Effect of Foliar Sodium Selenate and Nano Selenium Supply on Biochemical Characteristics, Essential Oil Accumulation and Mineral Composition of Artemisia annua L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Characteristics and Yield
2.2. Photosynthetic Pigments
2.3. Antioxidant Status
2.4. Essential Oil
2.5. Polysaccharides
2.6. Elemental Composition
3. Materials and Methods
3.1. Growing Conditions and Experimental Protocol
3.2. Preparation and Characterization of Selenium Colloidal Solution
3.3. Sample Preparation
3.4. Biochemical and Elemental Composition Analyses
3.4.1. Nitrates
3.4.2. Wax
3.4.3. Photosynthetic Pigments
3.4.4. Dietary Fiber
3.4.5. Pectin
3.4.6. Total Polyphenols (TP)
3.4.7. Antioxidant Activity (AOA)
3.4.8. Extraction and Analysis of the Essential Oil
3.4.9. Elemental Composition
3.4.10. Determination of Selenium
3.4.11. Proline
3.4.12. Malonic Dialdehyde
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tinggi, U. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 2008, 13, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr. 2020, 111, 1297–1299. [Google Scholar] [CrossRef] [PubMed]
- Golubkina, N.A.; Kharchenko, V.A.; Caruso, G. Selenium: Prospects of functional food production with high antioxidant activity. In Chapter 7 in Reference Series in Phyto-Chemistry. Plant Antioxidants and Health; Ekiert, H., Ramawat, K.G., Arora, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 149–176. [Google Scholar]
- Bano, I.; Skalickova, S.; Sajjad, H.; Skladanka, J.; Horky, P. Uses of selenium nanoparticles in the plant production. Agronomy 2021, 11, 2229. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.A.; Fujita, M. Selenium in higher plants: Physiological role, antioxidant metabolism and abiotic stress tolerance. J. Plant Sci. 2010, 5, 354–375. [Google Scholar] [CrossRef] [Green Version]
- Pilon-Smits, E.A.H.; Winkel, L.H.E.; Lin, Z.-Q. Selenium in plants. In Molecular, Physiological, Ecological and Evolutionary Aspects; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Malagoli, M.; Schiavon, M.; dall’Acqua, S.; Pilon-Smits, E.A.H. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci. 2015, 6, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezeyová, I.; Hegedűsová, A.; Andrejiová, A.; Hegedűs, O.; Golian, M. Phytomass and content of essential oils in Ocimum basilicum after foliar treatment with selenium. Agric. Food 2016, 4, 19–27. [Google Scholar]
- Skrypnik, L.; Novikova, A.; Tokupova, E. Improvement of phenolic compounds, essential oil content and antioxidant properties of sweet basil (Ocimum basilicum L.) depending on type and concentration of selenium application. Plants 2019, 8, 458. [Google Scholar] [CrossRef] [Green Version]
- Kopsell, D.A.; Sams, K.; Barickman, T.C.; Deyton, D.; Kopsell, D. Selenization of basil and cilantro through foliar applications of selenate-selenium and selenite-selenium. Hort. Sci. 2016, 44, 438–442. [Google Scholar] [CrossRef]
- Nazari, M.R.; Abdossi, V.; Hargalani, F.Z.; Larijani, K. The effect of nano selenium foliar application on some secondary metabolites of Hypericum perforatum L. J. Med. Plants 2022, 21, 67–78. [Google Scholar] [CrossRef]
- Nazari, M.R.; Abdossi, V.; Hargalani, F.Z.; Larijani, K. Antioxidant potential and essential oil properties of Hypericum perforatum L. assessed by application of selenite and nano-selenium. Sci. Rep. 2022, 12, 6156. [Google Scholar] [CrossRef]
- Hosseinzadeh Rostam Kalaei, M.; Abdossi, V.; Danaee, E. Evaluation of foliar application of selenium and flowering stages on selected properties of Iranian borage as a medicinal plant. Sci. Rep. 2022, 12, 12568. [Google Scholar] [CrossRef] [PubMed]
- Golubkina, N.; Logvinenko, L.; Konovalov, D.; Garsiya, E.; Fedotov, M.; Alpatov, A.; Shevchuk, O.; Skrypnik, L.; Sekara, A.; Caruso, G. Foliar application of selenium under nano silicon on Artemisia Annua: Effects on yield, antioxidant status, essential oil, artemisinin content and mineral composition. Horticulturae 2022, 8, 597. [Google Scholar] [CrossRef]
- Golubkina, N.; Logvinenko, L.; Molchanova, A.; Caruso, G. Genetic and environmental influence on macro- and microelement accumulation in plants of Artemisia species. In Chapter 17 in Plants Micronutrients. Deficiency and Toxicity Management; Aftab, T., Hakeem, K.R., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 389–416. [Google Scholar] [CrossRef]
- Severson, R.C.; Fisher, S.; Gough, L.P. The Eruption of Redoubt Volcano, Alaska–31 August 1989; Government Printing Office: Washington, DC, USA, 1990.
