Comparative Volatilomic Profile of Three Finger Lime (Citrus australasica) Cultivars Based on Chemometrics Analysis of HS-SPME/GC–MS Data
Abstract
:1. Introduction
2. Results and Discussion
2.1. Volatile Constituents in the Peel and Juice
2.2. Targeted Multivariate Statistical Analysis of Secondary Metabolites
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Plant Material
3.3. Volatile Organic Compounds (VOCs) Analysis
3.3.1. Sample Preparation and HS-SPME Procedure
3.3.2. Gas Chromatography-Mass Spectrometry Analysis (GC–MS)
3.4. Multivariate Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Johnson, J.B.; Batley, R.; Manson, D.; White, S.; Naiker, M. Volatile compounds, phenolic acid profiles and phytochemical content of five Australian finger lime (Citrus australasica) cultivars. LWT 2022, 154, 112640. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, S.; Zang, W.; Wang, N.; Cao, J.; Li, X.; Sun, C. Identification of phenolic compounds from a unique citrus species, finger lime (Citrus australasica) and their inhibition of LPS-induced NO-releasing in BV-2 cell line. Food Chem. Toxicol. 2019, 129, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Delort, E.; Yuan, Y.-M. Finger lime/The Australian Caviar—Citrus australasica. In Exotic Fruits; Rodrigues, S., de Oliveira Silva, E., de Brito, E.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 203–210. [Google Scholar] [CrossRef]
- Adhikari, B.; Dutt, M.; Vashisth, T. Comparative phytochemical analysis of the fruits of four Florida-grown finger lime (Citrus australasica) selections. LWT 2021, 135, 110003. [Google Scholar] [CrossRef]
- Trozzi, A.; Verzera, A.; d’Alcontres, I.S. Constituents of the cold-pressed oil of faustrime, a trigeneric hybrid of Monocitrus australasica x Fortunella sp. x Citrus aurantifolia. J. Essent. Oil Res. 1993, 5, 97–100. [Google Scholar] [CrossRef]
- Ruberto, G.; Rocco, C.; Rapisarda, P. Chemical composition of the peel essential oil of Microcitrus australasica var. sanguinea (FM Bail) Swing. J. Essent. Oil Res. 2000, 12, 379–382. [Google Scholar] [CrossRef]
- Lota, M.L.; de Rocca Serra, D.; Tomi, F.; Jacquemond, C.; Casanova, J. Volatile components of peel and leaf oils of lemon and lime species. J. Agric. Food Chem. 2002, 50, 796–805. [Google Scholar] [CrossRef]
- Delort, E.; Jacquier, A. Novel terpenyl esters from Australian finger lime (Citrus australasica) peel extract. Flavour Fragr. J. 2009, 24, 123–132. [Google Scholar] [CrossRef]
- Dlort, E.; Jaquier, A.; Decorzant, E.; Chapuis, C.; Casilli, A.; Frérot, E. Comparative analysis of three Australian finger lime (Citrus australasica) cultivars: Identification of unique citrus chemotypes and new volatile molecules. Phytochemistry 2015, 109, 111–124. [Google Scholar] [CrossRef]
- Vitalini, S.; Iriti, M.; Vinciguerra, V.; Garzoli, S. A Comparative Study of the Chemical Composition by SPME-GC/MS and Antiradical Activity of Less Common Citrus Species. Molecules 2021, 26, 5378. [Google Scholar] [CrossRef]
