxidant Status of the Methanol Extract of Careya arborea Bark Against Dalton’s Lymphoma Ascites-Induced Ascitic and Solid Tumor in Mice. J. Pharmacol. Sci. 2007, 103, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indra, A.K.; Castaneda, E.; Antal, M.C.; Jiang, M.; Messaddeq, N.; Meng, X.; Loehr, C.V.; Gariglio, P.; Kato, S.; Wahli, W.; et al. Malignant transformation of DMBA/TPA-induced papillomas and nevi in the skin of mice selectively lacking retinoid-X-receptor alpha in epidermal keratinocytes. J. Investig. Dermatol. 2007, 127, 1250–1260. [Google Scholar] [CrossRef]
- Kumar, D.R.N.; George, V.C.; Suresh, P.K.; Kumar, R.A. Cytotoxicity, Apoptosis Induction and Anti-Metastatic Potential of Oroxylum indicum in Human Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2012, 13, 2729–2734. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.K.; Nakahara, K.; Na, T.V.; Trakoontivakorn, G.; Takenaka, M.; Isobe, S.; Tsushida, T. Baicalein, a flavonoid extracted from a methanolic extract of Oroxylum indicum inhibits proliferation of a cancer cell line in vitro via induction of apoptosis. Pharmazie 2007, 62, 149–153. [Google Scholar]
- Zaveri, M.; Khandhar, A.; Jain, S. Quantification of Baicalein, Chrysin, Biochanin-A and Ellagic Acid in Root Bark of Oroxylum indicum by RP- HPLC with UV Detection. Eurasian J. Anal. Chem. 2008, 3, 245–257. [Google Scholar]
- Samudrala, P.K.; Augustine, B.B.; Kasala, E.R.; Bodduluru, L.N.; Barua, C.; Lahkar, M. Evaluation of antitumor activity and antioxidant status of Alternanthera brasiliana against Ehrlich ascites carcinoma in Swiss albino mice. Pharmacogn. Res. 2015, 7, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Senthil Kumar, R.; Rajkapoor, B.; Perumal, P.; Dhanasekaran, T.; Alvin Jose, M.; Jothimanivannan, C. Antitumor Activity of Prosopis glandulosa Torr. on Ehrlich Ascites Carcinoma (EAC) Tumor Bearing Mice. Iran. J. Pharm. Res. 2011, 10, 505–510. [Google Scholar]
- Hartveit, F. The Survival Time of Mice with Ehrlich’s Ascites Carcinoma related to the Sex and Weight of the Mouse, and the Blood Content of the Tumour. Br. J. Cancer 1961, 15, 336–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartveit, F. The growth of Ehrlich’s ascites carcinoma in C3H mice and in mice of an unrelated closed colony. Variation in survival time. Br. J. Cancer 1966, 20, 813–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, H. Textbook of Pathology, 4th ed.; Jaypee Publications: New Delhi, India, 2002. [Google Scholar]
- Patil, T.B.; Shrikhande, S.V.; Kanhere, H.A.; Saoji, R.R.; Ramadwar, M.R.; Shukla, P.J. Solid pseudopapillary neoplasm of the pancreas: A single institution experience of 14 cases. HPB Off. J. Int. Hepato Pancreato Biliary Assoc. 2006, 8, 148–150. [Google Scholar] [CrossRef]
- Klein, G. Comparative studies of mouse tumors with respect to their capacity for growth as “ascites tumors” and their average nucleic acid content per cell. Exp. Cell Res. 1951, 2, 518–573. [Google Scholar] [CrossRef]
- Goldie, H.; Dingman Felix, M. Growth Characteristics of Free Tumor Cells Transferred Serially in the Peritoneal Fluid of the Mouse. Cancer Res. 1951, 11, 73–80. [Google Scholar] [PubMed]
