Effect of Ozonation on the Mechanical, Chemical, and Microbiological Properties of Organically Grown Red Currant (Ribes rubrum L.) Fruit
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes in the Mechanical Properties of Red Currant Fruit
2.2. Changes in pH and Acidity in Red Currant Fruit in Relation to Harvesting Date and Ozonation Time
2.3. Content of Bioactive Compounds in Red Currant Fruit
2.4. Changes in Microbiological Properties of Ozone-Treated Red Currant Fruit
3. Materials and Methods
3.1. Materials
3.2. Treatment of Fruit Ozone
3.3. Determination of the Morphological Characteristics of Red Currant Fruits
3.4. Water Content Measurement
3.5. Determination of the Mechanical Properties of Red Currant Fruits
- Ec—apparent modulus of elasticity (MPa);
- ED—destructive energy (mJ);
- d—diameter of the fruit (mm);
- λ—deformation of the fruit in the direction of the load (mm).
3.6. Determination of pH and Acidity of Red Currant Fruit
3.7. Determination of Bioactive Components
3.8. Microbiological Analysis of Red Currant Fruit
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Djordjević, B.S.; Djurovic, D.B.; Zec, G.D.; Meland, M.O.; Fotiric Aksic, M.M. Effect of shoot age on biological and chemical properties of red currant (Ribes rubrum L.) cultivars. Folia Hortic. 2020, 32, 291–305. [Google Scholar] [CrossRef]
- Heijerman, G.; Gessel, V.G. Higher profits with planting hole treatment in red currant. Acta Hortic. 2020, 1277, 239–244. [Google Scholar] [CrossRef]
- Ersoy, N.; Kupe, M.; Gundogdu, M.; Ilhan, G.; Ercisli, S. Phytochemical and antioxidant diversity in fruits of currant (Ribes spp.). Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Panfilova, O.; Tsoy, M.; Golyaeva, O.; Knyazev, S.; Karpukhin, M. Agrometeorological and Morpho-Physiological Studies of the Response of Red Currant to Abiotic Stresses. Agronomy 2021, 11, 1522. [Google Scholar] [CrossRef]
- Panfilova, O.; Kalinina, O.; Golyaeva, O.; Knyazev, S.; Tsoy, M. Physical and mechanical properties of berries and biological features of red currant growth for mechanized harvesting. Res. Agric. Eng. 2020, 66, 156–163. [Google Scholar] [CrossRef]
- Gorzelany, J.; Belcar, J.; Kuźniar, P.; Niedbała, G.; Pentoś, K. Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning. Agriculture 2022, 12, 200. [Google Scholar] [CrossRef]
- Jurgiel-Małecka, G.; Buchwał, A. Characteristics of the chemical composition of currant fruit grown in the region of West Pomeran. Food Sci. Technol. Qual. 2016, 6, 90–101. (In Polish) [Google Scholar] [CrossRef]
- Vakula, A.; Radojčin, M.; Pavkov, I.; Stamenković, Z.; Tepić Horecki, A.; Šumić, Z.; Pavlić, B. The impact of different drying methods on quality indicators of red currants (Ribes rubrum L.). J. Process. Energy Agric. 2015, 19, 249–254. [Google Scholar]
- Milivojević, J.; Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Nikolić, M.; Veberic, R. The influence of early yield on the accumulation of major taste and health-related compounds in black and red currant cultivars (Ribes spp.). J. Agric. Food Chem. 2012, 60, 2682–2691. [Google Scholar] [CrossRef]
- Berk, S.; Gundogdu, M.; Tuna, S.; Tas, A. Role of Maturity Stages on Phenolic Compounds and Organic Acids Contents in Red Currant Fruits. Int. J. Fruit Sci. 2020, 20, S1054–S1071. [Google Scholar] [CrossRef]
