Antibacterial and Antiproliferative Activities of Azadirachta indica Leaf Extract and Its Effect on Oil-in-Water Food Emulsion Stability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield of A. indica EtOH Extracts
2.2. Phenolic Compound Content, Antioxidant and Antiradical Activity of A. indica 50% EtOH Extract
2.3. Phenolic Profile of A. indica 50% EtOH Extract Determined by HPLC-MS
2.4. Oxidative Stability of O/W Emulsion with A. indica 50% EtOH Leaf Extract
2.4.1. Primary Oxidation Products (Peroxide Value)
2.4.2. pH Changes
2.4.3. Secondary Oxidation Products (MDA Formation)
2.5. Antibacterial Activity of A. indica Leaf Extract (MIC Assay)
2.6. Viability-Reducing Activity of A. indica Leaf Extract against Cancer Cell Lines
3. Materials and Methods
3.1. Chemicals and Standards
3.2. Plant Sampling and Extracts Preparation
3.3. Extraction Yield
3.4. Spectrophotometric Determination of Phenolic Compounds
3.4.1. Total Polyphenol Content
3.4.2. Total Flavonoid Content
3.4.3. Total Condensed Tannin Content
3.5. Antioxidant and Radical-Scavenging Activity
3.5.1. Ferric-Reducing Antioxidant Power Assay
3.5.2. Trolox-Equivalent Antioxidant Capacity Assay
3.5.3. Oxygen Radical Absorbance Capacity Assay
3.5.4. DPPH Radical-Scavenging Activity Assay
3.6. Identification and Quantification of Phenolic Compounds by HPLC-MS
3.7. Antioxidant Activity in Oil-in-Water (O/W) Food Emulsions
3.7.1. Emulsions Preparation and Storage
3.7.2. Primary Oxidation Reactions (Peroxide Value) and pH Measurements
3.7.3. Secondary Oxidation Reactions (Malondialdehyde Content)
3.8. Antibacterial Activity
3.8.1. Microbial Strains
3.8.2. Turbidity Determination and Minimum Inhibitory Concentration Measurement
3.9. Anti-Proliferative Activity against Cancer Cells
3.9.1. Cancer Cell Lines Tested
3.9.2. Cancer Cell Viability-Reducing Activity (MTT Assay)
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gahruie, H.H.; Hosseini, S.M.H.; Taghavifard, M.H.; Eskandari, M.H.; Golmakani, M.T.; Shad, E. Lipid Oxidation, Color Changes, and Microbiological Quality of Frozen Beef Burgers Incorporated with Shirazi Thyme, Cinnamon, and Rosemary Extracts. J. Food Qual. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, C.; Paiva-Martins, F.; Schwarz, K.; Bochkov, V. Lipid Oxidation and Antioxidants in Food and Nutrition. Eur. J. Lipid Sci. Technol. 2019, 121, 1. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of Volatile Compounds of Dry-Cured Meat Products Using HS-SPME-GC/MS Technique. Food Anal. Methods 2019, 12, 1–22. [Google Scholar] [CrossRef]
- Hanna, G.-W.; Krystyna, R.; Wacław, L.; Maksymilian, C. Butter, Margarine, Vegetable Oils, and Olive Oil in the Average Polish Diet. Nutrients 2019, 11, 2935. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J.; Decker, E.A. Lipid Oxidation in Oil-in-Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. J. Food Sci. 2000, 65, 1270–1282. [Google Scholar] [CrossRef]
- Freitas, K.H.G.; Fatibello-Filho, O. Simultaneous Determination of Butylated Hydroxyanisole (BHA) and Butylated Hydroxytoluene (BHT) in Food Samples Using a Carbon Composite Electrode Modified with Cu3(PO4)2 Immobilized in Polyester Resin. Talanta 2010, 81, 1102–1108. [Google Scholar] [CrossRef]
- Shahidi, F. Antioxidants in Food and Food Antioxidants. Nahr.-Food 2000, 44, 158–163. [Google Scholar] [CrossRef]
- Taghvaei, M.; Jafari, S.M. Application and Stability of Natural Antioxidants in Edible Oils in Order to Substitute Synthetic Additives. J. Food Sci. Technol. 2015, 52, 1272–1282. [Google Scholar] [CrossRef] [Green Version]
- Damechki, M.; Sotiropoulou, S.; Tsimidou, M. Antioxidant and Pro-Oxidant Factors in Oregano and Rosemary Gourmet Olive Oils. Grasas y Aceites 2001, 52, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aini, N.; Azman, M.; Gallego, M.G.; Juliá, L.; Fajari, L.; Apilar Almajano, M.; Miguel, M.G.; Rocha, J.O.; Abourashed, E.A. The Effect of Convolvulus Arvensis Dried Extract as a Potential Antioxidant in Food Models. Antioxidants 2015, 4, 170. [Google Scholar] [CrossRef] [Green Version]