- Lim, V.; Gorji, S.G.; Daygon, V.D.; Fitzgerald, M. Untargeted and Targeted Metabolomic Profiling of Australian Indigenous Fruits. Metabolites 2020, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Bowman, K.D.; McCollum, G.; Plotto, A.; Bai, J. Minnie Finger Lime: A New Novelty Citrus Cultivar. HortScience 2019, 54, 1425–1428. [Google Scholar] [CrossRef] [Green Version]
- Killiny, N.; Jones, S.E.; Nehela, Y.; Hijaz, F.; Dutt, M.; Gmitter, F.G.; Grosser, J.W. All roads lead to Rome: Towards understanding different avenues of tolerance to huanglongbing in citrus cultivars. Plant Physiol. Biochem. 2018, 129, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Figueira, J.A.; Porto-Figueira, P.; Pereira, J.A.M.; Câmara, J.S. Tangerines Cultivated on Madeira Island-A High Throughput Natural Source of Bioactive Compounds. Foods 2020, 9, 1470. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xia, Y.; Li, F.; Fan, Y.-L.; Liu, T.-X. Comparative analysis of volative compounds in five citrus cultivars with HS-SPME-GC-MS. Pak. J. Agric. Sci. 2020, 57, 1203–1209. [Google Scholar] [CrossRef]
- Mahdi, A.A.; Al-Ansi, W.; Al-Maqtari, Q.A.; Ahmed, A.; Ahmed, M.I.; Mohammed, J.K.; Wang, H. GC-MS Analysis of Volatile Compounds the Peel and Pulp of Citrus Medica L. Var. Sarcodactylis Swingle (Foshou Fruit). Int. J. Res. Agric. Sci. 2019, 6, 2348–3997. [Google Scholar]
- Guo, J.J.; Gao, Z.P.; Xia, J.L.; Ritenour, M.A.; Li, G.Y.; Shan, Y. Comparative analysis of chemical composition, antimicrobial andantioxidant activity of citrus essential oils from the main cultivated varieties in China. LWT 2018, 97, 825–839. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, Y.; Zhang, H.; Deng, X.; Chen, F.; Xu, J. Volatile constituents of wild citrus Mangshanyegan (Citrus nobilis Lauriro) peel oil. J. Agric. Food Chem. 2012, 60, 2617–2628. [Google Scholar] [CrossRef]
- Cevallos-Cevallos, J.M.; García-Torres, R.; Etxeberria, E.; Reyes-De-Corcuera, J.I. GC-MS analysis of headspace and liquid extracts for metabolomic differentiation of citrus Huanglongbing and zinc deficiency in leaves of ‘Valencia’ sweet orange from commercial groves. Phytochem. Anal. 2011, 22, 236–246. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Pizza, C.; Piacente, S. Metabolite Profiling of “Green” Extracts of Cynara cardunculus subsp. scolymus, Cultivar “Carciofo di Paestum” PGI by 1 H NMR and HRMS-Based Metabolomics. Molecules 2022, 27, 3328. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Montoro, P.; Hosek, J.; Pizza, C.; Piacente, S. Metabolite profiling of “green” extracts of Corylus avellana leaves by 1 H NMR spectroscopy and multivariate statistical analysis. J. Pharm. Biomed. Anal. 2018, 160, 168–178. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Alharthi, A.S.; Mohamed, T.A.; Nassar, M.I.; Dewir, Y.H.; Elshamy, A.I. Phytotoxic Effects of Plant Essential Oils: A Systematic Review and Structure-Activity Relationship Based on Chemometric Analyses. Plants 2021, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, R.; Ramezani, S.; Martignetti, A.; Mari, A.; Piacente, S.; De Giulio, B. Determination of volatile organic compounds in the dried leaves of Salvia species by solid-phase microextraction coupled to gas chromatography mass spectrometry. Nat. Prod. Res. 2015, 30, 841. [Google Scholar] [CrossRef] [PubMed]