- Ekiert, H.; Świątkowsk, J.; Klin, P.; Rzepiela, A.; Szopa, A. Artemisia annua—Importance in traditional medicine and current state of knowledge on the chemistry, biological activity and possible applications. Planta Med. 2021, 87, 584–599. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, A.; Hayat, M.Q.; Ashraf, M. Ethnopharmacology of Artemisia annua L.: A Review. In Artemisia Annua—Pharmacology and Biotechnology; Aftab, T., Ferreira, J., Khan, M., Naeem, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Rolta, R.; Salaria, D.; Kumar, V.; Sourirajan, A.; Dev, K. Phytocompounds of Rheum emodi, Thymus serpyllum and Artemisia annua inhibit COVID-19 binding to ACE2 receptor: In silico approach. Res. Sq. 2020, 5, 1–23. [Google Scholar]
- Law, S.; Leung, A.W.; Xu, C. Is the traditional Chinese herb “Artemisia annua” possible to fight against COVID-19? Integr. Med. Res. 2020, 9, 100474. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Xiong, X.; Chen, G. Discuss about the application of Artemisia annua prescriptions in the treatment of COVID-19. TMR Mod. Herb. Med. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Kapepula, P.M.; Kabengele, J.K.; Kingombe, M.; Van Bambeke, F.; Tulkens, P.M.; Sadiki Kishabongo, A.; Decloedt, E.; Zumla, A.; Tiberi, S.; Suleman, F.; et al. Artemisia spp. derivatives for COVID-19 treatment: Anecdotal use, political hype, treatment potential, challenges, and road map to randomized clinical trials. Am. J. Trop. Med. Hyg. 2020, 103, 960–964. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Lalarizo Rakoto, M.; Marodon, C.; Bedoui, Y.; Nakab, J.; Simon, E.; Hoarau, L.; Savriama, S.; Strasberg, D.; Guiraud, P.; et al. Artemisia annua, a traditional plant brought to light. Int. J. Mol. Sci. 2020, 21, 4986. [Google Scholar] [CrossRef]
- Ferreira, J.F.S.; Luthria, D.L.; Sasaki, T.; Heyerick, A. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria ad cancer. Molecules 2010, 15, 3135–3170. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, S.; Younas, U.; Chan, K.W.; Zia-Ul-Haq, M.; Ismail, M. Chemical composition of Artemisia annua L. leaves and antioxidant potential of extracts as a function of extraction solvents. Molecules 2012, 17, 6020–6032. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Li, K.; Wan, Y.; Wang, Q.; Zhuang, Z.; Guo., Y.; Li., H. Uptake, translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza sativa L.). J. Nanobiotechnol. 2020, 18, 103. [Google Scholar] [CrossRef] [PubMed]
- El-Ramady, H.; Abdalla, N.; Taha, H.S.; Alshaal, T.; El-Henawy, A.; Faizy, S.E.-D.A.; Shams, M.S.; Youssef, S.M.; Shalaby, T.; Bayoumi, Y.; et al. Selenium and nano-selenium in plant nutrition. Environ. Chem. Lett. 2016, 14, 123–147. [Google Scholar] [CrossRef]
- Wang, D.; Shi, C.; Alamgir, K.; Pan, L.; Zhu, Y.; Yang, X. Global assessment of the distribution and conservation status of key medicinal plants (Artemisia annua L.): The roles of climate and anthropogenic activities. Sci. Total Env. 2022, 821, 153378. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Ma, T.; Hao, M.; Wang, Q.; Chen, S.; Wang, D.; Huang, L.; Zhang, X.; Jiang, D. Mapping worldwide environmental suitability for Artemisia annua L. Sustainability 2020, 12, 1309. [Google Scholar] [CrossRef] [Green Version]