- Koiri, R.K.; Mehrotra, A.; Trigun, S.K. Dalton’s Lymphoma as a Murine Model for Understanding the Progression and Development of T-Cell Lymphoma and Its Role in Drug Discovery. Int. J. Immunother. Cancer Res. 2017, 3, 001–006. [Google Scholar]
- Naik, A.V.; Dessai, S.N.; Sellappan, K. Antitumour activity of Annona muricata L. leaf methanol extracts against Ehrlich Ascites Carcinoma and Dalton’s Lymphoma Ascites mediated tumours in Swiss albino mice. Libyan J. Med. 2021, 16, 1846862. [Google Scholar] [CrossRef]
- Jeena, K.; Liju, V.B.; Kuttan, R. Antitumor and cytotoxic activity of ginger essential oil (Zingiber officinale Roscoe). Int. J. Pharm. Pharm. Sci. 2015, 7, 341–344. [Google Scholar]
- Abel, E.L.; DiGiovanni, J. Multistage Carcinogenesis. In Chemical Carcinogenesis; Penning, T.M., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 27–51. [Google Scholar]
- Abel, E.L.; Angel, J.M.; Kiguchi, K.; DiGiovanni, J. Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications. Nat. Protoc. 2009, 4, 1350–1362. [Google Scholar] [CrossRef] [Green Version]
- Wattenberg, L.W. Chemoprevention of cancer. Cancer Res. 1985, 45, 1–8. [Google Scholar] [CrossRef]
- DiGiovanni, J. Multistage carcinogenesis in mouse skin. Pharmacol. Ther. 1992, 54, 63–128. [Google Scholar] [CrossRef] [PubMed]
- Sporn, M.B. Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res. 1976, 36 Pt 2, 2699–2702. [Google Scholar]
- Boccardo, E.; Lepique, A.P.; Villa, L.L. The role of inflammation in HPV carcinogenesis. Carcinogenesis 2010, 31, 1905–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, J.V.; Fernandes, T.A.; de Azevedo, J.C.; Cobucci, R.N.; de Carvalho, M.G.; Andrade, V.S.; de Araújo, J.M. Link between chronic inflammation and human papillomavirus-induced carcinogenesis (Review). Oncol. Lett. 2015, 9, 1015–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chunekar, K.C.; Pandey, G.S. Bhavaprakasha Nighantu, 10th ed.; Chaukhamba Bharati Academy: Varanasi, India, 1999; pp. 283–285. [Google Scholar]
- Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants, 2nd ed.; Periodical Experts: Delhi, India, 1975; Volume 4, pp. 1839–1841. [Google Scholar]
- Menon, S.; Lawrence, L.; Vipin, P.S.; Padikkala, J. Phytochemistryand evaluation of in vivo antioxidant and anti-inflammatory activities of Oroxylum indicum Vent. Root bark. J. Chem. Pharm. Res. 2015, 7, 767–775. [Google Scholar]
- Groopman, J.E.; Itri, L.M. Chemotherapy-Induced Anemia in Adults: Incidence and Treatment. JNCI J. Natl. Cancer Inst. 1999, 91, 1616–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thews, O.; Kelleher, D.K.; Vaupel, P. Erythropoietin restores the anemia-induced reduction in cyclophosphamide cytotoxicity in rat tumors. Cancer Res. 2001, 61, 1358–1361. [Google Scholar]
- Alam, B.; Majumder, R.; Akter, S.; Lee, S.-H. Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential. Oncol. Lett. 2015, 9, 863–868. [Google Scholar] [CrossRef]
- Mondal, A.; Singha, T.; Maity, T.K.; Pal, D. Evaluation of Antitumor and Antioxidant Activity of Melothria heterophylla (Lour.) Cogn. Indian J. Pharm. Sci. 2013, 75, 515–522. [Google Scholar]
