Effect of Salt Addition and Fermentation Time on Phenolics, Microbial Dynamics, Volatile Organic Compounds, and Sensory Properties of the PDO Table Olives of Gaeta (Italy)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evolution of pH and Salt Concentration of the Brine
2.2. Evolution of Bacterial and Yeast Communities during Fermentation
2.3. Effects on Volatile Organic Compounds (VOCs)
2.4. Sensory Analysis
3. Materials and Methods
3.1. Olive Sampling and Experimental Design
3.2. Physical–Chemical Characteristics of the Drupes Used in the Experiment
3.3. Quantification of Lactic Acid Bacteria and Yeast Populations during Fermentation
3.4. Measurements of pH and Salt Concentration during Fermentation
3.5. Analysis of Phenolic Compounds in Olives and Brine
3.6. Volatile Organic Compounds in Olives and Brine
3.7. Sensory Analysis of Olives
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fernández, A.G.; Adams, M.R.; Fernandez-Diez, M. Table Olives: Production and Processing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Ramírez, E.; Brenes, M.; García, P.; Medina, E.; Romero, C. Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes. Food Chem. 2016, 206, 204–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omar, S.H. Oleuropein in Olive and its Pharmacological Effects. Sci. Pharm. 2010, 78, 133–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spadafora, A.; Mazzuca, S.; Chiappetta, F.F.; Parise, A.; Perri, E.; Innocenti, A.M. Oleuropein-Specific-β-Glucosidase Activity Marks the Early Response of Olive Fruits (Olea europaea) to Mimed Insect Attack. Agric. Sci. China 2008, 7, 703–712. [Google Scholar] [CrossRef]
- Perpetuini, G.; Prete, R.; Garcia-Gonzalez, N.; Khairul Alam, M.; Corsetti, A. Table Olives More than a Fermented Food. Foods 2020, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.L.; Mitchell, A.E. Reducing Phenolics Related to Bitterness in Table Olives. J. Food Qual. 2018, 2018, 3193185. [Google Scholar] [CrossRef]
- Blatchly, R.; Nircan, Z.D.; O’Hara, P. The Chemical Story of Olive Oil: From Grove to Table; Royal Society of Chemistry: London, UK, 2017. [Google Scholar]
- Brenes, M.; Rejano, L.; Garcia, P.; Sanchez, A.H.; Garrido, A. Biochemical Changes in Phenolic Compounds during Spanish-Style Green Olive Processing. J. Agric. Food Chem. 1995, 43, 2702–2706. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Schillinger, U.; Franz, C.M.; Nychas, G.-J. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol. 2008, 25, 348–358. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Tassou, C.C. Changes in volatile compounds and related biochemical profile during controlled fermentation of cv. Conservolea green olives. Food Microbiol. 2006, 23, 738–746. [Google Scholar] [CrossRef]
- Sabatini, N.; Marsilio, V. Volatile compounds in table olives (Olea europaea L., Nocellara del Belice cultivar). Food Chem. 2008, 107, 1522–1528. [Google Scholar] [CrossRef]
