3D Electron-Rich ZIF-67 Coordination Compounds Based on 2-Methylimidazole: Synthesis, Characterization and Effect on Thermal Decomposition of RDX, HMX, CL-20, DAP-4 and AP
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of ZIF-67
2.2. Characterization of ZIF-67
2.3. Thermal Decomposition of RDX, HMX, CL-20, DAP-4 and AP Catalyzed by ZIF-67
2.4. Thermal Decomposition Mechanism of Typical Energetic Materials HMX and HMX+ZIF-67
2.5. Thermal Decomposition Kinetics of RDX, HMX, CL-20 and DAP-4 under ZIF-67 Catalytic Conditions
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.2.1. ZIF-67 Synthesis Preparation
3.2.2. Mixed Preparation of ZIF-67 and Energetic Materials
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, F.Q.; Yi, J.H.; An, T.; Wang, Y.L.; Hong, L.W. Solid Propellant Combustion Catalyst; National Defense Industry Press: Beijing, China, 2016; pp. 16–39. [Google Scholar]
- Yan, Q.L.; Gozin, M.; Zhao, F.Q.; Cohen, A.; Pang, S.P. Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 2016, 8, 4799–4851. [Google Scholar] [PubMed] [Green Version]
- Hou, X.T.; Zhang, M.; Zhang, F.Y.; Liu, S.; Li, H.; Zuo, Y.Y.; Jiang, Y.F.; Li, R.Q.; Zhao, F.Q. Research progress of green combustion catalysts for DB/CMDB propellants. Chin. J. Explos. Propellants 2021, 44, 271–283. [Google Scholar]
- Zhang, M.; Zhao, F.Q.; Li, H.; Yang, Y.J.; An, T.; Jiang, Y.F.; Li, N. Morphology dependent catalytic activity of Fe2O3 and its graphene-based nanocomposites on the thermal decomposition of AP. FirePhysChem 2021, 1, 46–53. [Google Scholar] [CrossRef]
- Tan, B.J.; Yang, X.; Dou, J.K.; Duan, B.H.; Lu, X.M.; Liu, N. Research progress of EMOFs-based burning rate catalysts for solid propellants. Front. Chem. 2022, in press. [CrossRef]
- Dalinger, I.L.; Shkineva, T.K.; Vatsadze, I.A.; Kormanov, A.V.; Kozeev, A.M.; Suponitsky, K.Y.; Pivkina, A.N.; Sheremetev, A.B. Novel energetic CNO oxidizer: Pernitro-substituted pyrazolyl-furazan framework. FirePhysChem 2021, 1, 83–89. [Google Scholar] [CrossRef]
- Li, S.W.; Liu, S.E. Effect of nonenergetical and energetical catalysts on the combustion behavior of Al-RDX-CMDB propellants. Chin. J. Energy Mater. 1997, 5, 49–54. [Google Scholar]
- Tong, R.B.; Zhao, Y.L.; Wang, L.; Yu, H.; Ren, F.J.; Saleem, M.; Amer, W.A. Recent research progress in the synthesis and properties of burning rate catalysts based on ferrocene-containing polymers and derivatives. J. Oraganomet. Chem. 2014, 755, 16–32. [Google Scholar] [CrossRef]
- Sukhanov, G.T.; Bosov, K.K.; Filippova, Y.V.; Sukhanova, A.G.; Krupnova, I.A.; Pivovarova, E.V. New 5-Aminotetrazole-Based Energetic Polymers: Synthesis, Structure and Properties. Materials 2022, 15, 6936. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.J.; Liu, X.Y.; Su, Z.Y.; Zhang, S.; Yang, Q.; Wei, Q.; Chen, S.P.; Xie, G.; Yang, X.W.; Gao, S.L. High-energy-density materials with remarkable thermostability and insensitivity: Synthesis, structures and physicochemical properties of Pb(II) compounds with 3-(tetrazol-5-yl)triazole. J. Mater. Chem. A 2014, 2, 11958–11965. [Google Scholar] [CrossRef]