- Liu, H.; Dong, Y.; Gao, Y.; Du, Z.; Wang, Y.; Cheng, P.; Chen, A.; Huang, H. The Fascinating Effects of Baicalein on Cancer: A Review. Int. J. Mol. Sci. 2016, 17, 1681–1698. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Li, Q.; Li, K.; Zhao, H.; Han, Z.; Li, F.; Sun, M.; Zhang, Y. Antitumor activity of baicalein on the mice bearing U14 cervical cancer. Afr. J. Biotechnol. 2011, 10, 14169–14176. [Google Scholar]
- Kasala, E.R.; Bodduluru, L.N.; Madana, R.M.; V, A.K.; Gogoi, R.; Barua, C.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett. 2015, 233, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Khoo, B.Y.; Chua, S.L.; Balaram, P. Apoptotic Effects of Chrysin in Human Cancer Cell Lines. Int. J. Mol. Sci. 2010, 11, 2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, G.; Barnes, S. Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate 1993, 22, 335–345. [Google Scholar] [CrossRef]
- Losso, J.N.; Bansode, R.R.; Trappey, A.; Bawadi, H.A.; Truax, R. In vitro anti-proliferative activities of ellagic acid. J. Nutr. Biochem. 2004, 15, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Harminder; Singh, V.; Chaudhary, A.K. A Review on the Taxonomy, Ethnobotany, Chemistry and Pharmacology of Oroxylum indicum Vent. Indian J. Pharm. Sci. 2011, 73, 483–490. [Google Scholar] [PubMed] [Green Version]
- Mohamat, S.A.; Shueb, R.H.; Che Mat, N.F. Anti-viral Activities of Oroxylum indicum Extracts on Chikungunya Virus Infection. Indian J. Microbiol. 2018, 58, 68–75. [Google Scholar] [CrossRef]
- Felipe, D.F.; Brambilla, L.Z.S.; Porto, C.; Pilau, E.J.; Cortez, D.A.G. Phytochemical Analysis of Pfaffia glomerata Inflorescences by LC-ESI-MS/MS. Molecules 2014, 19, 15720–15734. [Google Scholar] [CrossRef] [Green Version]
- Organization of Economic Co-operation and Development. The OECD Guideline for Testing of Chemicals: 423 Acute Oral Toxicity—Acute Toxic Class Method; Organization of Economic Co-Operation and Development: Paris, France, 2001. [Google Scholar]
- Gothoskar, S.V.; Ranadive, K.J. Anticancer screening of SAN-AB: An extract of marking nut, Semecarpus anacardium. Indian J. Exp. Biol. 1971, 9, 372–375. [Google Scholar]
- Kerschbaum, H.H.; Tasa, B.A.; Schürz, M.; Oberascher, K.; Bresgen, N. Trypan Blue—Adapting a Dye Used for Labelling Dead Cells to Visualize Pinocytosis in Viable Cells. Cell. Physiol. Biochem. Int. J. Exp. Cell.Physiol.Biochem. Pharmacol. 2021, 55, 171–184. [Google Scholar]
- Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.; Allam, T.; Korany, R.M.S.; Abdelfattah, A.M.; Omran, A.M.; Abd Eldaim, M.A.; Hassan, A.M.; El-Borai, N.B. Protective and Therapeutic Efficacy of Hesperidin versus Cisplatin against Ehrlich Ascites Carcinoma-Induced Renal Damage in Mice. Pharmaceuticals 2022, 15, 294. [Google Scholar] [CrossRef] [PubMed]
- Smina, T.P.; Mathew, J.; Janardhanan, K.K. Ganoderma lucidum total triterpenes attenuate DLA induced ascites and EAC induced solid tumours in Swiss albino mice. Cell Mol. Biol. 2016, 62, 55–59. [Google Scholar] [PubMed]