- Montaño, A.; Sánchez, A.H.; López-López, A.; de Castro, A.; Rejano, L. Chemical composition of fermented green olives: Acidity, salt, moisture, fat, protein, ash, fiber, sugar, and polyphenol. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Hurtado, A.; Reguant, C.; Bordons, A.; Rozès, N. Lactic acid bacteria from fermented table olives. Food Microbiol. 2012, 31, 1–8. [Google Scholar] [CrossRef]
- Botta, C.; Cocolin, L. Microbial dynamics and biodiversity in table olive fermentation: Culture-dependent and -independent approaches. Front. Microbiol. 2012, 3, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiai, H.; Hafidi, A. Chemical composition changes in four green olive cultivars during spontaneous fermentation. LWT Food Sci. Technol. 2014, 57, 663–670. [Google Scholar] [CrossRef]
- Corrado, G.; Imperato, A.; La Mura, M.; Perri, E.; Rao, R. Genetic diversity among olive varieties of Southern Italy and the traceability of olive oil using SSR markers. J. Hortic. Sci. Biotechnol. 2011, 86, 461–466. [Google Scholar] [CrossRef]
- Grasso, F.; Paduano, A.; Corrado, G.; Ambrosino, M.L.; Rao, R.; Sacchi, R. DNA diversity in olive (Olea europaea L.) and its relationships with fatty acid, biophenol and sensory profiles of extra virgin olive oils. Food Res. Int. 2016, 86, 121–130. [Google Scholar] [CrossRef]
- Mattas, K.; Baourakis, G.; Tsakiridou, E.; Hedoui, M.A.; Hosni, H. PDO Olive Oil Products: A Powerful Tool for Farmers and Rural Areas. J. Int. Food Agribus. Mark. 2020, 32, 313–336. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.A.; Tsaltas, D. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front. Microbiol. 2022, 12, 797295. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; MacGregor, G.A. Effect of modest salt reduction on blood pressure: A meta-analysis of randomized trials. Implications for public health. J. Hum. Hypertens. 2002, 16, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Trieu, K.; Neal, B.; Hawkes, C.; Dunford, E.; Campbell, N.R.C.; Rodriguez-Fernandez, R.; Legetic, B.; McLaren, L.; Barberio, A.; Webster, J. Salt Reduction Initiatives around the World—A Systematic Review of Progress towards the Global Target. PLoS ONE 2015, 10, e0130247. [Google Scholar] [CrossRef] [Green Version]
- Lanza, B. Abnormal fermentations in table-olive processing: Microbial origin and sensory evaluation. Front. Microbiol. 2013, 4, 91. [Google Scholar] [CrossRef]
- Bevilacqua, A.; de Stefano, F.; Augello, S.; Pignatiello, S.; Sinigaglia, M.; Corbo, M.R. Biotechnological innovations for table olives. Int. J. Food Sci. Nutr. 2015, 66, 127–131. [Google Scholar] [CrossRef]
