Antibacterial, Antioxidant, Larvicidal and Anticancer Activities of Silver Nanoparticles Synthesized Using Extracts from Fruits of Lagerstroemia speciose and Flowers of Couroupita guianensis
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Ag NPs
3.2. Physiochemical Characterization of Ag NPs
3.3. In vitro Antibacterial Assessment
3.4. Antioxidant Activity
3.5. Larvicidal Activity
3.6. Anti-Cancer Activity
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Abdelghany, T.M.; Al-Rajhi, A.M.H.; al Abboud, M.A.; Alawlaqi, M.M.; Ganash Magdah, A.; Helmy, E.A.M.; Mabrouk, A.S. Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review. Bionanoscience 2018, 8, 5–16. [Google Scholar] [CrossRef]
- Netala, V.R.; Kotakadi, V.S.; Nagam, V.; Bobbu, P.; Ghosh, S.B.; Tartte, V. First Report of Biomimetic Synthesis of Silver Nanoparticles Using Aqueous Callus Extract of Centella Asiatica and Their Antimicrobial Activity. Appl. Nanosci. 2015, 5, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Huy, T.Q.; Huyen, P.T.M.; Le, A.-T.; Tonezzer, M. Recent Advances of Silver Nanoparticles in Cancer Diagnosis and Treatment. Anticancer Agents Med. Chem. 2019, 20, 1276–1287. [Google Scholar] [CrossRef]
- Elangovan, K.; Elumalai, D.; Anupriya, S.; Shenbhagaraman, R.; Kaleena, P.K.; Murugesan, K. Phyto Mediated Biogenic Synthesis of Silver Nanoparticles Using Leaf Extract of Andrographis Echioides and Its Bio-Efficacy on Anticancer and Antibacterial Activities. J. Photochem. Photobiol. B 2015, 151, 118–124. [Google Scholar] [CrossRef]
- Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2004, 2, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugasundaram, T.; Balagurunathan, R. Mosquito Larvicidal Activity of Silver Nanoparticles Synthesised Using Actinobacterium, Streptomyces Sp. M25 against Anopheles Subpictus, Culex Quinquefasciatus and Aedes Aegypti. J. Parasit. Dis. 2015, 39, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Govindarajan, M. Green-Synthesized Mosquito Oviposition Attractants and Ovicides: Towards a Nanoparticle-Based “Lure and Kill” Approach? J. Clust. Sci. 2017, 28, 287–308. [Google Scholar] [CrossRef]
- Gahlawat, G.; Shikha, S.; Chaddha, B.S.; Chaudhuri, S.R.; Mayilraj, S.; Choudhury, A.R. Microbial Glycolipoprotein-Capped Silver Nanoparticles as Emerging Antibacterial Agents against Cholera. Microb. Cell Fact. 2016, 15, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sondi, I.; Salopek-Sondi, B. Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. Coli as a Model for Gram-Negative Bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Myint, P.P.; Soe, M.T.; Hlaing, H.H. A study of phytoconstituents, α-glucosidase inhibitory effect and antioxidant activity of Lagerstroemia speciosa L. Leaf and Fruit. J. Pharmacogn. Phytochem. 2017, 6, 528–533. [Google Scholar]