- Fadil, M.; Fikri-Benbrahim, K.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T.; Farah, A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur. J. Pharm. Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef]
- Wang, Z.; Rubing Zhang, R.; Yang, Q.; Zhang, J.; Zhao, Y.; Zheng, Y.; Yang, J. Chapter One—Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae. In Advances in Applied Microbiology; Gadd, G.M., Sariaslani, S., Eds.; Academic Press: Amsterdam, The Netherlands, 2021; Volume 114, pp. 1–35. [Google Scholar] [CrossRef]
- Cucho-Medrano, J.L.L.; Mendoza-Beingolea, S.W.; Fuertes-Ruitón, C.M.; Salazar-Salvatierra, M.E.; Herrera-Calderon, O. Chemical Profile of the Volatile Constituents and Antimicrobial Activity of the Essential Oils from Croton adipatus, Croton thurifer, and Croton collinus. Antibiotics 2021, 10, 1387. [Google Scholar] [CrossRef] [PubMed]
- Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Lampri, E.; Fitsiou, E.; Vasileiadis, S.; Vamvakias, M.; Bardouki, H.; Goussia, A.; Malamou-Mitsi, V.; Panayiotidis, M.I.; et al. Dietary mastic oil extracted from Pistacia lentiscus var. chia suppresses tumor growth in experimental colon cancer models. Sci. Rep. 2017, 7, 3782. [Google Scholar] [CrossRef] [Green Version]
- Orf, M.; Kurian, M.; Espinosa, L.; Nelson, C.; Simmons, D.; Chickos, J. Thermochemical properties of sesquiterpenes in natural products by correlation gas chromatography: Application to bergamotene oil. J. Chem. Thermodyn. 2018, 126, 128–136. [Google Scholar] [CrossRef]
- Singh, P.; Shukla, R.; Prakash, B.; Kumar, A.; Singh, S.; Mishra, P.K.; Dubey, N.K. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem. Toxicol. 2010, 48, 1734–1740. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Beg, Z.H. Hypolipidemic and antioxidant activities of thymoquinone and limonene in atherogenic suspension fed rats. Food Chem. 2013, 138, 1116–1124. [Google Scholar] [CrossRef]
- da Silva, J.K.R.; Pinto, L.C.; Burbano, R.M.R.; Montenegro, R.C.; Guimarães, E.F.; Andrade, E.H.A.; Maia, J.G.S. Essential oilsof Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Ind. Crops Prod. 2014, 58, 55–60. [Google Scholar] [CrossRef]
VOCs | Codes | Peel | Juice | Variance P | |||||
---|---|---|---|---|---|---|---|---|---|
Pink Pearl | Sanguinea | Faustrime | Pink Pearl | Sanguinea | Faustrime | ||||
Esters | |||||||||
Ethyl acetate | E1 | 1.1 a | 0.0 b | 0.0 b | 0.0 b | 0.0 b | 0.0 b | 0.1 | * |
cis-3-Hexen-1-ol acetate | E2 | 3.4 b | 4.5 c | 8.1 d | 0.0 a | 0.0 a | 0.0 a | 9.8 | ** |
Hexen-1-ol propionate | E3 | 1.0 b | 27.7 c | 78.9 d | 0.0 a | 0.0 a | 0.0 a | 923.2 | ** |
