Biscuits Prepared with Enzymatically-Processed Soybean Meal Are Rich in Isoflavone Aglycones, Sensorially Well-Accepted and Stable during Storage for Six Months
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fermentation and Enzymatic Processing of Soybean Meal Decreases Oligosaccharides Contents and Converts Isoflavones to Aglycones
2.2. Enzymatic Processing of Soybean Meal Yields Biscuits with High Nutritional Value, Rich in Aglycone Isoflavones and Good Sensory Acceptance
2.3. Soybean Biscuits Showed Isoflavones, Sensory and Microbiological Stability after 180 Days of Storage
3. Materials and Methods
3.1. Standards and Chemicals
3.2. Soybean Meal Bioprocessing
3.3. Biscuit Preparation
3.4. Stability Test of Biscuits
3.5. Proximate Composition of Soybean Meals and Biscuits
3.6. Mineral Profile of Soybean Meals and Biscuits
3.7. Isoflavone Profile of Soybean Meals and Biscuits
3.8. Oligosaccharides Profile of Soybean Meals
3.9. Bacterial Analysis of Biscuits
3.10. Sensory Acceptance of Biscuits
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- De Oliveira Silva, F.; Miranda, T.G.; Justo, T.; da Silva Frasão, B.; Conte-Junior, C.A.; Monteiro, M.; Perrone, D. Soybean meal and fermented soybean meal as functional ingredients for the production of low-carb, high-protein, high-fiber and high isoflavones biscuits. LWT Food Sci. Technol. 2018, 90, 224–231. [Google Scholar] [CrossRef]
- U.S. Soy: International Buyers’ Guide. 2005. Available online: https://ussec.org/wp-content/uploads/2015/10/buyers-guide.pdf (accessed on 3 October 2022).
- Silva, F.D.O.; Perrone, D. Characterization and stability of bioactive compounds from soybean meal. LWT Food Sci. Technol. 2015, 63, 992–1000. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). FoodData Central. Soy Meal, Defatted, Raw. 2019. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/172445/nutrients (accessed on 3 May 2021).
- Messina, M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, C.; Arnould, S.; Scalbert, A.; Manach, C. Isoflavones and the prevention of breast and prostate cancer: New perspectives opened by nutrigenomics. Br. J. Nutr. 2008, 99, ES78–ES108. [Google Scholar] [CrossRef] [Green Version]
- Danciu, C.; Avram, S.; Pavel, I.Z.; Ghiulai, R.; Dehelean, C.A.; Ersilia, A.; Minda, D.; Petrescu, C.; Moaca, E.-A.; Soica, C. Main Isoflavones Found in Dietary Sources as Natural Anti-inflammatory Agents. Curr. Drug Targets 2018, 19, 841–853. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kasparovska, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [Green Version]
- Izumi, T.; Piskula, M.K.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kubota, Y.; Kikuchi, M. Soy Isoflavone Aglycones Are Absorbed Faster and in Higher Amounts than Their Glucosides in Humans. J. Nutr. 2000, 130, 1695–1699. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.; Lemos, T.C.; Sandôra, D.; Monteiro, M.; Perrone, D. Fermentation of soybean meal improves isoflavone metabolism after soy biscuit consumption by adults. J. Sci. Food Agric. 2020, 100, 2991–2998. [Google Scholar] [CrossRef]
- Yoshiara, L.Y.; Mandarino, J.M.G.; Carrão-Panizzi, M.C.; Madeira, T.B.; da Silva, J.B.; de Camargo, A.C.; Shahidi, F.; Ida, E.I. Germination changes the isoflavone profile and increases the antioxidant potential of soybean. J. Food Bioact. 2018, 3, 144–150. [Google Scholar] [CrossRef] [Green Version]
- de Queirós, L.D.; Dias, F.F.G.; de Ávila, A.R.A.; Macedo, J.A.; Macedo, G.A.; Bell, J.M.L.N.D.M. Effects of enzyme-assisted extraction on the profile and bioaccessibility of isoflavones from soybean flour. Food Res. Int. 2021, 147, 110474. [Google Scholar] [CrossRef]
- Handa, C.L.; Couto, U.R.; Vicensoti, A.H.; Georgetti, S.R.; Ida, E.I. Optimisation of soy flour fermentation parameters to produce β-glucosidase for bioconversion into aglycones. Food Chem. 2014, 152, 56–65. [Google Scholar] [CrossRef]
- Okabe, Y.; Shimazu, T.; Tanimoto, H. Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J. Sci. Food Agric. 2011, 91, 658–663. [Google Scholar] [CrossRef]
- Puri, A.; Mir, S.R.; Panda, B.P. Effect of sequential bio-processing conditions on the content and composition of vitamin K2 and isoflavones in fermented soy food. J. Food Sci. Technol. 2015, 52, 8228–8235. [Google Scholar] [CrossRef] [Green Version]
- Jayachandran, M.; Xu, B. An insight into the health benefits of fermented soy products. Food Chem. 2019, 271, 362–371. [Google Scholar] [CrossRef]
