In Situ Synthesis of MnMgFe-LDH on Biochar for Electrochemical Detection and Removal of Cd2+ in Aqueous Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure Characterization
2.2. Electrochemical Characterizations
2.3. Electrochemical Behaviors of Different Electrodes
2.4. Optimization of Experimental Parameters
2.5. DPASV Detection of Cd2+ at MnMgFe-LDHs/BC/GCE
2.6. Repeatability, Reproducibility, and Selectivity of MnMgFe-LDHs/BC/GCE
2.7. Application of MnMgFe-LDHs/BC/GCE for Cd2+ Detection in Real Sample Analysis
2.8. Adsorption Properties of MnMgFe-LDHs/BC toward Cd2+
2.9. Regeneration and Stability
3. Experimental Section
3.1. Materials
3.2. Apparatus
3.3. Preparation of BC and LDHs/BC Composite
3.4. Preparation of the Modified Electrodes
3.5. Analytical Procedure
3.6. Adsorption Studies of Cd2+
3.7. TCLP Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liu, Q.; Sheng, Y.; Liu, X. Efficacy of in situ active capping Cd highly contaminated sediments with nano-Fe2O3 modified biochar. Environ. Pollut. 2021, 290, 118134–118145. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, D.; Mishra, U.; Biswas, S. A comprehensive review on Cd(II) removal from aqueous solution. J. Water Process Eng. 2014, 2, 105–128. [Google Scholar] [CrossRef]
- Memon, A.F.; Ameen, S.; Qambrani, N.; Buledi, J.A.; Khand, N.H.; Solangi, A.R.; Taqvi, S.I.H.; Karaman, C.; Karimi, F.; Afsharmanesh, E. An improved electrochemical sensor based on triton X-100 functionalized SnO2 nanoparticles for ultrasensitive determination of cadmium. Chemosphere 2022, 300, 134634–134641. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xu, Z.; Yu, X.; Shi, X.; Jiang, H.; Li, X.; Kong, Y.; Xu, Q.; Chen, J. Raspberry-Like Bismuth Oxychloride on Mesoporous Siliceous Support for Sensitive Electrochemical Stripping Analysis of Cadmium. Molecules 2017, 22, 797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhang, D.; Wang, D.; Lu, L.; Wang, X.; Guo, G. A carbon-supported BiSn nanoparticles based novel sensor for sensitive electrochemical determination of Cd (II) ions. Talanta 2019, 202, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wang, B.; Ji, L.; Wang, F.; Yuan, Q.; Hu, G.; Dong, A.; Gan, W. An efficient electrochemical sensor based on three-dimensionally interconnected mesoporous graphene framework for simultaneous determination of Cd(II) and Pb(II). Electrochim. Acta 2016, 222, 1371–1377. [Google Scholar] [CrossRef]
- Yu, Q.; Zou, J.; Peng, G.; Gao, F.; Gao, Y.; Fan, G.; Chen, S.; Lu, L. A facile fabrication of ratiometric electrochemical sensor for sensitive detection of riboflavin based on hierarchical porous biochar derived from KOH-activated Soulangeana sepals. Nanotechnology 2022, 33, 445501–445514. [Google Scholar] [CrossRef]
- Godwin, P.M.; Pan, Y.; Xiao, H.; Afzal, M.T. Progress in Preparation and Application of Modified Biochar for Improving Heavy Metal Ion Removal From Wastewater. Bioresour. Technol. 2019, 4, 31–42. [Google Scholar] [CrossRef]
- Zou, J.; Qian, W.; Li, Y.; Yu, Q.; Yu, Y.; Chen, S.; Qu, F.; Gao, Y.; Lu, L. Multilayer activated biochar/UiO-66-NH2 film as intelligent sensing platform for ultra-sensitive electrochemical detection of Pb2+ and Hg2+. Appl. Surf. Sci. 2021, 569, 151006–151019. [Google Scholar] [CrossRef]
- Li, A.; Xie, H.; Qiu, Y.; Liu, L.; Lu, T.; Wang, W.; Qiu, G. Resource utilization of rice husk biomass: Preparation of MgO flake-modified biochar for simultaneous removal of heavy metals from aqueous solution and polluted soil. Environ. Pollut. 2022, 310, 119869–119879. [Google Scholar] [CrossRef]