- Zdunić, G.; Šavikin, K.; Pljevljakušić, D.; Djordjević, B. Black (Ribes nigrum L.) and red currant (Ribes rubrum L.) cultivars. In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 101–126. [Google Scholar]
- Djordjević, B.; Šavikin, K.; Zdunić, G.; Janković, T.; Vulić, T.; Oparnica, Č.; Radivojević, D. Biochemical Properties of Red Currant Varieties in Relation to Storage. Plant Foods Hum. Nutr. 2010, 65, 326–332. [Google Scholar] [CrossRef]
- Jaramillo-Sánchez, G.; Contigiani, E.V.; Castro, M.; Hodara, K.; Alzamora, S.; Loredo, A.; Nieto, A. Freshness maintenance of blueberries (Vaccinium corymbosum L.) during postharvest using ozone in aqueous phase: Microbiological, structure, and mechanical issues. Food Bioprocess Technol. 2019, 12, 2136–2147. [Google Scholar] [CrossRef]
- Piechowiak, T.; Antos, P.; Kosowski, P.; Skrobacz, K.; Józefczyk, R.; Balawejder, M. Impact of ozonation process on the microbiological and antioxidant status of raspberry (Rubus ideaeus L.) fruit during storage at room temperature. Agric. Food Sci. 2019, 28, 35–44. [Google Scholar] [CrossRef]
- Lv, Y.; Tahir, I.I.; Olsson, M.E. Effect of ozone application on bioactive compounds of apple fruit during short-term cold storage. Sci. Hortic. 2019, 253, 49–60. [Google Scholar] [CrossRef]
- Contigiani, E.V.; Jaramillo-Sánchez, G.; Castro, M.A.; Gomez, P.L.; Alzamora, S.M. Postharvest quality of strawberry fruit (Fragaria x Ananassa Duch cv. Albion) as affected by ozone washing: Fungal spoilage, mechanical properties, and structure. Food Bioprocess Technol. 2018, 11, 1639–1650. [Google Scholar] [CrossRef]
- Zardzewiały, M.; Matlok, N.; Piechowiak, T.; Gorzelany, J.; Balawejder, M. Ozone Treatment as a Process of Quality Improvement Method of Rhubarb (Rheum rhaponticum L.) Petioles during Storage. Appl. Sci. 2020, 10, 8282. [Google Scholar] [CrossRef]
- Zapałowska, A.; Matłok, N.; Zardzewiały, M.; Piechowiak, T.; Balawejder, M. Effect of Ozone Treatment on the Quality of Sea Buckthorn (Hippophae rhamnoides L.). Plants 2021, 10, 847. [Google Scholar] [CrossRef] [PubMed]
- Gorzelany, J.; Migut, D.; Matłok, N.; Antos, P.; Kuźniar, P.; Balawejder, M. Impact of Pre-Ozonation on Mechanical Properties of Selected Genotypes of Cucumber Fruits During the Souring Process. Ozone Sci. Eng. 2017, 39, 188–195. [Google Scholar] [CrossRef]
- Antos, P.; Piechowicz, B.; Gorzelany, J.; Matłok, N.; Migut, D.; Józefczyk, R.; Balawejder, M. Effect of Ozone on Fruit Quality and Fungicide Residue Degradation in Apples during Cold Storage. Ozone Sci. Eng. 2018, 40, 482–486. [Google Scholar] [CrossRef]
- Horvitz, S.; Cantalejo, M.J. Effects of ozone and chlorine postharvest treatments on quality of fresh-cut red bell peppers. Int. J. Food Sci. Technol. 2012, 47, 1935–1943. [Google Scholar] [CrossRef]
- Gorzelany, J.; Kapusta, I.; Zardzewiały, M.; Belcar, J. Effects of Ozone Application on Microbiological Stability and Content of Sugars and Bioactive Compounds in the Fruit of the Saskatoon Berry (Amelanchier alnifolia Nutt.). Molecules 2022, 27, 6446. [Google Scholar] [CrossRef] [PubMed]
- Gorzelany, J.; Basara, O.; Kuźniar, P.; Pawłowska, A.M.; Belcar, J. Effect of ozone treatment on mechanical and chemical properties of sea-buckthorn (Hippophaë rhamnoides L.) fruit. Acta Univ. Cibiniensis Ser. E Food Technol. 2022, 26. (accepted, online in December 2022). [Google Scholar]