- Conte, P.; Fadda, C.; Del Caro, A.; Urgeghe, P.P.; Piga, A. Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality. Foods 2020, 9, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanza, B.; Di Serio, M.G.; Iannucci, E. Effects of maturation and processing technologies on nutritional and sensory qualities of Itrana table olives. Grasas Aceites 2013, 64, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, A.H.; de Castro, A.; Rejano, L.; Montaño, A. Comparative Study on Chemical Changes in Olive Juice and Brine during Green Olive Fermentation. J. Agric. Food Chem. 2000, 48, 5975–5980. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-López, F.; Romero-Gil, V.; Bautista-Gallego, J.; Rodríguez-Gómez, F.; Jiménez-Díaz, R.; García-García, P.; Querol, A.; Garrido-Fernández, A. Yeasts in table olive processing: Desirable or spoilage microorganisms? Int. J. Food Microbiol. 2012, 160, 42–49. [Google Scholar] [CrossRef]
- Sánchez, A.-H.; Rejano, L.; Montaño, A.; de Castro, A. Utilization at high pH of starter cultures of lactobacilli for Spanish-style green olive fermentation. Int. J. Food Microbiol. 2001, 67, 115–122. [Google Scholar] [CrossRef]
- Ozay, G.; Borcakh, M. Effect of brine replacement and salt concentration on the fermentation of naturally black olives. Food Res. Int. 1995, 28, 553–559. [Google Scholar] [CrossRef]
- Tassou, C.; Panagou, E.; Katsaboxakis, K. Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines. Food Microbiol. 2002, 19, 605–615. [Google Scholar] [CrossRef]
- Romero-Gil, V.; Bautista-Gallego, J.; Rodriguez-Gomez, F.; García-García, P.; Jiménez-Díaz, R.; Fernández, A.G.; Arroyo-López, F. Evaluating the individual effects of temperature and salt on table olive related microorganisms. Food Microbiol. 2013, 33, 178–184. [Google Scholar] [CrossRef]
- Durán, M.; García, P.; Brenes, M.; Garrido, A. Lactobacillus plantarum Survival During the First Days of Ripe Olive Brining. Syst. Appl. Microbiol. 1993, 16, 153–158. [Google Scholar] [CrossRef]
- Ruiz-Barba, J.L.; Brenes-Balbuena, M.; Jiménez-Díaz, R.; García-García, P.; Garrido-Fernández, A. Inhibition of Lactobacillus plantarum by polyphenols extracted from two different kinds of olive brine. J. Appl. Bacteriol. 1993, 74, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Perpetuini, G.; Scornec, H.; Tofalo, R.; Serror, P.; Schirone, M.; Suzzi, G.; Corsetti, A.; Cavin, J.F.; Licandro-Seraut, H. Identification of Critical Genes for Growth in Olive Brine by Transposon Mutagenesis of Lactobacillus pentosus C11. Appl. Environ. Microbiol. 2013, 79, 4568–4575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charoenprasert, S.; Mitchell, A. Factors Influencing Phenolic Compounds in Table Olives (Olea europaea). J. Agric. Food Chem. 2012, 60, 7081–7095. [Google Scholar] [CrossRef] [PubMed]
- Blekas, G.; Vassilakis, C.; Harizanis, C.; Tsimidou, M.; Boskou, D.G. Biophenols in table olives. J. Agric. Food Chem. 2002, 50, 3688–3692. [Google Scholar] [CrossRef] [PubMed]
- Brenes, M.; de Castro, A. Transformation of oleuropein and its hydrolysis products during Spanish-style green olive processing. J. Sci. Food Agric. 1998, 77, 353–358. [Google Scholar] [CrossRef]