- Pareek, A.; Suthar, M.; Rathore, G.S.; Bansal, V.; Kumawat, T. In vitro antioxidant studies of Lagerstroemia speciosa leaves. Pharmacogn. J. 2010, 2, 357–360. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Medicinal value of Lagerstroemia speciosa: An updated review. Int. J. Curr. Pharm. Res. 2019, 11, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Sharmin, T.; Rahman, M.; Mohammadi, H. Investigation of biological activities of the flowers of Lagerstroemia speciosa, the Jarul flower of Bangladesh. BMC Complement. Altern. Med. 2018, 18, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumathi, S.; Anuradha, R. Couroupita guianensis Aubl: An updated review of its phytochemistry and pharmacology. Asian J. Pharm. Pharmacol. 2017, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sheba, L.A.; Anuradha, V. An updated review on Couroupita guianensis Aubl: A sacred plant of India with myriad medicinal properties. J. HerbMed Pharmacol. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Vimala, R.T.V.; Sathishkumar, G.; Sivaramakrishnan, S. Optimization of Reaction Conditions to Fabricate Nano-Silver Using Couroupita Guianensis Aubl. (Leaf & Fruit) and Its Enhanced Larvicidal Effect. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 110–115. [Google Scholar] [CrossRef]
- Choi, O.; Deng, K.K.; Kim, N.J.; Ross, L.; Surampalli, R.Y.; Hu, Z. The Inhibitory Effects of Silver Nanoparticles, Silver Ions, and Silver Chloride Colloids on Microbial Growth. Water Res. 2008, 42, 3066–3074. [Google Scholar] [CrossRef]
- Khodashenas, B.; Ghorbani, H.R. Synthesis of Silver Nanoparticles with Different Shapes. Arab. J. Chem. 2019, 12, 1823–1838. [Google Scholar] [CrossRef] [Green Version]
- Sai Saraswathi, V.; Tatsugi, J.; Shin, P.K.; Santhakumar, K. Facile Biosynthesis, Characterization, and Solar Assisted Photocatalytic Effect of ZnO Nanoparticles Mediated by Leaves of L. Speciosa. J. Photochem. Photobiol. B. 2017, 167, 89–98. [Google Scholar] [CrossRef]
- Sundararajan, B.; Ranjitha Kumari, B.D. Biosynthesis of silver nanoparticles in lagerstroemia speciosa (L.) pers and their antimicrobial activities. Int. J. Pharm. Pharm. Sci. 2014, 6, 30–34. [Google Scholar]
- Kumar, T.V.R.; Murthy, J.S.R.; Rao, M.N.; Bhargava, Y. Evaluation of silver nanoparticles synthetic potential of Couroupita guianensis Aubl., flower buds extract and their synergistic antibacterial activity. 3 Biotech. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Hano, C.; Tavanti, F.; Sharma, B. Biogenic Synthesis and Characterization of Antioxidant and Antimicrobial Silver Nanoparticles Using Flower Extract of Couroupita guianensis Aubl. Materials 2021, 14, 6854. [Google Scholar] [CrossRef]
- Li, S.; Shen, Y.; Xie, A.; Yu, X.; Qiu, L.; Zhang, L.; Zhang, Q. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem. 2007, 9, 852–858. [Google Scholar] [CrossRef]
- Mude, N.; Ingle, A.; Gade, A.; Rai, M. Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report. J. Plant Biochem. Biotechnol. 2009, 8, 83–86. [Google Scholar] [CrossRef]
- Rani, P.U.; Rajasekharreddy, P. Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 88–194. [Google Scholar] [CrossRef]
- Loo, Y.Y.; Chieng, B.W.; Nishibuchi, M.; Radu, S. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int. J. Nanomed. 2012, 7, 4263. [Google Scholar] [CrossRef] [Green Version]
- Niraimathi, K.L.; Sudha, V.; Lavanya, R.; and Brindha, P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B Biointerfaces 2013, 102, 288–291. [Google Scholar] [CrossRef]
- Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016, 9, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Ghaedi, M.; Yousefinejad, M.; Safarpoor, M.; Khafri, H.Z.; Purkait, M.K. Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. Ind. Eng. Chem. 2015, 31, 167–172. [Google Scholar] [CrossRef]
- Mo, Y.Y.; Tang, Y.K.; Wang, S.Y.; Lin, J.M.; Zhang, H.B.; Luo, D.Y. Green synthesis of silver nanoparticles using eucalyptus leaf extract. Mater. Lett. 2015, 144, 65–167. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, H.; Chu, J.; Ma, J.; Fan, Y.; Wang, Z.; Ni, Y. Lignin-directed control of silver nanoparticles with tunable size in porous lignocellulose hydrogels and their application in catalytic reduction. ACS Sustain. Chem. Eng. 2020, 8, 12655–12663. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Ahn, S.; Shin, H.S. Grape pomace extracted tannin for green synthesis of silver nanoparticles: Assessment of their antidiabetic, antioxidant potential and antimicrobial activity. Polymers 2021, 13, 4355. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A.; Yilmaz, V.; Ildiz, N.; Baldemir, A.; Ocsoy, I. Anthocyanins-rich berry extracts directed formation of Ag NPs with the investigation of their antioxidant and antimicrobial activities. J. Mol. Liq. 2017, 248, 1044–1049. [Google Scholar] [CrossRef]
- Kumar, B.; Smita, K.; Cumbal, L. Biosynthesis of silver nanoparticles using Lantana camara flower extract and its application. J. Sol-Gel Sci. Technol. 2016, 78, 285–292. [Google Scholar] [CrossRef]
- Cecilia, K.F.; Ravindhran, R.; Gandhi, M.R.; Reegan, A.D.; Balakrishna, K.; Ignacimuthu, S. Larvicidal and Pupicidal Activities of Ecbolin A and Ecbolin B Isolated from Ecbolium Viride (Forssk.) Alston against Culex Quinquefasciatus Say (Diptera: Culicidae). Parasitol. Res. 2014, 113, 3477–3484. [Google Scholar] [CrossRef] [PubMed]
- Sukirtha, R.; Priyanka, K.M.; Antony, J.J.; Kamalakkannan, S.; Thangam, R.; Gunasekaran, P.; Krishnan, M.; Achiraman, S. Cytotoxic Effect of Green Synthesized Silver Nanoparticles Using Melia Azedarach against in Vitro HeLa Cell Lines and Lymphoma Mice Model. Process Biochem. 2012, 47, 273–279. [Google Scholar] [CrossRef]
- Thomas, R.; Mathew, S.; Nayana, A.R.; Mathews, J.; Radhakrishnan, E.K. Microbially and phytofabricated AgNPs with different mode of bactericidal action were identified to have comparable potential for surface fabrication of central venous catheters to combat Staphylococcus aureus biofilm. J. Photochem. Photobiol. B: Biol. 2017, 171, 96–103. [Google Scholar] [CrossRef]
- Netala, V.R.; Kotakadi, V.S.; Bobbu, P.; Gaddam, S.A.; Tartte, V. Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3 Biotech 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Murugan, K.; Benelli, G.; Ayyappan, S.; Dinesh, D.; Panneerselvam, C.; Nicoletti, M.; Hwang, J.S.; Kumar, P.M.; Subramaniam, J.; Suresh, U. Toxicity of Seaweed-Synthesized Silver Nanoparticles against the Filariasis Vector Culex Quinquefasciatus and Its Impact on Predation Efficiency of the Cyclopoid Crustacean Mesocyclops Longisetus. Parasitol. Res. 2015, 114, 2243–2253. [Google Scholar] [CrossRef]
- Murugan, K.; Benelli, G.; Panneerselvam, C.; Subramaniam, J.; Jeyalalitha, T.; Dinesh, D.; Nicoletti, M.; Hwang, J.S.; Suresh, U.; Madhiyazhagan, P. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp. Parasitol. 2015, 153, 129–138. [Google Scholar] [CrossRef]