- Logvinenko, L.; Shevchuk, O.; Golubkina, N.; Zamana, S.; Divakov, A.; Fedotova, I. Efficiency pf AMF utilization on aromatic plants at the southern coast of the Crimea. Bull. Nikitsk. Bot. Gard. 2022, 142, 15–25. (In Russian) [Google Scholar]
- Turakainen, M.; Hartikainen, H.; Seppänen, M.M. Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J. Agric. Food Chem. 2004, 52, 5378–5382. [Google Scholar] [CrossRef]
- Young, A.J. The photoprotective role of carotenoids in higher plants. Physiol. Plant. 1991, 83, 702–708. [Google Scholar] [CrossRef]
- Breznik, B.; Germ, M.; Gaberscik, A.; Kreft, I. Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat. Photosynthetica 2005, 43, 583–589. [Google Scholar] [CrossRef]
- Lyons, G.H.; Genc, Y.; Soole, K.; Stangoulis, J.; Liu, F.; Graham, R. Selenium increases seed production in Brassica. Plant Soil 2009, 318, 73–80. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Golubkina, N.; Kharchenko, V.; Moldovan, A.; Zayachkovsky, V.; Stepanov, V.; Pivovarov, V.; Sekara, A.; Tallarita, A.; Caruso, G. Nutritional value of Apiaceae seeds as affected by 11 species and 43 cultivars. Horticulturae 2021, 7, 57. [Google Scholar] [CrossRef]
- Golubkina, N.; Plotnikova, U.; Lapchenko, V.; Lapchenko, H.; Sheshnitsan, S.; Amagova, Z.; Matsadse, V.; Naumenko, T.; Bagrikova, N.; Logvinenko, L.; et al. Evaluation of factors affecting tree and shrub bark’s antioxidant status. Plants 2022, 11, 2609. [Google Scholar] [CrossRef]
- Kaur, G.; Asthir, B. Proline: A key player in plant abiotic stress tolerance. Biol. Plant. 2015, 59, 609–619. [Google Scholar] [CrossRef]
- Ahmad, H.M.; Rahman, M.U.; Ali, Q.; Awan, S.I. Plant cuticular waxes: A review on functions, composition, biosynthesis mechanism and transportation. Life Sci. J. 2015, 12, 60–67. [Google Scholar] [CrossRef]
- Taleghani, A.; Emami, S.A.; Tayarani-Najaran, Z. Artemisia: A promising plant for the treatment of cancer. Bioorg. Med. Chem. 2020, 28, 115180. [Google Scholar] [CrossRef]
- Bilia, A.R.; Santomauro, F.; Sacco, C.; Bergonzi, M.C.; Donato, R. Essential oil of Artemisia annua L.: An extraordinary component with numerous antimicrobial properties. Evid. Based Complement. Alternat. Med. 2014, 2014, 159819. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.K.; Chauhan, A.; Verma, R.S.; Gupta, A. Influence of planting date on growth, artemisinin yield, seed and oil yield of Artemisia annua L. under temperate climatic conditions. Ind. Crop. Prod. 2011, 34, 860–864. [Google Scholar] [CrossRef]
- Mohammadreza, V. Variation in the essential oil composition of Artemisia annua L. of different growth stages cultivated in Iran. Bot. Res. J. 2008, 1, 33–35. Available online: http://medwelljournals.com/abstract/?doi=brj.2008.33.35 (accessed on 17 November 2022).