- Wu, S.; Li, M.; Yang, Z.Y.; Xia, Z.Q.; Liu, B.; Yang, Q.; Wei, Q.; Xie, G.; Chen, S.P.; Gao, S.L.; et al. Synthesis and characterization of a new energetic metal-organic framework for use in potential propellant compositions. Green Chem. 2020, 22, 5050–5058. [Google Scholar] [CrossRef]
- Wu, S.; Lin, G.W.; Yang, Z.Y.; Yang, Q.; Wei, Q.; Xie, G.; Chen, S.P.; Gao, S.L.; Lu, J.Y. Crystal structures, thermodynamics and accelerating thermal decomposition of RDX: Two new energetic coordination polymers based on a Y-shaped ligand of tris(5-aminotetrazole)triazine. New J. Chem. 2019, 43, 14336–14342. [Google Scholar] [CrossRef]
- Tan, B.J.; Ren, J.T.; Duan, B.H.; Xu, M.H.; Chen, S.L.; Zhang, H.; Liu, N. Facile synthesis and superior properties of a nitrogen-rich energetic Zn-MOF with a 2D azide-bridged bilayer structure. Dalton Trans. 2022, 51, 7804–7810. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Z.P.; Qin, Z.H.; Sun, H.Y.; Jiao, X.L.; Chen, D.R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 2013, 5, 11770. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.L.; Yang, Z.R.; Wang, B.J.; Shang, Y.; Sun, L.Y.; He, C.T.; Zhou, H.L.; Zhang, W.X.; Chen, X.M. Molecular perovskite high-energetic materials. Sci. China Mater. 2018, 61, 1123–1128. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y.; Yu, Z.H.; Huang, R.K.; Chen, S.L.; Liu, D.X.; Chen, X.X.; Zhang, W.X.; Chen, X.M. Metal-free hexagonal perovskite high-energetic materials with NH3OH+/NH2NH3 + as B-site cations. Engineering 2020, 6, 1013–1018. [Google Scholar] [CrossRef]
- Shang, Y.; Huang, R.K.; Chen, S.L.; He, C.T.; Yu, Z.H.; Ye, Z.M.; Zhang, W.X.; Chen, X.M. Metal-free molecular perovskite high-energetic materials. Cryst. Growth Des. 2020, 20, 1891–1897. [Google Scholar] [CrossRef]
- Qian, J.F.; Sun, F.; Qin, L.Z. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82, 220–223. [Google Scholar] [CrossRef]
- Truong, T.; Hoang, T.M.; Nguyen, C.K.; Huynh, Q.T.N.; Phan, N.T.S. Expanding applications of zeolite imidazolate frameworks in catalysis: Synthesis of quinazolines using ZIF-67 as an efficient heterogeneous catalyst. RSC Adv. 2015, 5, 24769–24776. [Google Scholar] [CrossRef]
- Song, J.; Chen, Z.; Xiao, H. Preparation, molecular structure and quantum chemistry of [Li(NTO)(H2O)2]. Chin. Sci. Bull. 1998, 43, 1624–1628. [Google Scholar]
- Zhang, T.L.; Bei, Y.K. Preparation, crystal structure and thermal decomposition mechanisms of {[Cd(NTO)2(CHZ)]·2H2O}n. Chin. J. Inorg. Chem. 2002, 18, 138–142. [Google Scholar]
- Li, N.; Zhao, F.Q.; Gao, H.X.; Xiao, L.B.; Wang, X.H.; Xu, S.Y.; Yi, J.H. Synthesis, characterization and combustion catalytic action of 4-amino-1,2,4-triazole copper perchlorate. J. Solid Rocket. Technol. 2014, 37, 73–76. [Google Scholar]