- Petrisor, C.; Illie, A.; Moale, C. Production and quality potential of different black and red currant cultivars in Baneasa Research Station condition. J.Hortic. For. Biotechnol. 2013, 17, 76–79. [Google Scholar]
- Zhang, H.; Zhang, X.; Dong, C.; Zhang, N.; Ban, Z.; Li, L. Effects of ozone treatment on SOD activity and genes in postharvest cantaloupe. RSC Adv. 2020, 10, 17452–17460. [Google Scholar] [CrossRef]
- Ma, X.; Yang, W.; Kallio, H.; Yang, B. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn (Hippophaë rhamnoides). Crit. Rev. Food Sci. Nutr. 2021, 62, 3798–3816. [Google Scholar] [CrossRef]
- Zhang, H.; Li, K.; Zhang, X.; Dong, C.; Ji, H.; Ke, R.; Ban, Z.; Hu, Y.; Lin, S.; Chen, C. Effects of ozone treatment on the antioxidant capacity of postharvest strawberry. RSC Adv. 2020, 10, 38142–38157. [Google Scholar] [CrossRef]
- Piechowiak, T.; Sowa, P.; Balawejder, M. Effect of Ozonation Process on the Energy Metabolism in Raspberry Fruit during Storage at Room Temperature. Food Bioprocess Technol. 2021, 14, 483–491. [Google Scholar] [CrossRef]
- Laczkó-Zöld, E.; Komlósi, A.; Ülkei, T.; Fogarasi, E.; Croitoru, M.; Fülöp, I.; Domokos, E.; Ştefănescu, R.; Varga, E. Extractability of polyphenols from black currant, red currant and gooseberry and their antioxidant activity. Acta Biol. Hung. 2018, 69, 156–169. [Google Scholar] [CrossRef]
- Jakobek, L.; Šeruga, M.; Novak, I.; Medvidović-Kosanović, M. Flavonols, Phenolic Acids and Antioxidant Activity of Some Red Fruits. Dtsch. Lebensm.-Rundsch. 2007, 130, 369–377. [Google Scholar]
- Piechowiak, T.; Antos, P.; Józefczyk, R.; Kosowski, P.; Skrobacz, K.; Balawejder, M. Impact of Ozonation Process on the Microbiological Contamination and Antioxidant Capacity of Highbush Blueberry (Vaccinum corymbosum L.) Fruit during Cold Storage. Ozone Sci. Eng. 2019, 41, 376–385. [Google Scholar] [CrossRef]
- Pretell-Vásquez, C.; Márquez-Villacorta, L.; Siche, R.; Hayayumi-Valdivia, M. Optimization of ozone concentration and storage time in green asparagus (Asparagus officinalis L.) using response surface methodology. Vitae 2022, 28, 3. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Balawejder, M. Effects of Post-Harvest Ozone Treatment on Some Molecular Stability Markers of Amelanchier alnifolia Nutt. Fruit during Cold Storage. Int. J. Mol. Sci. 2022, 23, 11152. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Gorzelany, J.; Balawejder, M. Effects of Ozone Treatment on Microbial Status and the Contents of Selected Bioactive Compounds in Origanum majorana L. Plants. Plants 2020, 9, 1637. [Google Scholar] [CrossRef]
- Kulig, R.; Łysiak, G.; Skonecki, S. Prediction of pelleting outcomes based on moisture versus strain hysteresis during the loading of individual pea seeds. Biosyst. Eng. 2015, 129, 226–236. [Google Scholar] [CrossRef]
- PN-90/A-75101-03: 1990; Fruit and Vegetable Preserves—Sample Preparation and Physicochemical Test Methods—Determination of dry Matter Content by Gravimetry. Polish Committee for Standardization: Warsaw, Poland, 1990.
- PN-EN 12147:2000; Fruit and Vegetable Juices—Determination of Titrable Acidity. Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-A-04019:1998; Food Products—Determination of Vitamin C Content. Polish Committee for Standardization: Warsaw, Poland, 1998.