- Coşge, B.; Kiralan, M.; Yaman, C. The Effect of different harvest stages on chemical composition and antioxidant capacity of essential oil from Artemisia annua L. J. Agr. Sci. 2015, 21, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Marchese, J.A.; Rehder, V.L.G.; Casiraghi, V.; Tedesco, A.C.; Lira, R. Flowering in plants of Artemisia annua L. submitted to different conditions of photoperiod and temperature. Acta Hort. 2002, 569, 275–280. [Google Scholar] [CrossRef]
- Huo, J.; Lu, Y.; Xia, L.; Chen, D. Structural characterization and anticomplement activities of three acidic homogeneous polysaccharides from Artemisia Annua. J. Ethnopharmacol. 2020, 247, 112281. [Google Scholar] [CrossRef] [PubMed]
- Brisibe, E.A.; Umoren, U.E.; Brisibe, F.; Magalhäes, P.M.; Ferreira, J.F.S.; Luthria, D.; Wu, X.; Prior, R.L. Nutritional characterization and antioxidant capacity of different tissues of Artemisia annua L. Food Chem. 2009, 115, 1240–1246. [Google Scholar] [CrossRef]
- Ishfaq, M.; Wang, Y.; Yan, M.; Wang, Z.; Wu, L.; Li, C.; Li, X. Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Front. Plant Sci. 2022, 13, 802274. [Google Scholar] [CrossRef] [PubMed]
- Zielewicz, W.; Wróbel, B.; Niedbała, G. Quantification of chlorophyll and carotene pigments content in mountain melick (Melica nutans L.) in relation to edaphic variables. Forests 2020, 11, 1197. [Google Scholar] [CrossRef]
- Golubkina, N.; Folmanis, G.; Tananaev, I. Comparative evaluation of selenium accumulation by allium species after foliar application of selenium nanoparticles, sodium selenite and sodium selenate. Dokl. Biol. Sci. 2012, 444, 176–179. (In Russian) [Google Scholar] [CrossRef]
- Schomburg, L.; Köhrle, J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol. Nutr. Food Res. 2008, 52, 1235–1246. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, J.; Kronzucker, H.J.; Shi, W. Selenium biofortification and interaction with other elements in plants: A review. Front. Plant Sci. 2020, 11, 586421. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; García-Caparrós, P.; Parvin, K.; Zulfiqar, F.; Ahmed, N.; Fujita, M. Selenium and crop plant tolerance to metal/metalloid toxicity. Front. Plant Sci. 2022, 12, 792770. [Google Scholar] [CrossRef]
- Kharchenko, V.; Moldovan, A.; Amagova, Z.; Matsadze, V.; Golubkina, N.; Caruso, G. Effect of sodium selentae foliar supplementation on Cryptotaenia japonica and Petroselinum crispum nutritional characteristics and seeds quality. Veg. Crop. Russ. 2022, 4, 65–72. [Google Scholar] [CrossRef]
- Amagova, Z.; Matsadze, V.; Golubkina, N.; Seredin, T.; Caruso, G. Biofortification of wild garlic with selenium. Veg. Crop. Russ. 2018, 4, 76–80. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Golubkina, N.; Kekina, H.; Caruso, G. Yield, Quality and Antioxidant Properties of Indian Mustard (Brassica juncea L.) in Response to Foliar Biofortification with Selenium and Iodine. Plants 2018, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Guidance on methods of quality control and safety of biologically active food supplements. In Determination of Soluble and non Soluble Food Fiber—46–50 M; Ministry of Health of Russia: Moscow, Russia, 2004; p. 4.1.1672-03.
- Guidance on methods of quality control and safety of biologically active food supplements. In Pectin Determination, 40–41 M; Ministry of Health of Russia: Moscow, Russia, 2004; p. 4.1.1672-03.
- Golubkina, N.A.; Kekina, H.G.; Molchanova, A.V.; Antoshkina, M.S.; Nadezhkin, S.M.; Soldatenko, A.V. Plants Antioxidants and Methods of Their Determination; Infra-M: Moscow, Russia, 2020. [Google Scholar] [CrossRef]
- ISO 3166 Essential Oil Floral-Herbal Raw Material. In Methods of Sampling, Determining the Moisture, Impurities and Essential Oil (GOST 34213-2017); Rosstandart: Moscow, Russia, 2017.