- Valenčić, V.; Bandelj Mavsar, D.; Bučar-Miklavčić, M.; Butinar, B.; Čadež, N.; Golob, T.; Raspor, P.; Smole Možina, S. The impact of production technology on the growth of indigenous microflora and quality of table olives from Slovenian Istria. Food Technol. Biotechnol. 2010, 48, 404–410. [Google Scholar]
- Zamora, F. Biochemistry of Alcoholic Fermentation. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer: New York, NY, USA, 2009; pp. 3–26. [Google Scholar]
- Estévez, M.; Ventanas, S.; Ramírez, A.R.; Cava, R. Analysis of Volatiles in Porcine Liver Pâtés with Added Sage and Rosemary Essential Oils by Using SPME-GC-MS. J. Agric. Food Chem. 2004, 52, 5168–5174. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, N. A Comparison of the Volatile Compounds, in Spanish-style, Greek-style and Castelvetrano-style Green Olives of the Nocellara del Belice Cultivar: Alcohols, Aldehydes, Ketones, Esters and Acids. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010; pp. 219–231. [Google Scholar]
- Nanou, A.; Mallouchos, A.; Panagou, E.Z. Elucidation of the Volatilome of Packaged Spanish-Style Green Olives of Conservolea and Halkidiki Varieties Using SPME-GC/MS. Proceedings 2020, 70, 7629. [Google Scholar] [CrossRef]
- Rodríguez, M.R.; Vallejo, M.G.; Cueto, M.J.M. Study of molar volume and refraction in of triglyceride (triacetin, tributyrin or tricaprylin)-alcohol (ethanol, 1-butanol or 1-hexanol) mixtures. Grasas Aceites 1992, 43, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Delgado, A.; Sánchez, A.H.; de Castro, A.; López-López, A.; Beato, V.M.; Montaño, A. Volatile profile of Spanish-style green table olives prepared from different cultivars grown at different locations. Food Res. Int. 2016, 83, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Dabbou, S.; Issaoui, M.; Brahmi, F.; Nakbi, A.; Chehab, H.; Mechri, B.; Hammami, M. Changes in Volatile Compounds during Processing of Tunisian-Style Table Olives. J. Am. Oil Chem. Soc. 2011, 89, 347–354. [Google Scholar] [CrossRef]
- Sabatini, N.; Perri, E.; Marsilio, V. An investigation on molecular partition of aroma compounds in fruit matrix and brine medium of fermented table olives. Innov. Food Sci. Emerg. Technol. 2009, 10, 621–626. [Google Scholar] [CrossRef]
- Genovese, A.; Caporaso, N.; Civitella, A.; Sacchi, R. Effect of human saliva and sip volume of coffee brews on the release of key volatile compounds by a retronasal aroma simulator. Food Res. Int. 2014, 61, 100–111. [Google Scholar] [CrossRef]
- Aponte, M.; Ventorino, V.; Blaiotta, G.; Volpe, G.; Farina, V.; Avellone, G.; Lanza, C.M.; Moschetti, G. Study of green Sicilian table olive fermentations through microbiological, chemical and sensory analyses. Food Microbiol. 2010, 27, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Coolbear, T.; Weimer, B.C.; Wilkinson, M. Lactic acid bacteria: Lactic acid bacteria in flavor development. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 160–165. [Google Scholar]