- Chiabrando, V.; Giacalone, G. Anthocyanins, phenolic and antioxidant capacity after fresh storage of blueberry treated with edible coatings. Int. J. Food Sci. Nutr. 2015, 66, 248–253. [Google Scholar] [CrossRef]
Variables | Diameter (mm) | Weight (mg) | Density (10−3 kg·m−3) | Moisture Content (%) | |
---|---|---|---|---|---|
Cultivar | ‘Holenderska Czerwona’ | 9.3 b ± 0.7 | 464 b ± 110 | 1.09 a ± 0.05 | 84.2 a ± 1.8 |
‘Losan’ | 8.8 a ± 0.8 | 408 a ± 109 | 1.11 b ± 0.07 | 85.2 b ± 1.8 | |
‘Luna’ | 8.7 a ± 0.7 | 403 b ± 94 | 1.13 c ± 0.06 | 85.2 b ± 2.1 | |
Time of gaseous ozonation (min) | 0 | 9.1 b ± 0.7 | 448 b ± 109 | 1.11 b ± 0.06 | 85.3 b ± 2.1 |
15 | 8.8 a ± 0.8 | 411 a ± 105 | 1.11 b ± 0.06 | 84.8 a ± 2.0 | |
30 | 8.9 a ± 0.8 | 415 a ± 106 | 1.12 b ± 0.07 | 84.6 a ± 1.8 | |
Duration of storage (days) | 1 | 9.1 b ± 0.8 | 444 b ± 110 | 1.12 b ± 0.07 | 85.4 b ± 2.1 |
8 | 8.9 a ± 0.9 | 410 a ± 123 | 1.12 b ± 0.06 | 85.2 b ± 2.1 | |
15 | 8.8 a ± 0.6 | 420 a ± 85 | 1.10 a ± 0.06 | 84.2 a ± 1.7 | |
Harvest date | P | 8.9 a ± 0.7 | 413 a ± 105 | 1.11 b ± 0.06 | 85.1 b ± 2.0 |
O | 9.0 b ± 0.8 | 437 b ± 110 | 1.11 b ± 0.07 | 84.7 a ± 2.0 | |
Mean | 8.9 ± 0.8 | 425 ± 108 | 1.11 ± 0.06 | 84.89 ± 2.0 |
Variables | Force (N) | Deformation (%) | Energy (mJ) | Apparent Modulus of Elasticity (10−3 MPa) | |
---|---|---|---|---|---|
Cultivar | ‘Holenderska Czerwona’ | 2.76 b ± 0.78 | 34.8 a ± 5.8 | 4.84 b ± 1.27 | 69.85 b ± 22.56 |
‘Losan’ | 2.44 a ± 1.03 | 37.0 b ± 6.6 | 3.88 a ± 1.41 | 60.66 a ± 21.31 | |
‘Luna’ | 3.49 c ± 1.30 | 39.8 c ± 6.2 | 5.57 c ± 1.74 | 81.28 c ± 21.94 | |
Time of ozonation (min) | 0 | 3.00 a ± 1.18 | 37.5 a ± 6.6 | 5.00 b ± 1.74 | 68.96 a ± 22.08 |
15 | 2.81 a ± 1.13 | 36.9 a ± 6.3 | 4.61 a ± 1.57 | 70.88 a ± 22.93 | |
30 | 2.88 a ± 1.12 | 37.1 a ± 6.6 | 4.69 a ± 1.58 | 71.94 a ± 25.32 | |
Duration of storage (days) | 1 | 3.11 b ± 1.13 | 37.4 a ± 6.3 | 5.46 c ± 1.70 | 77.65 c ± 24.46 |
8 | 2.83 a ± 1.12 | 37.7 a ± 6.9 | 4.73 b ± 1.50 | 73.73 b ± 24.77 | |
15 | 2.75 a ± 1.15 | 36.4 a ± 6.2 | 4.10 a ± 1.42 | 60.41 a ± 16.82 | |
Harvest date | P | 2.97 a ± 1.07 | 37.4 a ± 6.4 | 4.96 b ± 1.65 | 74.83 b ± 23.75 |