- Tkachev, A.V. Plants Volatile Compounds Investigation; Offset: Novosibirsk, Russia, 2008; p. 969. (In Russian) [Google Scholar]
- Alfthan, G.V. A micromethod for the determination of selenium in tissues and biological fluids by single-test-tube fluorimetry. Anal. Chim. Acta 1984, 165, 187–194. [Google Scholar] [CrossRef]
- Ábrahám, E.; Hourton-Cabassa, C.; Erdei, L.; Szabados, L. Methods for determination of proline in plants. In Plant Stress Tolerance. Methods in Molecular Biology (Methods and Protocols); Sunkar, R., Ed.; Humana Press: Totowa, NJ, USA, 2010; p. 639. [Google Scholar] [CrossRef]
- Heath, R.L.; Parker, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
Parameter | Control | Se+6 | Nano-Se | |
---|---|---|---|---|
Plant height (cm) | M ± SD * | 176.7 ± 6.2 a | 180.6 ± 3.5 a | 184.8 ± 5.6 a |
Range | 170–185 | 175–185 | 177–193 | |
Median | 177.0 | 181.0 | 186.5 | |
Plant diameter (cm) | M ± SD * | 65.1 ± 2.8 b | 71.4 ± 3.6 ab | 73.7 ± 3.2 a |
Range | 60–69 | 67–77 | 67–77 | |
Median | 65.0 | 71.5 | 74.5 | |
Leaf length (cm) | M ± SD * | 11.8 ± 0.4 b | 12.5 ± 0.3 ab | 12.9 ± 0.5 a |
Range | 11.5–12.1’ | 12.0–12.8 | 12.1–13.8 | |
Median | 11.9 | 12.5 | 12.9 | |
Leaf width (cm) | M ± SD * | 11.1 ± 0.4 a | 11.8 ± 0.2 a | 11.7 ± 0.2 a |
Range | 10.6–11.8 | 11.5–12.0 | 11.5–12.0 | |
Median | 11.1 | 11.9 | 11.7 | |
Petiole length (cm) | M ± SD | 91.8 ± 5.0 a | 91.9 ± 2.6 a | 89.4 ± 3.2 a |
CV (%) | 5.4 | 2.8 | 3.6 | |
Range | 83–98 | 88–96 | 85–94 | |
Median | 92.5 | 92.5 | 89.5 | |
Plant biomass (Yield) (kg m−2) | M ± SD | 320.0 ± 33.7 a | 333.9 ± 30.8 a | 338.0 ± 26.2 a |
CV (%) | 10.5 | 9.2 | 7.8 | |
Range | 291.7–398.0 | 296.3–374.0 | 290.7–358.6 | |
Median | 307.9 | 333.4 | 341.0 |
Parameter | Control | Se+6 | Nano-Se |
---|---|---|---|
Chlorophyll a (mg g−1 f.w.) | 2.39 ± 0.20 b | 4.32 ± 0.42 a | 5.09 ± 0.48 a |
Chlorophyll b (mg g−1 f.w.) | 1.60 ± 0.14 c | 2.96 ± 0.30 b | 3.93 ± 0.40 a |
Carotene (mg g−1 f.w.) | 0.21 ± 0.02 b | 0.37 ± 0.03 a | 0.31 ± 0.03 a |
Total chlorophyll (mg g−1 f.w.) | 3.99 ± 0.36 c | 7.28 ± 0.66 b | 9.12 ± 0.82 a |
Chlorophyll a/b ratio | 1.49 | 1.46 | 1.30 |
Chlorophyll/carotene ratio | 19.0 | 19.7 | 29.4 |
Parameter | Plant Part | Control | Se+6 | Nano-Se |
---|---|---|---|---|
AOA (mg GAE g−1 d.w.) | Leaves | 60.9 ± 6.0 a | 61.7 ± 6.1 a | 60.1 ± 5.9 a |
Stems | 27.2 ± 2.6 a | 30.3 ± 6.3 a | 29.6 ± 2.0 a | |
Roots | 11.5 ± 0.6 a | 11.8 ± 1.3 a | 10.7 ± 1.0 a | |
TP (mg GAE g−1 d.w.) | Leaves | 21.0 ± 1.2 a | 21.4 ± 1.8 a | 21.1 ± 2.0 a |