- Aponte, M.; Blaiotta, G.; La Croce, F.; Mazzaglia, A.; Farina, V.; Settanni, L.; Moschetti, G. Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation. Food Microbiol. 2012, 30, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Tsimidou, M.; Papadopoulos, G.; Boskou, D. Determination of phenolic compounds in virgin olive oil by reversed-phase HPLC with emphasis on UV detection. Food Chem. 1992, 44, 53–60. [Google Scholar] [CrossRef]
Treatment | OHTy-Glucoside | Ty-Glucoside | Caffeic Acid | Vanillic Acid | Iso-Verbascoside | Verbascoside | Rutin | Luteolin-7-Glucoside | OHTy-der-1 | OHTy-der-2 | Oleuropein | Luteolin | OHTy-EA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D5 | 102.8 c | 9.2 c | nd | 25.8 a | 31.3 b | 142.2 a | 71.2 b | 125.1 a | 93.0 a | 152.8 a | 83.1 a | 66.0 c | 52.1 a |
D15 | 102.3 c | 15.3 b | nd | 17.4 b | 52.4 a | 102.7 b | 86.4 a | 79.0 b | 85.6 a | 86.1 b | 75.5 b | 95.5 b | 40.3 a |
W30-HS | 216.3 a | 16.5 b | 18.6 b | 17.4 b | 52.5 a | 93.2 bc | 81.1 a | 55.4 c | 33.3 b | 19.4 c | 30.2 c | 96.2 b | 16.4 b |
W15-HS | 195.9 b | 20.6 ab | 20.8 a | 16.4 b | 44.9 a | 85.1 bc | 84.7 a | 56.3 c | 27.4 b | 18.0 c | 32.0 c | 109.4 a | 14.2 b |
W30-MS | 198.6 b | 21.3 a | 18.2 b | 16.8 b | 42.6 a | 75.3 c | 65.7 b | 48.1 d | 31.0 b | 21.0 c | 29.1 c | 101.5 a | 13.0 b |
W15-MS | 167.1 bc | 21.5 a | 20.9 a | 17.1 b | 36.6 ab | 58.8 d | 77.8 ab | 48.1 d | 32.0 b | 19.0 c | 37.4 c | 100.4 a | 13.5 b |
Treatment | OHTy-Glucoside | Ty-Glucoside | Caffeic Acid | Vanillic Acid | Iso-Verbascoside | Verbascoside | Rutin | Luteolin-7-Glucoside | OHTy-der-1 | OHTy-der-2 | Oleuropein | Luteolin | OHTy-EA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D5 | 7.7 d | 3.4 d | nd | nd | nd | nd | nd | nd | 3.9 d | 2.5 c | nd | 8.2 c | nd |
D15 | 206.5 c | 33.7 c | nd | 22.5 c | 17.3 c | 24.5 d | 16.4 b | 45.0 c | 30.9 c | 44.4 a | 30.0 a | 17.0 b | nd |
W30-HS | 645.3 b | 72.1 b | 40.7 b | 43.2 b | 51.5 b | 98.5 c | 72.0 a | 74.3 b | 49.1 b | 29.7 b | 24.2 a | 21.3 b | nd |
W15-HS | 725.2 ab | 73.5 b | 50.0 ab | 48.8 b | 52.5 b | 104.1 b | 81.4 a | 100.2 ab | 55.6 b | 30.7 b | 22.3 a | 26.2 b | nd |
W30-MS | 728.7 ab | 86.0 a | 52.1 ab | 54.5 a | 69.8 a | 122.9 a | 55.3 ab | 135.8 a | 63.9 b | 31.5 b | 27.9 a | 30.0 ab | nd |
W15-MS | 807.3 a | 87.0 a | 67.9 a | 55.9 a | 61.9 a | 128.1 a | 78.0 a | 132.1 a | 76.0 a | 33.1 b | 24.6 a | 34.4 a | nd |
Volatile Compound | I.M. * | D5 | W30-HS | W15-HS | W30-MS | W15-MS |
---|---|---|---|---|---|---|
Acetaldehyde | RT | nd | 83 a | 116 a | nd | nd |
Dimethyl sulfide | TI | 30 b | 104 a | 91 a | 73 ab | 54 ab |
Octane | RT | 41 b | 437 b | 1472 a | 810 ab | 882 ab |
2-Methylpropanal | RT | 7 b | 25 a | 15 ab | 12 b | 12 b |
Methyl acetate | RT | 4 b | 71 a | 64 a | 51 ab | 42 ab |
Octene | RT | 7 b | 88 a | 110 a | 77 ab | 94 a |
Ethyl acetate | RT | 28 b | 2039 a | 1751 a | 1481 a | 1256 ab |
Methanol | RT | 28 b | 417 a | 344 a | 366 a | 267 ab |
2-Methylbutanal | RT | 20 b | 121 a | 82 ab | 68 ab | 68 ab |