O | 2.82 a ± 1.21 | 37.0 a ± 6.6 | 4.57 a ± 1.61 | 66.36 a ± 22.47 | |
Mean | 2.90 ± 1.14 | 37.2 ± 6.5 | 4.76 ± 1.64 | 70.60 ± 23.49 |
Cultivar | Time Gaseous Ozonation (min) | Harvest Date | Duration of Storage (Days) | Ascorbic Acid Content (mg·100 g−1) | Total Polyphenols Content (mg GAE·100 g−1) | Antioxidant Activity | ||
---|---|---|---|---|---|---|---|---|
DPPH IC50 (mg/mL) | ABTS+ (μM TE·g−1 d.m.) | FRAP (mM Fe2+ 100 g) | ||||||
‘Holenderska Czerwona’ | 0 | P | 1 | 34.1 a ± 0.5 | 117.4 a ± 0.6 | 3.79 a ± 0.06 | 11.27 a ± 0.27 | 0.59 a ± 0.06 |
0 | P | 15 | 50.2 b ± 0.6 | 122.6 a ± 1.4 | 3.86 a ± 0.12 | 11.52 b ± 0.09 | 0.80 b ± 0.10 | |
0 | O | 1 | 35.1 a ± 0.8 | 87.1 b ± 0.7 | 3.31 a ± 0.09 | 11.48 a ± 0.07 | 0.71 a ± 0.14 | |
0 | O | 15 | 40.1 b ± 0.5 | 79.1 a ± 1.0 | 3.53 b ± 0.05 | 11.92 b ± 0.07 | 0.74 a ± 0.04 | |
15 | P | 1 | 42.5 a ± 0.5 | 127.9 b ± 0.8 | 3.80 a ± 0.10 | 11.83 a ± 0.08 | 0.50 a ± 0.05 | |
15 | P | 15 | 48.2 b ± 0.2 | 105.1 a ± 0.6 | 4.06 b ± 0.06 | 12.02 b ± 0.07 | 0.75 b ± 0.07 | |
15 | O | 1 | 41.6 a ± 0.4 | 76.9 b ± 0.4 | 3.22 a ± 0.02 | 11.56 a ± 0.26 | 0.72 a ± 0.07 | |
15 | O | 15 | 42.5 b ± 0.4 | 43.6 a ± 0.6 | 3.48 b ± 0.19 | 12.01 b ± 0.06 | 0.75 a ± 0.06 | |
30 | P | 1 | 25.4 a ± 0.1 | 254.0 b ± 1.0 | 3.78 a ± 0.02 | 12.12 a ± 0.12 | 0.43 a ± 0.03 | |
30 | P | 15 | 54.3 b ± 0.3 | 96.2 a ± 0.2 | 3.89 a ± 0.07 | 12.31 b ± 0.08 | 0.74 b ± 0.04 | |
30 | O | 1 | 47.7 b ± 0.7 | 122.4 b ± 0.4 | 2.81 a ± 0.04 | 11.89 a ± 0.06 | 0.70 a ± 0.10 | |
30 | O | 15 | 38.4 a ± 0.6 | 83.1 a ± 0.1 | 3.30 b ± 0.30 | 12.20 b ± 0.10 | 0.75 a ± 0.10 | |
‘Luna’ | 0 | P | 1 | 31.2 a ± 0.2 | 119.9 b ± 0.9 | 3.69 a ± 0.05 | 11.18 a ± 0.02 | 0.64 a ± 0.04 |
0 | P | 15 | 55.2 b ± 0.5 | 83.0 a ± 1.0 | 3.77 a ± 0.03 | 11.27 a ± 0.03 | 0.74 b ± 0.01 | |
0 | O | 1 | 64.7 b ± 0.3 | 41.6 a ± 0.6 | 3.48 a ± 0.03 | 11.53 a ± 0.03 | 0.74 a ± 0.04 | |
0 | O | 15 | 54.9 a ± 0.1 | 85.8 b ± 0.6 | 3.83 b ± 0.03 | 11.85 b ± 0.05 | 0.75 a ± 0.06 | |
15 | P | 1 | 45.2 a ± 0.2 | 190.4 b ± 0.4 | 3.67 a ± 0.07 | 11.97 a ± 0.03 | 0.56 a ± 0.06 | |
15 | P | 15 | 59.0 b ± 1.0 | 63.5 a ± 0.5 | 3.92 b ± 0.02 | 12.23 b ± 0.03 | 0.77 b ± 0.07 | |
15 | O | 1 | 51.3 a ± 0.3 | 79.8 b ± 0.2 | 2.83 a ± 0.03 | 11.71 a ± 0.01 | 0.74 a ± 0.02 | |