- Booth, R.S.; Butler, L.J. Thermal decomposition pathways for 1,1-diamino-2,2-dinitroethene (FOX-7). J. Chem. Phys. 2014, 141, 134315. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhou, J.; Xing, X.L.; Huang, Y.F.; Yan, Z.F.; Xue, Q.; Wang, X.F.; Wang, B.Z. A promising TNT alternative 3,3-bi(1,2,4-oxadiazole)-5,5-diylbis(methylene)dinitrate (BOM):thermal behaviors and eutectic characteristics. RSC Adv. 2020, 10, 26425–26432. [Google Scholar] [CrossRef]
- Liu, Z.R. Thermal Analysis of Energetic Materials; National Defense Industry Press: Beijing, China, 2008; pp. 83–87. [Google Scholar]
- Sánchez-Jiménez, P.E.; Pérez-Maqueda, L.A.; Perejón, A.; Criado, J.M. Nanoclay Nucleation Effect in the Thermal Stabilization of a Polymer Nanocomposite: A Kinetic Mechanism Change. J. Phys. Chem. C 2012, 116, 11797–11807. [Google Scholar] [CrossRef] [Green Version]
- Perejón, A.; Sánchez-Jiménez, P.E.; Criado, J.M.; Pérez-Maqueda, L.A. Kinetic Analysis of Complex Solid-State Reactions. A New Deconvolution Procedure. J. Phys. Chem. C 2011, 115, 1780–1791. [Google Scholar] [CrossRef]
- Duan, B.H.; Lu, X.M.; Mo, H.C.; Tan, B.J.; Wang, B.Z.; Liu, N. Fabrication of CL-20/HMX Cocrystal@Melamine–Formaldehyde Resin Core–Shell Composites Featuring Enhanced Thermal and Safety Performance via In Situ Polymerization. Int. J. Mol. Sci. 2022, 23, 6710. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.L.; Zeman, S.; Zhang, J.G.; Qi, X.F.; Li, T.; Musil, T. 1 Multistep Thermolysis Mechanisms of Azido-s-triazine Derivatives and Kinetic Compensation Effects for the Rate-Limiting Processes. J. Phys. Chem. C. 2015, 119, 14861–14872. [Google Scholar] [CrossRef]
- Zuo, B.L.; Liang, Q.J.; Zhang, J.L.; Zhao, R.Q.; Liu, P.J.; Yan, Q.L. Preparation and Thermal Decomposition Characteristics of Energetic Metastable Intermolecular Composite Si@PVDF/CL-20. Chin. J. Explos. Propellants 2019, 42, 548–556. [Google Scholar]
- ABD-Elghany, M.; Elbeih, A.; Hassanein, S. Thermal Behavior and Decomposition Kinetics of RDX and RDX/HTPB Composition Using Various Techniques and Methods. Cent. Eur. J. Energy Mater. 2016, 13, 714–735. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, T.L.; Yang, L.; Zhou, Z.; Zhang, J.G. DSC/DPTA Thermal Analysis Kinetics and Their Applications. Chin. J. Explos. Propellants 2013, 36, 16–21. [Google Scholar]
- Zhu, S.D.; Cao, X.; Cao, X.Q.; Feng, Y.Q.; Lin, X.B.; Han, K.; Li, X.X.; Deng, P. Metal-doped (Fe, Nd, Ce, Zr, U) graphitic carbon nitride catalysts enhance thermal decomposition of ammonium perchlorate-based molecular perovskite. Mater. Des. 2021, 99, 109426. [Google Scholar] [CrossRef]
- Tan, L.; Lu, X.M.; Liu, N.; Yan, Q.L. Further enhancing thermal stability of thermostable energetic derivatives of dibenzotetraazapentene by polydopamine/graphene oxide coating. Appl. Surf. Sci. 2021, 543, 148825. [Google Scholar] [CrossRef]