3-Methylbutanal | RT | 17 b | 139 a | 84 ab | 75 ab | 74 ab |
Ethanol | RT | 290 b | 12,648 a | 13,618 a | 11,031 a | 9467 ab |
Ethyl isobutyrate | RT | nd | 35 a | 30 ab | 36 a | 24 b |
2-Pentanone | RT | 5 b | 10 ab | 5 b | 4 b | 13 a |
Ethyl butanoate | RT | nd | 39 a | 35 ab | 19 b | 28 ab |
1-Propanol | RT | nd | 18 a | 18 a | 9 b | 18 a |
Toluene | RT | 6 b | 8 a | 7 ab | 7 ab | 8 a |
Ethyl 2-methylbutanoate | RT | 9 b | 108 a | 89 a | 84 a | 76 ab |
Ethyl 3-methylbutanoate | RT | 25 b | 260 a | 245 a | 205 a | 214 a |
Hexanal | RT | 119 ab | 158 a | 97 ab | 123 a | 51 b |
Butyl 2-methylpropanoate | RT | nd | nd | nd | 34 a | 27 a |
2-Methylpropanol | RT | nd | 72 a | 58 ab | 56 ab | 48 b |
3-Methylbutyl acetate | RT | nd | 151 ab | 158 a | 115 b | 151 ab |
1-Butanol | RT | nd | 8 a | 7 ab | 6 ab | 5 b |
2-Heptanone | RT | nd | 2 a | 6 a | nd | 3 a |
Heptanal | RT | 11 b | 9 b | 23 a | 17 ab | 13 ab |
Limonene | RT | 1 a | nd | nd | nd | 10 a |
3-Methyl-1-butanol | RT | 15 b | 1254 a | 1060 a | 1001 a | 1092 a |
(E)-2-Hexenal | RT | 71 | nd | nd | nd | nd |
Ethyl hexanoate | RT | nd | 149 ab | 166 a | 138 ab | 77 b |
(E/Z)-Ocimene | TI | 45 b | 105 ab | 109 ab | 134 a | 60 b |
Styrene | RT | nd | 2306 b | 3255 a | 2608 ab | 2677 ab |
n-Hexyl acetate | RT | nd | 14 b | 29 a | 25 ab | 24 ab |
Octanal | RT | 22 a | 7 b | 8 ab | nd | 6 b |
4,8-Dimethylnona-1,3,7-triene | TI | 3 b | 9 ab | 12 a | 12 a | 8 ab |
(Z)-3-Hexenylacetate | RT | 49 a | 38 ab | 39 ab | 38 ab | 27 b |
Ethyl heptanoate | RT | nd | 3 ab | 8 a | 7 ab | 2 b |
6-Methylhept-5-en-2-one | RT | 5 b | 26 a | 30 a | 23 a | 21 ab |
Hexanol | RT | 60 b | 291 a | 269 a | 304 a | 180 ab |
(Z)-3-Hexenol | RT | 99 c | 157 ab | 156 abc | 167 a | 107 bc |
Methyl octanoate | RT | nd | 13 a | 10 ab | 12 a | 4 b |
Nonanal | RT | 75 a | 14 b | 26 b | 12 b | 21 b |
(E)-2-Hexenol | RT | 17 a | 3 b | 3 b | 3 b | 6 ab |
Ethyl octanoate | RT | nd | 83 a | 60 ab | 91 a | 29 b |
Heptanol | RT | 6 b | 73 a | 79 a | 76 a | 44 ab |
2-Ethylhexan-1-ol | TI | 6 b | 25 a | 27 a | 26 a | 23 a |
6-Hepten-1-ol | RT | nd | 14 ab | 15 a | 14 ab | 9 b |
Linalool | RT | nd | 8 ab | 10 a | 9 ab | 5 b |
(E)-2-Nonenal | TI | 5 | nd | nd | nd | nd |
Octanol | RT | 12 b | 34 ab | 40 a | 43 a | 22 ab |
9-Decenol | RT | nd | 6 ab | 8 a | 4 ab | 2 b |
(E)-2-Decenal | RT | 88 a | 7 b | 21 b | 12 b | 8 b |
Nonanol | RT | nd | 69 ab | 81 a | 87 a | 47 b |
Ethyl benzoate | RT | nd | 9 ab | 11 ab | 12 a | 7 b |
Farnesene | RT | 23 b | 121 ab | 142 a | 188 a | 86 ab |
1-Decanol | RT | nd | 9 ab | 9 ab | 12 a | 6 b |
2-Undecenal | RT | 85 a | nd | nd | nd | 4 a |
2-Methoxyphenol | RT | nd | 3 a | nd | 2 a | 2 a |
Phenylmethanol | TI | 2 b | 20 ab | 17 ab | 30 a | 13 ab |
Ethyl 3-phenylpropanoate | RT | nd | 9 a | 9 a | 9 a | 5 b |
2-Phenylethanol | RT | 10 b | 106 a | 96 a | 122 a | 69 ab |
Volatile Compound | I.M. * | D5 | W30-HS | W15-HS | W30-MS | W15-MS |
---|---|---|---|---|---|---|