15 | O | 15 | 66.0 b ± 1.0 | 77.1 a ± 0.1 | 3.46 b ± 0.06 | 12.67 b ± 0.07 | 0.74 a ± 0.03 | |
30 | P | 1 | 27.3 a ± 0.3 | 231.6 b ± 0.6 | 3.65 a ± 0.05 | 12.39 a ± 0.10 | 0.69 a ± 0.01 | |
30 | P | 15 | 60.2 b ± 0.2 | 79.4 a ± 0.4 | 3.77 a ± 0.03 | 12.77 b ± 0.07 | 0.76 a ± 0.06 | |
30 | O | 1 | 69.7 a ± 0.7 | 95.7 b ± 0.7 | 2.24 a ± 0.04 | 12.06 a ± 0.06 | 0.74 a ± 0.01 | |
30 | O | 15 | 70.1 a ± 0.1 | 41.7 a ± 0.7 | 3.92 b ± 0.02 | 12.62 b ± 0.02 | 0.75 a ± 0.03 | |
‘Losan’ | 0 | P | 1 | 44.1 a ± 0.1 | 201.7 b ± 0.7 | 3.78 a ± 0.08 | 12.03 a ± 0.03 | 0.59 a ± 0.05 |
0 | P | 15 | 68.2 b ± 0.2 | 131.7 a ± 0.7 | 3.78 a ± 0.02 | 12.31 b ± 0.08 | 0.70 b ± 0.10 | |
0 | O | 1 | 39.6 a ± 0.6 | 91.1 b ± 0.1 | 3.18 a ± 0.18 | 12.18 a ± 0.08 | 0.72 a ± 0.02 | |
0 | O | 15 | 43.6 b ± 0.6 | 46.7 a ± 0.7 | 3.81 b ± 0.06 | 12.59 b ± 0.09 | 0.73 a ± 0.03 | |
15 | P | 1 | 41.4 a ± 0.4 | 102.4 a ± 0.4 | 3.73 a ± 0.03 | 11.58 a ± 0.12 | 0.70 a ± 0.10 | |
15 | P | 15 | 43.3 b ± 0.3 | 127.3 b ± 0.3 | 3.74 a ± 0.04 | 11.83 b ± 0.03 | 0.73 a ± 0.03 | |
15 | O | 1 | 40.8 a ± 0.8 | 94.5 b ± 0.5 | 3.52 a ± 0.08 | 11.71 a ± 0.11 | 0.74 a ± 0.00 | |
15 | O | 15 | 45.8 b ± 0.8 | 67.4 a ± 0.4 | 3.81 b ± 0.09 | 11.94 b ± 0.04 | 0.74 a ± 0.06 | |
30 | P | 1 | 34.0 a ± 1.0 | 260.6 b ± 0.3 | 3.73 a ± 0.03 | 11.87 a ± 0.06 | 0.63 a ± 0.03 | |
30 | P | 15 | 53.2 b ± 0.2 | 81.1 a ± 0.1 | 3.86 a ± 0.04 | 12.06 b ± 0.06 | 0.74 b ± 0.04 | |
30 | O | 1 | 51.2 a ± 0.2 | 112.7 b ± 0.7 | 3.48 a ± 0.08 | 11.94 a ± 0.04 | 0.72 a ± 0.02 | |
30 | O | 15 | 49.9 a ± 0.1 | 85.6 a ± 0.6 | 3.85 b ± 0.05 | 12.08 b ± 0.11 | 0.74 a ± 0.01 |
Cultivar | Time Gaseous Ozonation (min) | The Date of the Test | |||
---|---|---|---|---|---|
p | O | ||||
1 Day after Ozonation (log cfu g−1) | 15 Days after Ozonation (log cfu g−1) | 1 Day after Ozonation (log cfu g−1) | 15 Days after Ozonation (log cfu g−1) | ||
0 | 4.71 b,A | 6.17 b,B | 5.63 b,A | 6.34 b,B | |
‘Holenderska Czerwona’ | 15 | 3.95 b,B | 4.99 a,B | 3.41 a,A | 4.98 a,B |
30 | 4.03 a,A | 4.59 a,A | 3.72 a,A | 4.78 a,B | |
0 | 3.52 b,A | 4.76 b,B | 2.81 b,A | 3.18 a,A | |
‘Losan’ | 15 | 2.69 a,A | 3.89 a,B | 1.60 a,A | 2.59 a,B |