- Villares, A.; Rostagno, M.A.; García-Lafuente, A.; Guillamón, E.; Martínez, J.A. Content and Profile of Isoflavones in Soy-Based Foods as a Function of the Production Process. Food Bioprocess Technol. 2011, 4, 27–38. [Google Scholar] [CrossRef]
- Al Loman, A.; Ju, L.-K. Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects. Enzym. Microb. Technol. 2017, 106, 35–47. [Google Scholar] [CrossRef]
- Jacobsen, H.J.; Kousoulaki, K.; Sandberg, A.-S.; Carlsson, N.-G.; Ahlstrøm, Ø.; Oterhals, Å. Enzyme pre-treatment of soybean meal: Effects on non-starch carbohydrates, protein, phytic acid, and saponin biotransformation and digestibility in mink (Neovison vison). Anim. Feed Sci. Technol. 2018, 236, 1–13. [Google Scholar] [CrossRef]
- Kano, M.; Takayanagi, T.; Harada, K.; Sawada, S.; Ishikawa, F. Bioavailability of Isoflavones after Ingestion of Soy Beverages in Healthy Adults. J. Nutr. 2006, 136, 2291–2296. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Shih, Y.C.; Chiou, P.W.S.; Yu, B. Evaluating Nutritional Quality of Single Stage- and Two Stage-fermented Soybean Meal. Asian-Australas. J. Anim. Sci. 2010, 23, 598–606. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Soltan, M.A.; Abdel-Moez, A.M. Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim. Feed Sci. Technol. 2015, 201, 89–98. [Google Scholar] [CrossRef]
- Santos, V.A.Q.; Nascimento, C.G.; Schmidt, C.A.P.; Mantovani, D.; Dekker, R.F.H.; da Cunha, M.A.A. Solid-state fermentation of soybean okara: Isoflavones biotransformation, antioxidant activity and enhancement of nutritional quality. LWT-Food Sci. Technol. 2018, 92, 509–515. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.-B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [Green Version]
- Lesuisse, E.; Blaiseau, P.-L.; Dancis, A.; Camadro, J.-M. Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Microbiology 2001, 147, 289–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Jin, Z.; Hu, D.; Yang, W.; Yan, Y.; Nie, X.; Lin, J.; Zhang, Q.; Gai, D.; Ji, Y.; et al. Effect of solid-state fermentation with Lactobacillus casei on the nutritional value, isoflavones, phenolic acids and antioxidant activity of whole soybean flour. LWT Food Sci. Technol 2020, 125, 109264. [Google Scholar] [CrossRef]
- Fernández-Leiro, R.; Pereira-Rodríguez, Á.; Cerdán, M.E.; Becerra, M.; Sanz-Aparicio, J. Structural Analysis of Saccharomyces cerevisiae α-Galactosidase and Its Complexes with Natural Substrates Reveals New Insights into Substrate Specificity of GH27 Glycosidases*. J. Biol. Chem. 2010, 285, 28020–28033. [Google Scholar] [CrossRef] [Green Version]
- Andjelković, U.; Pićurić, S.; Vujčić, Z. Purification and characterisation of Saccharomyces cerevisiae external invertase isoforms. Food Chem. 2010, 120, 799–804. [Google Scholar] [CrossRef]
- Tudor, K.W.; Jones, M.A.; Hughes, S.R.; Holt, J.P.; Wiegand, B.R. Effect of fermentation with Saccharomyces cerevisiae strain PJ69-4 on the phytic acid, raffinose, and stachyose contents of soybean meal. Prof. Anim. Sci. 2013, 29, 529–534. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S. α-Galactosidase activity and oligosaccharides reduction pattern of indigenous lactobacilli during fermentation of soy milk. Food Biosci. 2018, 22, 32–37. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, A.; Wang, C. Novel development and characterisation of dietary fibre from yellow soybean hulls. Food Chem. 2014, 161, 367–375. [Google Scholar] [CrossRef]
- Hu, X.; Gao, J.; Zhang, Q.; Fu, Y.; Li, K.; Zhu, S.; Li, D. Soy fiber improves weight loss and lipid profile in overweight and obese adults: A randomized controlled trial. Mol. Nutr. Food Res. 2013, 57, 2147–2154. [Google Scholar] [CrossRef]
- Messina, M.; Nagata, C.; Wu, A.H. Estimated Asian Adult Soy Protein and Isoflavone Intakes. Nutr. Cancer 2006, 55, 1–12. [Google Scholar] [CrossRef]
- Červenka, L.; Brožková, I.; Vytřasová, J. Effects of the Principal Ingredients of Biscuits upon Water Activity. J. Food Nutr. Res. 2006, 45, 39–43. [Google Scholar]
- Shimoni, E. Stability and Shelf Life of Bioactive Compounds during Food Processing and Storage: Soy Isoflavones. J. Food Sci. 2004, 69, R160–R166. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2019. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Method 3051a—Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. 2007. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed on 18 March 2021).