Hexyl butyrate | E4 | 4.5 c | 0.0 b | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 3.0 | * |
Aldehydes | |||||||||
2-Butenal | Ald1 | 2.2 b | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.7 | * |
Hexanal | Ald2 | 15.2 d | 24.3 e | 31.2 f | 3.1 a | 5.8 b | 4.1 c | 125.3 | ** |
cis-3-Hexanal | Ald3 | 5.1 b | 54.0 c | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 428.7 | * |
2-Hexenal | Ald4 | 48.9 b | 494.4 d | 302.7 c | 0.0 a | 0.0 a | 0.0 a | 39,849.0 | * |
Octanal | Ald5 | 0.0 a | 18.9 c | 83.3 d | 0.0 a | 0.0 a | 14.8 a | 951.1 | * |
2-Heptenal | Ald6 | 2.5 c | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 1.8 b | 1.2 | * |
Nonanal | Ald7 | 0.0 a | 15.1 c | 28.9 d | 0.0 a | 0.0 a | 4.5 b | 125.8 | ** |
Alcohols | |||||||||
2-Penten-1-ol | Al1 | 2.9 b | 25.3 d | 10.5 c | 0.0 a | 0.0 a | 0.0 a | 92.2 | *** |
1-Hexanol | Al2 | 11.9 c | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.8 b | 21.1 | *** |
3-Hexen-1-ol | Al3 | 41.2 d | 0.0 a | 0.0 a | 0.0 a | 5.0 c | 2.1 b | 243.1 | ** |
2-Hexen-1-ol | Al4 | 3.4 b | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 1.7 | *** |
Monoterpenes hydrocarbons | |||||||||
α-Pinene | MH1 | 72.8 b | 717.0 e | 1252.2 f | 23.6 a | 208.9 d | 112.1 c | 214,826.9 | * |
α-Thujene | MH2 | 549.1 d | 864.3 f | 792.6 e | 273.3 c | 123.8 b | 36.2 a | 110,621.3 | *** |
Camphene | MH3 | 2.9 d | 9.5 e | 12.7 f | 0.7 b | 0.0 a | 2.0 c | 24.7 | * |
β-Pinene | MH4 | 48.7 a | 276.9 b | 383.9 c | 20.3 a | 36.0 a | 28.3 a | 22,722.2 | * |
Sabinene | MH5 | 2209.4 e | 3079.5 f | 937.0 d | 437.5 c | 203.7 b | 19.0 a | 1,377,296.9 | * |
δ-3-Carene | MH6 | 15.9 a | 53.8 d | 337.0 f | 49.4 c | 58.0 e | 27.0 b | 13,538.8 | **** |
α-Phellandrene | MH7 | 31.6 a | 36.9 b | 2821.8 d | 38.1 b | 29.2 a | 509.4 c | 1,131,513.3 | **** |
β-Myrcene | MH8 | 363.2 d | 1254.1 e | 2888.0 f | 74.3 a | 315.6 c | 256.2 b | 1,053,379.6 | * |
α-Terpinene | MH9 | 220.2 c | 335.1 d | 408.3 f | 392.5 e | 163.4 b | 98.4 a | 14,852.4 | **** |
Limonene | MH10 | 14,634.6 a | 60,239.4 a | 18,686.7 a | 1919.4 b | 14,700.3 a | 3659.2 c | 2,161,236.8 | **** |
β-Phellandrene | MH11 | 155.8 c | 429.2 d | 13,435.1 a | 151.6 c | 119.6 b | 2408.2 e | 776,303.6 | * |
cis-β-Ocimene | MH12 | 65.8 a | 151.4 d | 419.1 f | 120.6 c | 292.4 e | 90.0 b | 17,233.2 | * |
γ-Terpinene | MH13 | 453.4 a | 8061.7 f | 6044.8 e | 941.8 b | 1200.9 c | 1290.0 d | 9,413,482.5 | * |
trans-β-Ocimene | MH14 | 45.4 c | 150.9 e | 129.4 f | 29.5 a | 87.8 d | 33.3 b | 7339.2 | * |
p-Cymene | MH15 | 24.9 a | 372.1 c | 4026.6 d | 93.9 a | 129.4 b | 316.7 c | 2,250,635.0 | * |
α-Terpinolene | MH16 | 149.6 b | 666.2 e | 709.2 f | 229.9 c | 260.3 d | 95.6 a | 64,890.5 | * |
Allocimene | MH17 | 1.3 a | 5.3 d | 28.6 f | 2.0 c | 8.9 e | 1.7 b | 100.5 | * |
cis-Sabinene hydrate | MH18 | 62.9 d | 33.1 b | 35.3 c | 0.0 a | 0.0 a | 0.0 a | 622.8 | * |
trans-Sabinene hydrate | MH19 | 35.2 b | 0.0 a | 0.0 a | 1.6 a | 0.0 a | 0.0 a | 185.6 | * |