30 | 3.01 a,A | 3.71 a,A | 2.18 a,A | 2.41 a,A | |
0 | 4.79 b,A | 5.02 a,B | 4.85 b,A | 5.36 b,A | |
‘Luna’ | 15 | 3.59 a,B | 4.52 a,B | 3.32 a,A | 3.92 a,A |
30 | 3.89 a,A | 4.31 a,B | 3.59 a,A | 3.83 a,A |
Cultivar | Ozone Exposure Time (min) | The Date of the Test | |||
---|---|---|---|---|---|
p | O | ||||
1 Day after Ozonation (log cfu g−1) | 15 Days after Ozonation (log cfu g−1) | 1 Day after Ozonation (log cfu g−1) | 15 Days after Ozonation (log cfu g−1) | ||
0 | 6.01 b,A | 7.01 b,B | 5.99 b,A | 6.05 b,A | |
‘Holenderska Czerwona’ | 15 | 5.40 a,A | 6.31 a,B | 5.32 a,A | 5.64 b,A |
30 | 5.32 a,A | 6.02 a,B | 5.40 a,A | 5.54 a,A | |
0 | 4.59 b,A | 5.89 b,B | 4.62 b,A | 5.81 b,B | |
‘Losan’ | 15 | 4.01 a,A | 4.82 a,B | 3.46 a,A | 3.54 a,A |
30 | 3.92 a,A | 4.51 a,A | 3.18 a,A | 3.43 a,A | |
0 | 4.99 b,A | 5.61 a,A | 5.46 b,A | 5.73 b,A | |
‘Luna’ | 15 | 4.60 a,A | 5.01 a,A | 4.32 b,A | 5.30 b,B |
30 | 4.46 a,A | 4.82 a,A | 4.28 a,A | 5.08 a,B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuźniar, P.; Belcar, J.; Zardzewiały, M.; Basara, O.; Gorzelany, J. Effect of Ozonation on the Mechanical, Chemical, and Microbiological Properties of Organically Grown Red Currant (Ribes rubrum L.) Fruit. Molecules 2022, 27, 8231. https://doi.org/10.3390/molecules27238231
Kuźniar P, Belcar J, Zardzewiały M, Basara O, Gorzelany J. Effect of Ozonation on the Mechanical, Chemical, and Microbiological Properties of Organically Grown Red Currant (Ribes rubrum L.) Fruit. Molecules. 2022; 27(23):8231. https://doi.org/10.3390/molecules27238231
Chicago/Turabian StyleKuźniar, Piotr, Justyna Belcar, Miłosz Zardzewiały, Oskar Basara, and Józef Gorzelany. 2022. "Effect of Ozonation on the Mechanical, Chemical, and Microbiological Properties of Organically Grown Red Currant (Ribes rubrum L.) Fruit" Molecules 27, no. 23: 8231. https://doi.org/10.3390/molecules27238231
APA StyleKuźniar, P., Belcar, J., Zardzewiały, M., Basara, O., & Gorzelany, J. (2022). Effect of Ozonation on the Mechanical, Chemical, and Microbiological Properties of Organically Grown Red Currant (Ribes rubrum L.) Fruit. Molecules, 27(23), 8231. https://doi.org/10.3390/molecules27238231