- Barreto, N.; Pimenta, N.; Braz, B.; Freire, A.; Santelli, R.; Oliveira, A.; Bastos, L.; Cardoso, M.; Monteiro, M.; Diogenes, M.; et al. Organic Black Beans (Phaseolus vulgaris L.) from Rio de Janeiro State, Brazil, Present More Phenolic Compounds and Better Nutritional Profile Than Nonorganic. Foods 2021, 10, 900. [Google Scholar] [CrossRef]
- Fonseca, N.D.; Villar, M.P.M.; Donangelo, C.M.; Perrone, D. Isoflavones and soyasaponins in soy infant formulas in Brazil: Profile and estimated consumption. Food Chem. 2014, 143, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Wongputtisin, P.; Ramaraj, R.; Unpaprom, Y.; Kawaree, R.; Pongtrakul, N. Raffinose family oligosaccharides in seed of Glycine max cv. Chiang Mai60 and potential source of prebiotic substances. Int. J. Food Sci. Technol. 2015, 50, 1750–1756. [Google Scholar] [CrossRef]
- Downes, F.P.; Ito, K. Compendium of Methods for the Microbiological Examination of Foods, 4th ed.; American Public Health Association (APHA): Washington, DC, USA, 2001. [Google Scholar]
SBM | FSBM | ESBM | |
---|---|---|---|
Proximate composition (g/100 g) | |||
Ash | 6.5 ± 0.2 a | 7.0 ± 0.1 b | 6.7 ± 0.1 ab |
Protein | 47.5 ± 1.5 a | 51.7 ± 0.3 b | 48.2 ± 0.3 a |
Lipid | 2.2 ± 0.1 a | 1.9 ± 0.1 b | 1.5 ± 0.1 c |
Total dietary fiber | 27.3 ± 0.5 a | 30.4 ± 0.2 b | 28.1 ± 1.0 ab |
Total carbohydrate | 15.3 | 6.5 | 11.1 |
Minerals (mg/100 g) | |||
Copper | 0.83 ± 0.01 a | 0.91 ± 0.02 b | 0.83 ± 0.01 a |
Manganese | 2.4 ± 0.1 a | 2.6 ± 0.1 b | 2.4 ± 0.1 a |
Zinc | 4.0 ± 0.1 a | 4.5 ± 0.1 b | 4.0 ± 0.1 a |
Iron | 9.1 ± 0.2 a | 6.7 ± 0.1 b | 6.0 ± 0.2 c |
Sodium | 13.2 ± 0.2 a | 18.1 ± 0.2 b | 12.1 ± 0.2 c |
Calcium | 260.3 ± 2.6 a | 286.1 ± 1.1 b | 267.0 ± 5.3 c |
Magnesium | 269.7 ± 5.7 a | 287.6 ± 3.5 b | 263.0 ± 4.5 a |
Phosphorus | 522.0 ± 6.0 a | 581.8 ± 12.2 b | 526.1 ± 6.2 a |
Potassium | 2046.3 ± 25.4 a | 2202.6 ± 44.1 b | 2022.9 ± 20.2 a |
Oligosaccharides (g/100 g) | |||
Raffinose | 0.82 ± 0.05 a | ND 2 | 0.43 ± 0.00 b |
Stachyose | 2.72 ± 0.01 a | ND | 1.59 ± 0.02 b |
Sucrose | 4.3 ± 0.1 a | ND | 2.3 ± 0.1 b |
Isoflavones | SBM | FSBM | ESBM |
---|---|---|---|
Subclasses | |||
β-glycosides | 132.4 ± 1.4 a | 1.2 ± 0.04 b | 5.6 ± 0.1 c |
Malonylglycosides | 7.2 ± 0.1 a | 2.4 ± 0.2 b | 2.4 ± 0.04 b |