Oxygenated Monoterpenes | |||||||||
cis-Limonene oxide | MO1 | 0.0 a | 0.0 a | 44.8 b | 0.0 a | 0.0 a | 0.0 a | 304.6 | *** |
Citronellal | MO2 | 77.9 c | 215.3 e | 186.4 d | 0.0 a | 0.0 a | 3.4 b | 8764.6 | **** |
Linalool | MO3 | 9.9 c | 256.6 d | 1081.6 f | 1.2 a | 8.4 b | 264.3 e | 157,690.6 | *** |
Isopulegol | MO4 | 0.0 a | 21.5 c | 0.0 a | 0.0 a | 0.0 a | 4.0 b | 69.4 | **** |
Terpinen-4-ol | MO5 | 324.3 b | 576.7 e | 440.6 d | 906.3 f | 382.2 c | 126.8 a | 63,507.7 | ** |
Carvone | MO6 | 12.9 b | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 25.0 | ** |
β-Citronellol | MO7 | 98.0 b | 106.2 c | 1457.4 e | 1.4 a | 4.5 a | 158.3 d | 293,500.9 | ** |
cis-p-Mentha-1(7),8-dien-2-ol | MO8 | 2.6 b | 0.0 a | 30.5 c | 0.0 a | 0.0 a | 0.0 a | 137.4 | ** |
trans-Carveol | MO9 | 5.6 c | 7.5 d | 106.5 e | 0.0 a | 0.0 a | 1.7 b | 1631.0 | ** |
Benzenmethanol | MO10 | 2.4 c | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 1.5 b | 1.0 | ** |
cis-Carveol | MO11 | 2.4 c | 2.8 d | 87.6 e | 0.0 a | 0.0 a | 1.2 b | 1129.4 | ** |
Methyleugenol | MO12 | 4.2 c | 0.0 a | 11.3 d | 0.0 a | 0.0 a | 1.2 b | 18.2 | * |
Sesquiterpenes | |||||||||
α-Cubebene | Sesq1 | 10.9 b | 15.9 c | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 45.5 | ** |
α-Copaene | Sesq2 | 0.0 a | 44.3 c | 0.0 a | 0.0 a | 14.5 b | 0.0 a | 290.6 | ** |
δ-Elemene | Sesq3 | 510.2 d | 1362.2 e | 0.0 a | 24.9 b | 380.3 c | 0.0 a | 253,917.8 | * |
Bicycloelemene | Sesq4 | 85.1 d | 256.8 e | 0.0 a | 5.3 b | 48.4 c | 0.0 a | 8972.8 | * |
β-Bourbonene | Sesq5 | 6.7 b | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 6.8 | * |
α-Gurjunene | Sesq6 | 15.2 c | 62.7 e | 0.0 a | 2.4 b | 24.4 d | 0.0 a | 534.3 | * |
Aristolene | Sesq7 | 8.8 c | 87.4 e | 0.0 a | 1.9 b | 18.2 d | 0.0 a | 1053.2 | * |
α-Bergamotene | Sesq8 | 0.0 a | 0.0 a | 444.5 c | 0.0 a | 0.0 a | 329.5 b | 37,511.5 | ** |
β-Elemene | Sesq9 | 0.0 a | 21.3 b | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 68.5 | * |
Calarene | Sesq10 | 13.3 c | 58.7 e | 0.0 a | 1.8 b | 19.0 d | 0.0 a | 463.6 | * |
Aromadendrene | Sesq11 | 0.0 a | 274.0 d | 245.0 c | 9.7 b | 843.8 e | 0.0 a | 96,958.4 | ** |
Epizonarene | Sesq12 | 51.1 c | 105.9 d | 0.0 a | 0.0 a | 24.2 b | 0.0 a | 1627.7 | ** |
γ-Gurjunene | Sesq13 | 7.1 b | 47.6 d | 0.0 a | 0.0 a | 11.4 c | 0.0 a | 313.1 | ** |
Epibicyclosesquiphellandrene | Sesq14 | 4.8 b | 46.4 c | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 315.9 | ** |
Valencene | Sesq15 | 52.6 c | 336.6 e | 0.0 a | 4.9 b | 85.5 d | 0.0 a | 15,467.2 | *** |
α-Caryophillene | Sesq16 | 77.3 c | 188.3 e | 1293.6 f | 0.0 a | 38.0 b | 155.6 d | 223,355.3 | * |
β-Guaiene | Sesq17 | 44.7 c | 259.4 d | 0.0 a | 9.5 b | 0.0 a | 0.0 a | 9635.1 | * |
Ledene | Sesq18 | 249.6 d | 1579.2 f | 0.0 a | 88.8 c | 904.4 e | 29.1 b | 368,786.8 | * |
Germacrene D | Sesq19 | 158.4 c | 527.9 d | 0.0 a | 8.5 a | 103.1 b | 0.0 a | 38,052.9 | ** |
β-Selinene | Sesq20 | 34.3 c | 69.1 e | 0.0 a | 3.3 b | 46.4 d | 0.0 a | 756.5 | ** |