Stems | 15.3 ± 1.4 a | 16.8 ± 0.5 a | 15.4 ± 1.3 a | |
Roots | 10.8 ± 0.6 a | 11.1 ± 1.5 a | 10.5 ± 1.0 a | |
Proline (mg g−1 d.w.) | Leaves | 23.0 ± 2.1 b | 18.0 ± 1.4 a | 19.0 ± 1.7 a |
Malonic dialdehyde (mg g−1 d.w.) | Leaves | 9.2 ± 0.8 a | 8.2 ± 0.7 a | 7.6 ± 0.6 b |
Wax (mg PE g−1 d.w.) | Leaves | 7.60 ± 0.70 b | 11.27 ± 1.00 a | 9.70 ± 0.90 a |
Oil Component | Nano-Se | Se+6 | Control | ||||
---|---|---|---|---|---|---|---|
2022 | 2021 | 2022 | 2021 | 2022 | 2021 | ||
Essential oil yield (% d.w.) | M ± SD | 0.35 ± 0.05 b | 0.36 ± 0.04 b | 0.75 ± 0.06 a | 0.80 ± 0.06 a | 0.75 ± 0.04 a | 0.83 ± 0.07 a |
CV (%) | 14.3 | 11.1 | 8.0 | 7.5 | 5.3 | 8.4 | |
Range | 0.30–0.40 | 0.30–0.41 | 0.65–0.80 | 0.71–0.90 | 0.70–0.80 | 0.72–0.89 | |
Median | 0.34 | 0.35 | 0.78 | 0.82 | 0.74 | 0.80 | |
Eucalyptol | 2.49 ± 0.23 d | 2.11 ± 0.20 d | 13.28 ± 1.10 a | 10.85 ± 1.02 b | 8.89 ± 0.81 c | 15.58 ± 1.43 a | |
Artemisia ketone | 3.97 ± 0.31 e | 15.16 ± 1.32 c | 10.20 ± 1.00 d | 42.55 ± 4.12 a | 13.36 ± 1.22 c | 23.95 ± 2.17 b | |
Camphor | 7.11 ± 0.70 d | 5.01 ± 0.47 e | 21.53 ± 2.02 b | 13.78 ± 1.21 c | 27.65 ± 2.16 a | 25.89 ± 2.21 ab | |
Germacrene D | 12.20 ± 1.11 a | 2.40 ± 0.22 c | 5.39 ± 5.11 b | 0.93 ± 0.09 e | 5.89 ± 0.53 b | 1.45 ± 0.12 d | |
Total | 25.77 | 24.68 | 50.40 | 68.11 | 55.79 | 66.85 | |
N * | 80 | 62 | 64 | 49 | 75 | 54 |
Parameter | Control | Se+6 | Nano-Se |
---|---|---|---|
Non-soluble Fiber (% d.w.) | 50.4 ± 5.0 a | 45.4 ± 4.5 a | 47.4 ± 4.7 a |
Soluble Fiber (% d.w.) | 5.8 ± 0.5 a | 6.0 ± 0.5 a | 7.0 ± 0.6 a |
Total Fiber (% d.w.) | 56.2 ± 5.6 a | 51.4 ± 5.1 a | 54.4 ± 5.4 a |
Pectin (% d.w.) | 6.5 ± 0.6 c | 11.0 ± 0.1 a | 8.0 ± 0.8 b |
Nitrates (mg g−1 d.w.) | 3.12 ± 0.30 b | 4.21 ± 0.40 a | 3.97 ± 0.35 a |
TDS (mg g−1 d.w.) | 72.5 ± 7.1 b | 88.9 ± 8.3 a | 88.4 ± 8.4 a |
Element | Control | Se+6 | Nano-Se |
---|---|---|---|
Macroelements | |||
Ca | 6487 ± 649 c | 8528 ± 850 b | 13,885 ± 1380 a |
K | 29,229 ± 29,200 b | 31,252 ± 3125 ab | 36,636 ± 361 a |
Mg | 1861 ± 185 c | 2517 ± 250 b | 3592 ± 360 a |
Na | 230 ± 23 b | 260 ± 26 b | 446 ± 44 a |
P | 3887 ± 390 a | 3319 ± 330 a | 4069 ± 405 a |
K/Na | 127 ± 12 a | 120 ± 12 a | 82 ± 8 b |
Microelements | |||
B | 0.36 ± 0.03 c | 0.45 ± 0.04 b | 0.72 ± 0.07 a |
Co | 0.17 ± 0.02 b | 0.09 ± 0.01 c | 0.23 ± 0.02 a |
Cu | 13.12 ± 1.12 c | 17.46 ± 1.52 b | 21.44 ± 2.01 a |
Fe | 82.8 ± 8.3 c | 112.0 ± 11.1 b | 378.0 ± 37.1 a |
I | 1.05 ± 0.10 c | 1.46 ± 0.13 b | 3.20 ± 0.31 a |
Li | 0.22 ± 0.02 c | 0.40 ± 0.04 b | 0.77 ± 0.07 a |
Mn | 40.74 ± 4.0 b | 45.16 ± 4.2 b | 81.42 ± 8.0 a |