Acetylglycosides | 9.1 ± 0.1 a | 0.2 ± 0.01 b | 2.1 ± 0.1 c |
Aglycones | 16.0 ± 0.1 a | 123.8 ± 2.7 b | 98.1 ± 1.1 c |
Total | 164.7 ± 1.8 a | 127.7 ± 2.9 b | 108.0 ± 1.3 c |
Aglycones equivalents | 107.0 ± 0.7 a | 125.9 ± 1.9 b | 103.9 ± 0.9 a |
SBM | FSBM | ESBM | ||||
---|---|---|---|---|---|---|
Content 1 | % DRI 2 | Content | % DRI | Content | % DRI | |
Ash (g) | 1.2 ± 0.1 b | - | 1.3 ± 0.0 a | - | 1.3 ± 0.1 a | - |
Protein (g) | 7.5 ± 0.7 b | 13/16 | 8.5 ± 0.1 a | 15/18 | 8.2 ± 0.4 a | 15/18 |
Lipid (g) | 4.7 ± 0.0 a | - | 4.4 ± 0.0 a | - | 4.5 ± 0.0 a | - |
Carbohydrate (g) | 11.6 | 9/9 | 7.7 | 6/6 | 9.1 | 7/7 |
Dietary fiber (g) | 4.1 ± 0.3 c | 11/16 | 6.0 ± 0.3 a | 16/24 | 4.9 ± 0.0 b | 13/20 |
Copper (mg) | 0.141 ± 0.0 b | 16/16 | 0.147 ± 0.0 a | 16/16 | 0.138 ± 0.0 c | 15/15 |
Calories (kcal) | 118.7 | - | 104.4 | - | 109.7 | - |
Iron (mg) | 2.10 ± 0.1 a | 26/12 | 1.30 ± 0.0 c | 16/7 | 1.61 ± 0.0 b | 20/9 |
Potassium (mg) | 361.2 ± 4.6 a | 11/14 | 366.9 ± 4.8 a | 11/14 | 344.7 ± 3.4 b | 10/13 |
Manganese (mg) | 0.393 ± 0.0 b | 17/22 | 0.414 ± 0.0 a | 18/23 | 0.399 ± 0.0 b | 17/22 |
Phosphorus (mg) | 103.9 ± 1.8 a | 15/15 | 110.2 ± 1.6 c | 16/16 | 106.5 ± 1.2 b | 15/15 |
Sodium (mg) | 66.7 ± 0.9 a | 4/4 | 66.4 ± 1.3 ab | 4/4 | 64.8 ± 0.9 b | 4/4 |
Calcium (mg) | 70.6 ± 1.0 a | 7/7 | 70.4 ± 0.8 a | 7/7 | 68.6 ± 0.5 b | 7/7 |
Magnesium (mg) | 45.1 ± 1.2 a | 11/15 | 47.1 ± 0.5 b | 12/15 | 46.3 ± 1.0 ab | 12/15 |
Zinc (mg) | 0.678 ± 0.0 a | 6/8 | 0.711 ± 0.0 b | 6/9 | 0.693 ± 0.0 ab | 6/9 |
SBM | FSBM | ESBM | |
---|---|---|---|
Aglycones | |||
Daidzein | 4.10 ± 0.21 a | 26.23 ± 0.69 b | 21.40 ± 0.26 c |
Glycitein | 1.30 ± 0.18 a | 11.03 ± 0.30 b | 7.87 ± 0.13 c |
Genistein | 5.93 ± 0.32 a | 36.30 ± 1.29 b | 28.72 ± 0.23 c |
β-Glycosides | |||
Daidzin | 24.82 ± 1.38 a | ND 2 | 0.73 ± 0.33 b |
Glycitin | 7.83 ± 0.39 a | ND | 0.23 ± 0.02 b |
Genistin | 44.24 ± 3.29 a | ND | 2.88 ± 0.04 b |
Acetylglycosides | |||
Daidzin | 3.11 ± 0.29 a | 0.13 ± 0.00 b | 0.50 ± 0.01 b |
Glycitin | 0.75 ± 0.06 | ND | ND |
Genistin | 5.63 ± 0.30 a | ND | 0.85 ± 0.02 b |
Malonylglycosides | |||
Daidzin | 1.07 ± 0.29 a | 1.68 ± 0.19 b | 1.19 ± 0.07 a |
Glycitin | 0.15 ± 0.02 a | 0.35 ± 0.02 b | 0.10 ± 0.01 a |
Genistin | 0.51 ± 0.08 a | ND | 0.18 ± 0.00 b |
Total isoflavones | 99.43 ± 6.35 a | 75.72 ± 2.37 b | 64.64 ± 0.64 c |