α-Selinene | Sesq21 | 30.3 c | 158.5 e | 0.0 a | 3.3 b | 53.2 d | 0.0 a | 3424.2 | ** |
Bicyclogermacrene | Sesq22 | 1663.5 e | 6457.0 f | 1349.6 d | 63.3 b | 776.6 c | 28.8 a | 5,280,975.4 | *** |
β-Bisabolene | Sesq23 | 0.0 a | 56.8 e | 2565.5 f | 1.3 b | 5.8 c | 9.5 d | 986,299.6 | ** |
δ-Cadinene | Sesq24 | 139.6 d | 524.5 e | 0.0 a | 8.6 b | 128.6 c | 5.0 a | 36,889.0 | ** |
α-Farnesene | Sesq25 | 28.4 d | 48.9 e | 0.0 a | 2.6 b | 16.9 c | 0.0 a | 350.7 | *** |
Cadina 1,4 diene | Sesq26 | 7.1 b | 19.4 c | 0.0 a | 1.1 a | 7.3 b | 0.0 a | 51.4 | ** |
α-Muurolene | Sesq27 | 16.3 d | 30.2 e | 0.0 a | 1.0 b | 13.6 c | 0.0 a | 134.7 | ** |
Germacrene B | Sesq28 | 76.7 e | 161.9 f | 61.0 d | 8.5 a | 44.6 c | 11.2 b | 2895.8 | ** |
Calamenene | Sesq29 | 2.6 b | 6.0 d | 0.0 a | 0.0 a | 4.6 c | 0.0 a | 6.3 | ** |
α-Calacorene | Sesq30 | 2.1 b | 2.9 c | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 1.6 | ** |
Epiglobulol | Sesq31 | 1.2 b | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.2 | ** |
Nerolidol | Sesq32 | 0.0 a | 0.0 a | 1.5 b | 0.0 a | 0.0 a | 0.0 a | 0.3 | * |
Sphatulenol | Sesq33 | 16.1 d | 40.0 f | 31.8 e | 1.8 b | 13.6 c | 0.6 a | 229.2 | |
Others | |||||||||
2-Ethyl-furan | O1 | 0.5 b | 3.8 d | 1.7 c | 0.0 a | 0.0 a | 0.0 a | 2.1 | ** |
Tridecane | O2 | 2.1 b | 29.2 d | 84.3 e | 0.0 a | 0.0 a | 12.6 c | 979.4 | *** |
Tetradecene | O3 | 12.4 c | 51.2 d | 0.0 a | 0.0 a | 0.0 a | 3.5 b | 370.8 | * |
Tetradecane | O4 | 5.1 b | 21.9 d | 107.3 e | 0.0 a | 0.0 a | 9.7 c | 1573.2 | *** |
Pentadecane | O5 | 7.2 b | 109.5 d | 195.9 e | 0.0 a | 0.0 a | 28.9 c | 5783.8 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzolino, R.; Câmara, J.S.; Malorni, L.; Amato, G.; Cannavacciuolo, C.; Masullo, M.; Piacente, S. Comparative Volatilomic Profile of Three Finger Lime (Citrus australasica) Cultivars Based on Chemometrics Analysis of HS-SPME/GC–MS Data. Molecules 2022, 27, 7846. https://doi.org/10.3390/molecules27227846
Cozzolino R, Câmara JS, Malorni L, Amato G, Cannavacciuolo C, Masullo M, Piacente S. Comparative Volatilomic Profile of Three Finger Lime (Citrus australasica) Cultivars Based on Chemometrics Analysis of HS-SPME/GC–MS Data. Molecules. 2022; 27(22):7846. https://doi.org/10.3390/molecules27227846
Chicago/Turabian StyleCozzolino, Rosaria, José S. Câmara, Livia Malorni, Giuseppe Amato, Ciro Cannavacciuolo, Milena Masullo, and Sonia Piacente. 2022. "Comparative Volatilomic Profile of Three Finger Lime (Citrus australasica) Cultivars Based on Chemometrics Analysis of HS-SPME/GC–MS Data" Molecules 27, no. 22: 7846. https://doi.org/10.3390/molecules27227846
APA StyleCozzolino, R., Câmara, J. S., Malorni, L., Amato, G., Cannavacciuolo, C., Masullo, M., & Piacente, S. (2022). Comparative Volatilomic Profile of Three Finger Lime (Citrus australasica) Cultivars Based on Chemometrics Analysis of HS-SPME/GC–MS Data. Molecules, 27(22), 7846. https://doi.org/10.3390/molecules27227846