- Xue, Z.H.; Zhang, X.X.; Huang, B.B.; Xin, B.; Yan, Q.L. The structural diversity of hybrid qy-HMX crystals with constraint of 2D dopants and the resulted changes in thermal reactivity. Chem. Eng. J. 2020, 390, 124565. [Google Scholar] [CrossRef]
- Bondarchuk, I.; Bondarchuk, S.; Borisov, B.V. Identification of kinetic triplets by results of derivatographic analysis. In Proceedings of the Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment (HMTTSC 2018): International Youth Scientific Conference, Tomsk, Russia, 24–26 April 2018; Volume 194, p. 01010. [Google Scholar]
- Tarrío-Saavedra, J.; López-Beceiro, J.; Naya, S. Mario Francisco-Fernández & Ramón Artiaga. Simulation study for generalized logistic function in thermal data modeling. J. Therm. Anal. Calorim. 2014, 118, 1253–1268. [Google Scholar]
- Liu, N.; Zhang, Q.; Duan, B.H.; Lu, X.M.; Bai, X.; Yan, Q.L. Comparative study on thermal behavior of three highly thermostable energetic materials: Z-TACOT, PYX, and TNBP. FirePhysChem 2021, 1, 61–69. [Google Scholar] [CrossRef]
Sample | Kissinger Method | Friedman Method | Combined Kinetic Method | |||||
---|---|---|---|---|---|---|---|---|
Ea(1) | logA | r | Ea(2) | r | m | n | Ea (3) | |
RDX+ZIF-67 | 172.47 | 12.68 | 0.999 | 85.65 | 0.998 | 0.852 | 0.621 | 85.14 |
HMX+ZIF-67 | 190.52 | 12.75 | 0.998 | 196.15 | 0.996 | 0.778 | 0.755 | 182.88 |
CL-20+ZIF-67 | 179.08 | 12.22 | 0.999 | 192.92 | 0.998 | 0.587 | 0.523 | 193.14 |
DAP-4+ZIF-67 | 151.43 | 5.99 | 0.974 | 212.69 | 0.983 | 0.276 | 0.479 | 211.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Tan, B.; Wang, B.; Yao, L.; Li, X.; Zhao, D.; Li, W.; Cao, L.; Huang, Y.; Wang, X. 3D Electron-Rich ZIF-67 Coordination Compounds Based on 2-Methylimidazole: Synthesis, Characterization and Effect on Thermal Decomposition of RDX, HMX, CL-20, DAP-4 and AP. Molecules 2022, 27, 8370. https://doi.org/10.3390/molecules27238370
Yang X, Tan B, Wang B, Yao L, Li X, Zhao D, Li W, Cao L, Huang Y, Wang X. 3D Electron-Rich ZIF-67 Coordination Compounds Based on 2-Methylimidazole: Synthesis, Characterization and Effect on Thermal Decomposition of RDX, HMX, CL-20, DAP-4 and AP. Molecules. 2022; 27(23):8370. https://doi.org/10.3390/molecules27238370
Chicago/Turabian StyleYang, Xiong, Bojun Tan, Bo Wang, Lina Yao, Xin Li, Dongkui Zhao, Wenjie Li, Lei Cao, Yafeng Huang, and Xiaofeng Wang. 2022. "3D Electron-Rich ZIF-67 Coordination Compounds Based on 2-Methylimidazole: Synthesis, Characterization and Effect on Thermal Decomposition of RDX, HMX, CL-20, DAP-4 and AP" Molecules 27, no. 23: 8370. https://doi.org/10.3390/molecules27238370
APA StyleYang, X., Tan, B., Wang, B., Yao, L., Li, X., Zhao, D., Li, W., Cao, L., Huang, Y., & Wang, X. (2022). 3D Electron-Rich ZIF-67 Coordination Compounds Based on 2-Methylimidazole: Synthesis, Characterization and Effect on Thermal Decomposition of RDX, HMX, CL-20, DAP-4 and AP. Molecules, 27(23), 8370. https://doi.org/10.3390/molecules27238370