Acetaldehyde | RT | nd | 1198 a | 989 b | 1164 ab | 1063 ab |
Dimethyl sulfide | TI | 44 b | 281 a | 209 ab | 247 a | 195 ab |
Octane | RT | 26 a | nd | nd | 26 a | 36 a |
2-Methylpropanal | RT | nd | 41 a | nd | 40 a | 46 a |
Methyl acetate | RT | 441 b | 982 a | 687 ab | 905 a | 639 ab |
2,4-Dimethyleptene | TI | 65 b | 323 ab | 189 ab | 430 a | 416 a |
Ethyl Acetate | RT | 10,647 b | 18,142 a | 14,160 ab | 16,970 a | 13,787 ab |
Methanol | RT | 1762 b | 4841 a | 4012 a | 4018 a | 3806 ab |
2-Methylbutanal | RT | 211 b | 459 a | 418 ab | 461 a | 554 a |
3-Methylbutanal | RT | 210 b | 435 ab | 373 ab | 463 a | 568 a |
Ethanol | RT | 51,713 b | 126,636 a | 113,363 a | 105,356 ab | 117,646 a |
Ethyl propanoate | RT | nd | 13 a | nd | 299 a | nd |
Ethyl isobutyrate | RT | 74 ab | 42 b | 83 a | 96 a | 95 a |
2-Pentanone | RT | 63 c | 122 ab | 80 bc | 99 abc | 144 a |
2-Methylpropyl acetate | RT | nd | 61 a | 48 b | 60 ab | 63 a |
Ethyl butanoate | RT | 92 ab | 104 a | 75 b | 94 ab | 106 a |
1-Propanol | RT | nd | 193 ab | 213 ab | 161 b | 253 a |
Ethyl 2-methylbutanoate | RT | 144 ab | 154 a | 104 b | 151 a | 117 ab |
Camphene | RT | 243 a | nd | nd | nd | 30 a |
Ethyl 3-methylbutanoate | RT | 275 b | 557 a | 323 b | 339 b | 295 b |
Hexanal | RT | 1072 a | 191 b | 362 ab | 21 b | 217 b |
2-Methylpropanol | RT | 79 b | 1071 a | 1008 a | 981 a | 1007 a |
β-Pinene | RT | 463 | nd | nd | nd | nd |
3-Methylbutyl acetate | RT | 172 b | 696 a | 432 ab | 664 a | 529 ab |
3-Carene | TI | 15 | nd | nd | nd | nd |
3-Heptanone | RT | 77 b | 113.5 a | 85.1 ab | 74 b | 85 b |
Heptanal | RT | 520 a | 79.9 b | 61.8 b | 28 b | 62 b |
Limonene | RT | 17,015 | nd | nd | nd | nd |
3-Methylbutanol | RT | 917 b | 13,807.2 a | 11,604.3 a | 13,051 a | 14,641 a |
Eucalyptol | TI | 409 | nd | nd | nd | nd |
4-Methylheptan-2-one | RT | nd | 251.3 ab | 203.3 b | 468 ab | 557 a |
Ethyl 3-methylbut-2-enoate | TI | 15 b | 58.3 a | 21.4 b | 28 ab | 34 ab |
Ethyl hexanoate | RT | 530 a | 237.1 ab | 123 b | 207 b | 114 b |
4,6-Dimethylheptan-2-one | TI | nd | 23.2 a | nd | 55 a | 69 a |
1-Pentanol | RT | 46 b | 98.8 a | 70.7 ab | 92 a | 100 a |
3-Methylbut-3-en-1-ol | TI | 16 b | 47.5 a | nd | 44 a | 27 ab |
Styrene | RT | 22 b | 157.6 ab | 166.9 ab | 220 ab | 335 a |
Octanal | RT | 895 a | 141.1 b | 115.4 b | 76 b | 103.2 b |
1-Octen-3-one | RT | 43 | nd | nd | nd | nd |
2-Methyl-2-octanol | RT | nd | 64.2 ab | 55.9 b | 61 ab | 66.6 a |
(Z)-3-Hexenyl acetate | RT | 68 ab | 72.3 a | 69.5 a | 70 a | 63.2 b |
Ethyl heptanoate | RT | 114 | nd | nd | nd | nd |
6-Methyl-5-hepten-2-one | RT | 75 a | 36 b | 31.1 b | 31 b | 33.4 b |
Ethyl 2-hydroxypropanoate | TI | nd | 238.5 ab | 125.4 b | 333 a | 183.6 ab |
Hexanol | RT | 754 b | 1807.3 a | 1422.1 ab | 1792 a | 1407.7 ab |
(Z)-3-Hexenol | RT | 713 b | 1301.4 a | 1029.3 ab | 1272 a | 1012.6 ab |
Methyl octanoate | RT | 26 a | 61.3 a | nd | 22 a | nd |
Nonanal | RT | 1487 a | 557.8 b | 467.7 b | 279 b | 381.6 b |