- Chung, J.; Ou, X.; Kulkarni, R.P.; Yang, C. Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy. PLoS ONE 2015, 10, e0133489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Y.H.; Xu, S.P. Salidroside prevents skin carcinogenesis induced by DMBA/TPA in a mouse model through suppression of inflammation and promotion of apoptosis. Oncol. Rep. 2018, 39, 2513–2526. [Google Scholar] [CrossRef] [PubMed]
Peak No. | RT (Min) | m/z | Molecular Weight (kDa) | Molecular Formula | Name of the Compound |
---|---|---|---|---|---|
1 | 0.79 | 562.2056 | − | − | Unidentified |
2 | 2.92 | 487.1551 | − | − | Unidentified |
3 | 3.70 | 639.2048 | − | − | Unidentified |
4 | 3.90 | 637.1891 | 638.184685 | C29H34O16 | Demethoxycentaureidin 7-O-rutinoside |
5 | 4.02 | 653.2208 | − | − | Unidentified |
6 | 4.13 | 623.2098 | 624.16903 | C28H32O16 | Isorhamnetin-3-O-rutinoside (Narcissin) |
7 | 4.36 | 607.2140 | − | − | Unidentified |
8 | 4.52 | 547.1558 | − | − | Unidentified |
9 | 4.75 | 651.2419 | − | − | Unidentified |
10 | 4.99 | 445.1238 | 446.08491 | C21H18O11 | Baicalein-7-O-glucuronide (Baicalin) |
11 | 5.65 | 269.0502 | 270.05282 | C15H10O5 | 5,6,7-Trihydroxyflavone (Baicalein) |
12 | 5.82 | 327.2242 | 328.094688 | C18H16O6 | 3-Hydroxy-3′,4′,5′-trimethoxyflavone |
13 | 6.02 | 283.0659 | 284.068473 | C16H12O5 | 5,7-Dihydroxy-3-(4-methoxyphenyl)chromen-4-one (Biochanin A) |
14 | 7.05 | 299.2069 | 300.099774 | C17H16O5 | 4′-Hydroxy-5,7-dimethoxyflavanone |
15 | 7.23 | 295.2332 | 296.104859 | C18H16O4 | 6-Ethoxy-3(4′-hydroxyphenyl)-4-methylcoumarin |
16 | 7.80 | 311.1749 | − | − | Unidentified |
17 | 8.16 | 325.1904 | − | − | Unidentified |
Compound | Concentration |
---|---|
Baicalein | 1.794 ± 0.23 |
Chrysin | 0.725 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menon, S.; Albaqami, J.J.; Hamdi, H.; Lawrence, L.; Divya, M.K.; Antony, L.; Padikkala, J.; Mathew, S.E.; Narayanankutty, A. Root Bark Extract of Oroxylum indicum Vent. Inhibits Solid and Ascites Tumors and Prevents the Development of DMBA-Induced Skin Papilloma Formation. Molecules 2022, 27, 8459. https://doi.org/10.3390/molecules27238459
Menon S, Albaqami JJ, Hamdi H, Lawrence L, Divya MK, Antony L, Padikkala J, Mathew SE, Narayanankutty A. Root Bark Extract of Oroxylum indicum Vent. Inhibits Solid and Ascites Tumors and Prevents the Development of DMBA-Induced Skin Papilloma Formation. Molecules. 2022; 27(23):8459. https://doi.org/10.3390/molecules27238459
Chicago/Turabian StyleMenon, Seema, Jawaher J. Albaqami, Hamida Hamdi, Lincy Lawrence, Menon Kunnathully Divya, Liya Antony, Jose Padikkala, Shaji E. Mathew, and Arunaksharan Narayanankutty. 2022. "Root Bark Extract of Oroxylum indicum Vent. Inhibits Solid and Ascites Tumors and Prevents the Development of DMBA-Induced Skin Papilloma Formation" Molecules 27, no. 23: 8459. https://doi.org/10.3390/molecules27238459
APA StyleMenon, S., Albaqami, J. J., Hamdi, H., Lawrence, L., Divya, M. K., Antony, L., Padikkala, J., Mathew, S. E., & Narayanankutty, A. (2022). Root Bark Extract of Oroxylum indicum Vent. Inhibits Solid and Ascites Tumors and Prevents the Development of DMBA-Induced Skin Papilloma Formation. Molecules, 27(23), 8459. https://doi.org/10.3390/molecules27238459