- Rohit, R.C.; Jagadale, A.D.; Shinde, S.K.; Kim, D.Y.; Kumbhar, V.S.; Nakayama, M. Hierarchical nanosheets of ternary CoNiFe layered double hydroxide for supercapacitors and oxygen evolution reaction. J. Alloys Compd. 2021, 863, 158081–158089. [Google Scholar] [CrossRef]
- Aliahmadi, Z.; Mohadesi, A.; Ranjbar, M.; Javanshah, A. Preparation and evaluation of Ca/Mg-layered double hydroxide as a novel modifier for electrochemical determination of gibberellic acid. J. Mol. Struct. 2021, 1246, 131200–131207. [Google Scholar] [CrossRef]
- Feng, X.; Long, R.; Wang, L.; Liu, C.; Bai, Z.; Liu, X. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Sep. Purif. Technol. 2022, 284, 120099–120145. [Google Scholar] [CrossRef]
- Li, A.; Zhang, Y.; Ge, W.; Zhang, Y.; Liu, L.; Qiu, G. Removal of heavy metals from wastewaters with biochar pyrolyzed from MgAl-layered double hydroxide-coated rice husk: Mechanism and application. Bioresour. Technol. 2022, 347, 126425–126435. [Google Scholar] [CrossRef] [PubMed]
- Soltani, R.; Pelalak, R.; Pishnamazi, M.; Marjani, A.; Shirazian, S. A water-stable functionalized NiCo-LDH/MOF nanocomposite: Green synthesis, characterization, and its environmental application for heavy metals adsorption. Arab. J. Chem. 2021, 14, 103052–103063. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, Z.; Wei, S. A new hydrotalcite-like absorbent FeMnMg-LDH and its adsorption capacity for Pb2+ ions in water. Appl. Clay Sci. 2018, 153, 29–37. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, Z.; Wei, S.; Liang, J. Adsorption of Cd(II) from Aqueous Solutions by a Novel Layered Double Hydroxide FeMnMg-LDH. Water Air Soil Pollut. 2018, 229, 78–94. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Xie, D.; Gu, Y.; Zhu, X.; Zhang, H.; Wang, G.; Zhang, Y.; Zhao, H. Hierarchical MgFe-layered double hydroxide microsphere/graphene composite for simultaneous electrochemical determination of trace Pb(II) and Cd(II). Chem. Eng. J. 2018, 347, 953–962. [Google Scholar] [CrossRef]
- Xiang, X.; Pan, F.; Du, Z.; Feng, X.; Gao, C.; Li, Y. MgAl-layered double hydroxide flower arrays grown on carbon paper for efficient electrochemical sensing of nitrite. J. Electroanal. Chem. 2019, 855, 113632–113640. [Google Scholar] [CrossRef]
- Singh, G.; Kim, I.Y.; Lakhi, K.S.; Srivastava, P.; Naidu, R.; Vinu, A. Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon 2017, 116, 448–455. [Google Scholar] [CrossRef]
- Tian, Q.; Xu, J.; Xu, Q.; Duan, X.; Jiang, F.; Lu, L.; Jia, H.; Jia, Y.; Li, Y.; Yu, Y. A poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based electrochemical sensor for tert.-butylhydroquinone. Microchim. Acta 2019, 186, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Yu, Q.; Gao, Y.; Chen, S.; Huang, X.; Hu, D.; Liu, S.; Lu, L. Bismuth Nanoclusters/Porous Carbon Composite: A Facile Ratiometric Electrochemical Sensing Platform for Pb2+ Detection with High Sensitivity and Selectivity. ACS Omega 2022, 7, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, P.; Hu, Z.; Liang, Y.; Han, H.; Yang, M.; Luo, X.; Hou, C.; Huo, D. Amino-Functionalized Multilayer Ti3C2Tx Enabled Electrochemical Sensor for Simultaneous Determination of Cd2+ and Pb2+ in food samples. Food Chem. 2022, 402, 134269. [Google Scholar] [CrossRef]
- Pu, Y.; Wu, Y.; Yu, Z.; Lu, L.; Wang, X. Simultaneous determination of Cd2+ and Pb2+ by an electrochemical sensor based on Fe3O4/Bi2O3/C3N4 nanocomposites. Talanta Open 2021, 3, 100024–100031. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Cui, R.; Wang, D.; Yin, Z.; Wang, D.; Zheng, L.; Zhang, J.; Zhao, Y.; Yuan, H.; et al. Electrochemical sensor based on graphdiyne is effectively used to determine Cd2+ and Pb2+ in water. Sens. Actuators B Chem. 2021, 332, 129519–129527. [Google Scholar] [CrossRef]