(E)-2-Hexenol | RT | 102 a | 37 ab | nd | 25 b | 22.8 b |
Ethyl octanoate | RT | 268 a | 215.4 ab | 102.3 b | 219 ab | 75.2 b |
(E)-2-Octenal | RT | 67 a | nd | 30.2 a | nd | 30.3 a |
1-Octen-3-ol | RT | 150 | nd | nd | nd | nd |
Heptanol | RT | 121 b | 314.3 a | 269.4 a | 241 ab | 247.8 ab |
4-Octenoic acid, ethyl ester, (Z)- | TI | 151 a | 78.6 ab | 49.2 b | 70 ab | nd |
Decanal | RT | 612 a | 105.8 b | 81.7 b | 76 b | 113.3 b |
6-Hepten-1-ol | TI | nd | 90.3 ab | 165.2 a | 64 b | 75 b |
(E)-2-Hepten-1-ol | RT | 99 | nd | nd | nd | nd |
2-Methyldecanal | TI | 124 | nd | nd | nd | nd |
Ethyl nonanoate | RT | 192 | nd | nd | nd | nd |
Benzaldehyde | RT | nd | 119.4 a | 64.5 b | 95 ab | 109.7 a |
Linalool | RT | 570 | nd | nd | nd | nd |
1-Octanol | RT | 262 a | 129.3 b | 156.9 ab | 91 b | 104.6 b |
(E)-2-Decenal | RT | 125 a | 70 ab | 67 ab | nd | 33.2 b |
Nonanol | RT | 217 a | 202 ab | 181 ab | 143 b | 144.1 b |
4-Methyl benzaldehyde | TI | nd | 50 ab | 78 ab | 41 b | 82.9 a |
2-Undecenal | RT | nd | 63.1 a | 53.4 ab | nd | 42.9 b |
Benzyl alcohol | RT | 99 b | 206.1 ab | 294.2 a | 192 ab | 127.4 b |
Ethyl 3-phenylpropanoate | TI | 245 a | 63.1 ab | nd | 43 b | 12.1 b |
2-Phenylethanol | RT | 201 b | 796.3 a | 731.9 a | 537 ab | 574.5 ab |
1-Dodecanol | RT | 48 b | 53 b | 146.2 a | 119 ab | 74.1 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacchi, R.; Corrado, G.; Basile, B.; Mandarello, D.; Ambrosino, M.L.; Paduano, A.; Savarese, M.; Caporaso, N.; Aponte, M.; Genovese, A. Effect of Salt Addition and Fermentation Time on Phenolics, Microbial Dynamics, Volatile Organic Compounds, and Sensory Properties of the PDO Table Olives of Gaeta (Italy). Molecules 2022, 27, 8100. https://doi.org/10.3390/molecules27228100
Sacchi R, Corrado G, Basile B, Mandarello D, Ambrosino ML, Paduano A, Savarese M, Caporaso N, Aponte M, Genovese A. Effect of Salt Addition and Fermentation Time on Phenolics, Microbial Dynamics, Volatile Organic Compounds, and Sensory Properties of the PDO Table Olives of Gaeta (Italy). Molecules. 2022; 27(22):8100. https://doi.org/10.3390/molecules27228100
Chicago/Turabian StyleSacchi, Raffaele, Giandomenico Corrado, Boris Basile, Daniele Mandarello, Maria Luisa Ambrosino, Antonello Paduano, Maria Savarese, Nicola Caporaso, Maria Aponte, and Alessandro Genovese. 2022. "Effect of Salt Addition and Fermentation Time on Phenolics, Microbial Dynamics, Volatile Organic Compounds, and Sensory Properties of the PDO Table Olives of Gaeta (Italy)" Molecules 27, no. 22: 8100. https://doi.org/10.3390/molecules27228100
APA StyleSacchi, R., Corrado, G., Basile, B., Mandarello, D., Ambrosino, M. L., Paduano, A., Savarese, M., Caporaso, N., Aponte, M., & Genovese, A. (2022). Effect of Salt Addition and Fermentation Time on Phenolics, Microbial Dynamics, Volatile Organic Compounds, and Sensory Properties of the PDO Table Olives of Gaeta (Italy). Molecules, 27(22), 8100. https://doi.org/10.3390/molecules27228100