Total aglycone equivalents | 65.04 ± 4.11 a | 74.68 ± 2.32 b | 61.69 ± 0.55 a |
Attributes | Day Cero | 180 Days of Storage | ||||
---|---|---|---|---|---|---|
SBM | FSBM | ESBM | SBM | FSBM | ESBM | |
Overall acceptance 2 | 5.5 ± 1.7 a | 3.7 ± 1.9 b | 5.4 ± 1.6 a | 5.8 ± 1.6 a | 3.8 ± 2.0 b | 5.6 ± 1.6 a |
Appearance 2 | 6.1 ± 1.8 a | 5.5 ± 2.0 a | 6.1 ± 1.6 a | 6.4 ± 1.7 a | 5.1 ± 1.9 b | 5.8 ± 1.6 a |
Taste 2 | 5.7 ± 1.8 a | 2.6 ± 1.7 b | 5.5 ± 1.8 a | 5.7 ± 1.9 a | 2.8 ± 2.0 b | 5.3 ± 2.1 a |
Texture 2 | 4.0 ± 1.9 a,b | 3.6 ± 1.9 a | 4.5 ± 2.0 b | 4.4 ± 2.0 a | 3.3 ± 2.0 b | 5.1 ± 1.9 a,* |
Aroma 2 | 6.3 ± 1.8 a | 4.8 ± 1.9 b | 5.3 ± 1.9 b | 6.5 ± 1.5 a | 5.1 ± 1.9 b | 6.3 ± 1.9 a,* |
Purchase intent 3 | 2.4 ± 1.0 a | 1.4 ± 0.7 b | 2.4 ± 1.0 a | 2.6 ± 1.1 a | 1.4 ± 0.8 b | 2.4 ± 1.0 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreto, N.M.B.; Sandôra, D.; Braz, B.F.; Santelli, R.E.; de Oliveira Silva, F.; Monteiro, M.; Perrone, D. Biscuits Prepared with Enzymatically-Processed Soybean Meal Are Rich in Isoflavone Aglycones, Sensorially Well-Accepted and Stable during Storage for Six Months. Molecules 2022, 27, 7975. https://doi.org/10.3390/molecules27227975
Barreto NMB, Sandôra D, Braz BF, Santelli RE, de Oliveira Silva F, Monteiro M, Perrone D. Biscuits Prepared with Enzymatically-Processed Soybean Meal Are Rich in Isoflavone Aglycones, Sensorially Well-Accepted and Stable during Storage for Six Months. Molecules. 2022; 27(22):7975. https://doi.org/10.3390/molecules27227975
Chicago/Turabian StyleBarreto, Nathália Martins Bomfim, Diego Sandôra, Bernardo Ferreira Braz, Ricardo Erthal Santelli, Fabricio de Oliveira Silva, Mariana Monteiro, and Daniel Perrone. 2022. "Biscuits Prepared with Enzymatically-Processed Soybean Meal Are Rich in Isoflavone Aglycones, Sensorially Well-Accepted and Stable during Storage for Six Months" Molecules 27, no. 22: 7975. https://doi.org/10.3390/molecules27227975
APA StyleBarreto, N. M. B., Sandôra, D., Braz, B. F., Santelli, R. E., de Oliveira Silva, F., Monteiro, M., & Perrone, D. (2022). Biscuits Prepared with Enzymatically-Processed Soybean Meal Are Rich in Isoflavone Aglycones, Sensorially Well-Accepted and Stable during Storage for Six Months. Molecules, 27(22), 7975. https://doi.org/10.3390/molecules27227975