- Ding, L.; Luo, X.; Shao, P.; Yang, J.; Sun, D. Thiol-Functionalized Zr-Based Metal–Organic Framework for Capture of Hg(II) through a Proton Exchange Reaction. ACS Sustain. Chem. Eng. 2018, 6, 8494–8502. [Google Scholar] [CrossRef]
- Tan, B.J.; Klabunde, K.J.; Sherwood, P.M.A. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 1991, 113, 855–861. [Google Scholar] [CrossRef]
- Tan, Y.; Yin, X.; Wang, C.; Sun, H.; Ma, A.; Zhang, G.; Wang, N. Sorption of cadmium onto Mg-Fe layered double hydroxide (LDH)-Kiwi branch biochar. Environ. Pollut. Bioavailab. 2019, 31, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Huang, Q.; Khan, S.; Liu, Y.; Liao, Z.; Li, G.; Ok, Y.S. Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions. Ecol. Eng. 2016, 87, 240–245. [Google Scholar] [CrossRef]
- Shan, R.; Yan, L.; Yang, K.; Hao, Y.; Du, B. Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies. J. Hazard. Mater. 2015, 299, 42–49. [Google Scholar] [CrossRef]
- Liao, W.; Bao, D.; Li, H.; Yang, P. Cu(II) and Cd(II) removal from aqueous solution with LDH@GO-NH2 and LDH@GO-SH: Kinetics and probable mechanism. Environ. Sci. Pollut. Res. 2021, 28, 65848–65861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Han, C.; Ren, Y.; Ji, Y.; Ge, Y.; Li, Z.; He, J. Preparation, characteristics and mechanisms of Cd (II) adsorption from aqueous solution by mango kernel-derived biochar. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Cui, S.; Ke, Y.; Fu, Q.; Hough, R.; Zhang, Z.; Shen, Z.; An, L.; Li, Y. Optimization preparation of biochar from garden waste and quantitative analysis for Cd2+ adsorption mechanism in aqueous solution. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Cao, B.; Qu, J.; Yuan, Y.; Zhang, W.; Miao, X.; Zhang, X.; Xu, Y.; Han, T.; Song, H.; Ma, S.; et al. Efficient scavenging of aqueous Pb(II)/Cd(II) by sulfide-iron decorated biochar: Performance, mechanisms and reusability exploration. J. Environ. Chem. Eng. 2022, 10, 107531–107539. [Google Scholar] [CrossRef]
- Mcintyre, N.S.; Zetaruk, D.G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 1977, 49, 1521–1529. [Google Scholar] [CrossRef]
Sample | Added (μg/L) | Found (μg/L) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 0 | - | - | - |
2 | 0.05 | 0.05 ± 0.002 | 97.3 | 4.3 |
3 | 0.50 | 0.50 ± 0.021 | 100.6 | 4.1 |
4 | 5.00 | 5.00 ± 0.140 | 99.6 | 2.9 |
5 | 50.00 | 50.00 ± 1.320 | 102.3 | 1.8 |
Pseudo-First-Order Model | Pseudo-Second-Order Model | |||||
---|---|---|---|---|---|---|
qe,exp (mg/g) | k1 (min−1) | R2 | qe (mg/g) | k2 (g/mg·min) | R2 | qe (mg/g) |
118.00 | 0.0133 | 0.9354 | 110.97 | 0.000168 | 0.9750 | 117.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Yang, W.; Wang, H.; Huang, G. In Situ Synthesis of MnMgFe-LDH on Biochar for Electrochemical Detection and Removal of Cd2+ in Aqueous Solution. Molecules 2022, 27, 7875. https://doi.org/10.3390/molecules27227875
Yu Y, Yang W, Wang H, Huang G. In Situ Synthesis of MnMgFe-LDH on Biochar for Electrochemical Detection and Removal of Cd2+ in Aqueous Solution. Molecules. 2022; 27(22):7875. https://doi.org/10.3390/molecules27227875
Chicago/Turabian StyleYu, Yongfang, Wenting Yang, Haocheng Wang, and Guoqin Huang. 2022. "In Situ Synthesis of MnMgFe-LDH on Biochar for Electrochemical Detection and Removal of Cd2+ in Aqueous Solution" Molecules 27, no. 22: 7875. https://doi.org/10.3390/molecules27227875
APA StyleYu, Y., Yang, W., Wang, H., & Huang, G. (2022). In Situ Synthesis of MnMgFe-LDH on Biochar for Electrochemical Detection and Removal of Cd2+ in Aqueous Solution. Molecules, 27(22), 7875. https://doi.org/10.3390/molecules27227875