- Murugan, K.; Dinesh, D.; Kavithaa, K.; Paulpandi, M.; Ponraj, T.; Alsalhi, M.S.; Devanesan, S.; Subramaniam, J.; Rajaganesh, R.; Wei, H.; et al. Hydrothermal Synthesis of Titanium Dioxide Nanoparticles: Mosquitocidal Potential and Anticancer Activity on Human Breast Cancer Cells (MCF-7). Parasitol. Res. 2016, 115, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.G.; Fernández-Baldo, M.A.; Fernández, J.G.; Serrano, M.J.; Sanz, M.I.; Diaz-Mochon, J.J.; Lorente, J.A.; Raba, J. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int. J. Nanomed. 2015, 10, 202. [Google Scholar] [CrossRef]
Peak (cm−1) | Assignment |
---|---|
3431 | O–H |
2925 | C–H |
1631 | N–H |
1384 | C-N/C–H |
Grain Size from Scherrer Equation (nm) | Dislocation Density δ | Grain Size from W-H Plot (nm) | Strain ε (×10−4) |
---|---|---|---|
14.66 | 0.004653 | 14.29 | 10 |
Organisms | Streptomycin (10 μg/disc) | Antibacterial Activity (mm) | ||||
---|---|---|---|---|---|---|
0.5 (µg/mL) | 1 (µg/mL) | 1.5 (µg/mL) | 2 (µg/mL) | 2.5 (µg/mL) | ||
Staphylococcus aureus | 19.3 ± 1.5 | 8.6 ± 0.5 | 9.6 ± 0.5 | 10.3 ± 1.5 | 10.6 ± 0.5 | 11.6 ± 0.5 |
Enterococcus faecalis | 18.6 ± 0.5 | 10.3 ± 1.1 | 11.3 ± 1.5 | 12.3 ± 1.5 | 14.6 ± 1.5 | 15.3 ± 0.5 |
Yersinia enterocolitica | 15.3 ± 1.1 | 7.6 ± 0.5 | 7.3 ± 1.5 | 8.6 ± 0.5 | 9.6 ± 1.1 | 12.3 ± 1.1 |
Proteus mirabilis | 19.6 ± 1.1 | 11.3 ± 1.1 | 11.6 ± 0.5 | 12.3 ± 2.0 | 13.6 ± 1.1 | 14.3 ± 0.5 |
Mosquito | Extracts | LC50 (ppm) | 95% Confidence Limit | LC90 (ppm) | 95% Confidence Limit | Intercept ± SE | Slope ± SE | χ2 | ||
---|---|---|---|---|---|---|---|---|---|---|
LL | UL | LL | UL | |||||||
Cx. quinquefasciatus | Ag NPs | 0.742 | 0.392 | 0.834 | 6.061 | 4.582 | 26.124 | 3.7 ± 0.9 | 1.6 ± 0.4 | 3.9 * |
Temephos | 1.74 | 1.56 | 1.83 | 5.02 | 5.42 | 4.93 | 2.5 ± 0.3 | 5.5 ± 0.1 | 4.7 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babu, V.; Arokiyaraj, S.; Sakthi Sri, S.P.; George, M.; Ragavan, R.M.; Dharmalingam, D.; Oh, T.; Ramasundaram, S.; Agastian, P. Antibacterial, Antioxidant, Larvicidal and Anticancer Activities of Silver Nanoparticles Synthesized Using Extracts from Fruits of Lagerstroemia speciose and Flowers of Couroupita guianensis. Molecules 2022, 27, 7792. https://doi.org/10.3390/molecules27227792
Babu V, Arokiyaraj S, Sakthi Sri SP, George M, Ragavan RM, Dharmalingam D, Oh T, Ramasundaram S, Agastian P. Antibacterial, Antioxidant, Larvicidal and Anticancer Activities of Silver Nanoparticles Synthesized Using Extracts from Fruits of Lagerstroemia speciose and Flowers of Couroupita guianensis. Molecules. 2022; 27(22):7792. https://doi.org/10.3390/molecules27227792
Chicago/Turabian StyleBabu, Venkatadri, Selvaraj Arokiyaraj, Swathi Pon Sakthi Sri, Mary George, Rameshkumar Marimuthu Ragavan, Dinesh Dharmalingam, Taehwan Oh, Subramaniyan Ramasundaram, and Paul Agastian. 2022. "Antibacterial, Antioxidant, Larvicidal and Anticancer Activities of Silver Nanoparticles Synthesized Using Extracts from Fruits of Lagerstroemia speciose and Flowers of Couroupita guianensis" Molecules 27, no. 22: 7792. https://doi.org/10.3390/molecules27227792