- Hawashin, M.D.; Al-Juhaimi, F.; Ahmed, I.A.M.; Ghafoor, K.; Babiker, E.E. Physicochemical, Microbiological and Sensory Evaluation of Beef Patties Incorporated with Destoned Olive Cake Powder. Meat Sci. 2016, 122, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Choe, E. Roles and Action Mechanisms of Herbs Added to the Emulsion on Its Lipid Oxidation. Food Sci. Biotechnol. 2020, 29, 1165–1179. [Google Scholar] [CrossRef] [PubMed]
- Takó, M.; Beáta Kerekes, E.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents Against. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, J.; Davidson, S.; Banthorpe, D.; Hobbs, J.; Harborne, J. Natural Products: Their Chemistry and Biological Significance; Longman Scientific & Technical: New York, NY, USA, 1994; p. 455. [Google Scholar]
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules 2020, 10, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of Polyphenols and Its Anticancer Properties in Biomedical Research: A Narrative Review. Transl. Cancer Res. 2020, 9, 7619–7631. [Google Scholar] [CrossRef]
- Kumar, V.S.; Navaratnam, V. Neem (Azadirachta Indica): Prehistory to Contemporary Medicinal Uses to Humankind. Asian Pac. J. Trop. Biomed. 2013, 3, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Duangjai, A.; Nuengchamnong, N.; Lee, L.H.; Goh, B.H.; Saokaew, S.; Suphrom, N. Characterisation of an Extract and Fractions of Azadirachta Indica Flower on Cholesterol Lowering Property and Intestinal Motility. Nat. Prod. Res. 2017, 6419, 1–4. [Google Scholar] [CrossRef]
- Paul, R.; Prasad, M.; Sah, N.K. Anticancer Biology of Azadirachta Indica L (Neem): A Mini Review. Cancer Biol. Ther. 2011, 12, 467–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Saiqali, M.; Tangutur, A.D.; Banoth, C.; Bhukya, B. Antimicrobial and Anticancer Potential of Low Molecular Weight Polypeptides Extracted and Characterized from Leaves of Azadirachta Indica. Int. J. Biol. Macromol. 2018, 114, 906–921. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Prasad, S.; Tyagi, A.K.; Kunnumakkara, A.B.; Aggarwal, B.B. Neem (Azadirachta Indica): An Indian Traditional Panacea with Modern Molecular Basis. Phytomedicine 2017, 34, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Nahar, L.; Uddin, S.J.; Alam, M.A.; Sarker, S.D. Extraction of Naturally Occurring Cannabinoids: An Update. Phytochem. Anal. 2021, 32, 228–241. [Google Scholar] [CrossRef]
- Moo-Huchin, V.M.; Canto-Pinto, J.C.; Cuevas-Glory, L.F.; Sauri-Duch, E.; Pérez-Pacheco, E.; Betancur-Ancona, D. Effect of Extraction Solvent on the Phenolic Compounds Content and Antioxidant Activity of Ramon Nut (Brosimum Alicastrum). Chem. Pap. 2019, 73, 1647–1657. [Google Scholar] [CrossRef]
- Bosse, R.; Wirth, M.; Konstanz, A.; Becker, T.; Weiss, J.; Gibis, M. Determination of Volatile Marker Compounds in Raw Ham Using Headspace-Trap Gas Chromatography. Food Chem. 2017, 219, 249–259. [Google Scholar] [CrossRef]
- Zuorro, A.; Maffei, G.; Lavecchia, R. Effect of Solvent Type and Extraction Conditions on the Recovery of Phenolic Compounds from Artichoke Waste. Chem. Eng. Trans. 2014, 39, 463–468. [Google Scholar] [CrossRef]
- Shewale, S.; Rathod, V.K. Extraction of Total Phenolic Content from Azadirachta Indica or (Neem) Leaves: Kinetics Study. Prep. Biochem. Biotechnol. 2018, 48, 312–320. [Google Scholar] [CrossRef]
- Qun-Qun, Z.; Xin, D.; Xin-Guang, L.; Wen, G.; Ping, L.; Hua, Y. Rapid Separation and Identification of Multiple Constituents in Danhong Injection by Ultra-High Performance Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-Flight Tandem Mass Spectrometry. Chin. J. Nat. Med. 2016, 147, 147–160. [Google Scholar] [CrossRef]
- Mekky, R.H.; Abdel-sattar, E.; Segura-carretero, A.; Contreras, M.d.M. Metabolic Profiling of the Oil of Sesame of the Egyptian Cultivar ‘Giza 32’ Employing LC-MS and Tandem MS-Based Untargeted Method. Foods 2021, 10, 298. [Google Scholar] [CrossRef]