Mo | 0.42 ± 0.04 c | 0.58 ± 0.05 b | 0.71 ± 0.07 a |
Se * | 40 ± 3 c | 2950 ± 285 a | 980 ± 92 b |
Si | 3.16 ± 0.30 a | 3.25 ± 0.30 a | 3.24 ± 0.31 a |
Zn | 50.47 ± 5.0 b | 44.92 ± 4.2 b | 91.96 ± 9.1 a |
As, Al and Heavy Metals | |||
Al | 3.61 ± 0.33 b | 3.49 ± 0.31 b | 8.33 ± 0.80 a |
As | 0.08 ± 0.01 c | 0.11 ± 0.01 b | 0.32 ± 0.02 a |
Cd | 0.08 ± 0.01 b | 0.09 ± 0.01 b | 0.13 ± 0.01 a |
Cr | 0.29 ± 0.03 b | 0.20 ± 0.02 c | 0.75 ± 0.07 a |
Ni | 2.41 ± 0.23 a | 2.43 ± 0.22 a | 2.74 ± 0.25 a |
Pb | 0.17 ± 0.01 b | 0.15 ± 0.01 b | 0.40 ± 0.03 a |
Sr | 22.79 ± 2.3 c | 31.65 ± 3.1 b | 48.54 ± 4.8 a |
V | 0.11 ± 0.01 c | 0.15 ± 0.01 b | 0.71 ± 0.07 a |
Month | 2021 | 2022 | ||
---|---|---|---|---|
Mean Temperature °C | Rainfall mm | Mean Temperature °C | Rainfall mm | |
April | 9.6 | 41.3 | 11.8 | 41.4 |
May | 16.3 | 20.2 | 14.9 | 24.5 |
June | 19.9 | 175.2 | 22.9 | 83.5 |
July | 26.3 | 59.5 | 24.3 | 22.3 |
August | 25.1 | 97.6 | 26.0 | 20.4 |
September | 17.9 | 50.0 | 19.6 | 12.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logvinenko, L.; Golubkina, N.; Fedotova, I.; Bogachuk, M.; Fedotov, M.; Kataev, V.; Alpatov, A.; Shevchuk, O.; Caruso, G. Effect of Foliar Sodium Selenate and Nano Selenium Supply on Biochemical Characteristics, Essential Oil Accumulation and Mineral Composition of Artemisia annua L. Molecules 2022, 27, 8246. https://doi.org/10.3390/molecules27238246
Logvinenko L, Golubkina N, Fedotova I, Bogachuk M, Fedotov M, Kataev V, Alpatov A, Shevchuk O, Caruso G. Effect of Foliar Sodium Selenate and Nano Selenium Supply on Biochemical Characteristics, Essential Oil Accumulation and Mineral Composition of Artemisia annua L. Molecules. 2022; 27(23):8246. https://doi.org/10.3390/molecules27238246
Chicago/Turabian StyleLogvinenko, Lidia, Nadezhda Golubkina, Irina Fedotova, Maria Bogachuk, Mikhail Fedotov, Vladislav Kataev, Andrey Alpatov, Oksana Shevchuk, and Gianluca Caruso. 2022. "Effect of Foliar Sodium Selenate and Nano Selenium Supply on Biochemical Characteristics, Essential Oil Accumulation and Mineral Composition of Artemisia annua L." Molecules 27, no. 23: 8246. https://doi.org/10.3390/molecules27238246
APA StyleLogvinenko, L., Golubkina, N., Fedotova, I., Bogachuk, M., Fedotov, M., Kataev, V., Alpatov, A., Shevchuk, O., & Caruso, G. (2022). Effect of Foliar Sodium Selenate and Nano Selenium Supply on Biochemical Characteristics, Essential Oil Accumulation and Mineral Composition of Artemisia annua L. Molecules, 27(23), 8246. https://doi.org/10.3390/molecules27238246