- Li, H.; Subbiah, V.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic Profiling of Five Different Australian Grown Apples. Appl. Sci. 2021, 11, 2421. [Google Scholar] [CrossRef]
- Tang, J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterization of Phenolic Compounds from Medicinal Plants (Hops and Juniper Berries) and Their Antioxidant Activity. Foods 2020, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Generali, I.M.; Skroza, D.; Ljubenkov, I.; Katalini, V.; Vida, Š. Antioxidant and Antimicrobial Potential of Phenolic Metabolites from Traditionally Used Mediterranean. Foods 2019, 8, 1–16. [Google Scholar]
- Sridhar, K.; Charles, A.L. Fortification Using Grape Extract Polyphenols—A Review on Functional Food Regulations. Int. J. Food Sci. Technol. 2021, 56, 3742–3751. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Van Lith, R.; Ameer, G.A. Antioxidant Polymers as Biomaterial. In Oxidative Stress and Biomaterials; Academic Press: Lexington, KY, USA, 2016; pp. 251–296. ISBN 9780128032701. [Google Scholar]
- Kaur, J.; Mehta, V.; Kaur, G. Preparation, Development and Characterization of Leucaena Leucocephala Galactomannan (LLG) Conjugated Sinapic Acid: A Potential Colon Targeted Prodrug. Int. J. Biol. Macromol. 2021, 178, 29–40. [Google Scholar] [CrossRef]
- Lee, E.H.; Shin, J.H.; Kim, S.S.; Seo, S.R. Sinapic Acid Controls Inflammation by Suppressing Nlrp3 Inflammasome Activation. Cells 2021, 10, 2327. [Google Scholar] [CrossRef]
- Pandi, A.; Kalappan, V.M. Pharmacological and Therapeutic Applications of Sinapic Acid—An Updated Review. Mol. Biol. Rep. 2021, 48, 3733–3745. [Google Scholar] [CrossRef]
- Kanchana, G.; Shyni, W.J.; Rajadurai, M.; Periasamy, R. Evaluation of Antihyperglycemic Effect of Sinapic Acid in Normal and Streptozotocin-Induced Diabetes in Albino Rats. Glob. J. Pharmacol. 2011, 5, 33–39. [Google Scholar]
- Un, X.S.; To, H.I.; Asuoka, T.M.; Amei, C.K.; Atano, T.H. Effect of Polygala Tenuifolia Root Extract on Scopolamine-Induced Impairment of Rat Spatial Cognition in an Eight-Arm Radial Maze Task. Biol. Pharm. Bull. 2007, 30, 1727–1731. [Google Scholar]
- Mathew, S.; Abraham, T.E.; Zakaria, Z.A. Reactivity of Phenolic Compounds towards Free Radicals under in Vitro Conditions. J. Food Sci. Technol. 2015, 52, 5790–5798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Alessandro, M.; Olga, B.; Daniele, R.; Tatiana, B.; Gianni, S.; Massimo, T.; Carmela, D.R. Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules 2017, 22, 1270. [Google Scholar] [CrossRef]
- Deepak Kumar, S.; Ruchi Badoni, S.; Sandra, C.; Alvaro, V. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Dower, J.I.; Geleijnse, J.M.; Hollman, P.C.H.; Soedamah-Muthu, S.S.; Kromhout, D. Dietary Epicatechin Intake and 25-y Risk of Cardiovascular Mortality: The Zutphen Elderly Study. Am. J. Clin. Nutr. 2016, 104, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Cillard, J.; Cillard, P. Mécanismes de La Peroxydation Lipidique et Des Anti-Oxydations. Oléagineux, Corps gras, Lipides 2006, 13, 24–29. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms of Antioxidants in the Oxidation of Foods. Compr. Rev. Food Sci. Food Saf. 2009, 8, 345–358. [Google Scholar] [CrossRef]
- Gallego, M.; Skowyra, M.; Gordon, M.; Azman, N.; Almajano, M. Effect of Leaves of Caesalpinia Decapetala on Oxidative Stability of Oil-in-Water Emulsions. Antioxidants 2017, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Skowyra, M.; Gallego, M.G.; Segovia, F.; Almajano, M.P. Antioxidant Properties of Artemisia Annua Extracts in Model Food Emulsions. Antioxidants 2014, 3, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azman, N.A.M.; Segovia, F.; Martínez-Farré, X.; Gil, E.; Almajano, M.P. Screening of Antioxidant Activity of Gentian Lutea Root and Its Application in Oil-in-Water Emulsions. Antioxidants 2014, 3, 455. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.E.; Wang, W.D.; Chen, H.W.; Li, C. Autoxidation of Unsaturated Lipids in Food Emulsion. Crit. Rev. Food Sci. Nutr. 2011, 51, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Bo, W.; Haiyan, T.; Dong, X. Stabilizing the Oil-in-Water Emulsions Using the Mixtures of Dendrobium Officinale Polysaccharides and Gum Arabic or Propylene Glycol Alginate. Molecules 2020, 25, 1–18. [Google Scholar]
- Kishk, Y.F.M.; Elsheshetawy, H.E. Effect of Ginger Powder on the Mayonnaise Oxidative Stability, Rheological Measurements, and Sensory Characteristics. Ann. Agric. Sci. 2013, 58, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Moga, M.A.; Bălan, A.; Anastasiu, C.V.; Dimienescu, O.G.; Neculoiu, C.D.; Gavriș, C. An Overview on the Anticancer Activity of Azadirachta Indica (Neem) in Gynecological Cancers. Int. J. Mol. Sci. 2018, 19, 3898. [Google Scholar] [CrossRef] [PubMed]
- Braga, D.L.; Mota, S.T.S.; Zóia, M.A.P.; Lima, P.M.A.P.; Orsolin, P.C.; Vecchi, L.; Nepomuceno, J.C.; Fürstenau, C.R.; Maia, Y.C.P.; Goulart, L.R.; et al. Ethanolic Extracts from Azadirachta Indica Leaves Modulate Transcriptional Levels of Hormone Receptor Variant in Breast Cancer Cell Lines. Int. J. Mol. Sci. 2018, 19, 1879. [Google Scholar] [CrossRef] [Green Version]
- Sharma, C.; Vas, A.J.; Goala, P.; Gheewala, T.M.; Rizvi, T.A.; Hussain, A. Ethanolic Neem (Azadirachta Indica) Leaf Extract Prevents Growth of MCF-7 and HeLa Cells and Potentiates the Therapeutic Index of Cisplatin. J. Oncol. 2014, 2014, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Elumalai, P.; Gunadharini, D.N.; Senthilkumar, K.; Banudevi, S.; Arunkumar, R.; Benson, C.S.; Sharmila, G.; Arunakaran, J. Ethanolic Neem (Azadirachta Indica A. Juss) Leaf Extract Induces Apoptosis and Inhibits the IGF Signaling Pathway in Breast Cancer Cell Lines. Biomed. Prev. Nutr. 2012, 2, 59–68. [Google Scholar] [CrossRef]
- Priyadarsini, R.V.; Murugan, R.S.; Sripriya, P.; Karunagaran, D.; Nagini, S. The Neem Limonoids Azadirachtin and Nimbolide Induce Cell Cycle Arrest and Mitochondria-Mediated Apoptosis in Human Cervical Cancer (HeLa) Cells. Free Radic. Res. 2010, 44, 624–634. [Google Scholar] [CrossRef]
- Kavitha, K.; Vidya Priyadarsini, R.; Anitha, P.; Ramalingam, K.; Sakthivel, R.; Purushothaman, G.; Singh, A.K.; Karunagaran, D.; Nagini, S. Nimbolide, a Neem Limonoid Abrogates Canonical NF-ΚB and Wnt Signaling to Induce Caspase-Dependent Apoptosis in Human Hepatocarcinoma (HepG2) Cells. Eur. J. Pharmacol. 2012, 681, 6–14. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E. Profiling of Phenolic Compounds and Their Antioxidant and Anticancer Activities in Pandan (Pandanus Amaryllifolius Roxb.) Extracts from Different Locations of Malaysia. BMC Complement. Altern. Med. 2013, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kurata, R.; Adachi, M.; YAmakawa, O.; Yoshimoto, M. Growth Suppression of Human Cancer Cells by Polyphenolics from Sweetpotato (Ipomoea Batatas L.) Leaves. J. Agric. Food Chem. 2007, 55, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. Ferulic Acid Exerts Antitumor Activity and Inhibits Metastasis in Breast Cancer Cells by Regulating Epithelial to Mesenchymal Transition. Oncol. Rep. 2016, 36, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Zhu, M.; Wang, L.; Yu, S. Anti-Tumor Effects and Associated Molecular Mechanisms of Myricetin. Biomed. Pharmacother. 2019, 120, 1–10. [Google Scholar] [CrossRef]
- Williamson, G.; Kay, C.D.; Crozier, A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [Google Scholar] [CrossRef] [Green Version]
- Falleh, H.; Ksouri, R.; Chaieb, K.; Karray-Bouraoui, N.; Trabelsi, N.; Boulaaba, M.; Abdelly, C. Phenolic Composition of Cynara Cardunculus L. Organs, and Their Biological Activities. Comptes Rendus-Biol. 2008, 331, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Julkunen-Tiitto, R. Phenolic Constituents in the Leaves of Northern Willows: Methods for the Analysis of Certain Phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Gallego, G.; Gordon, M.; Segovia, F.; Skowyra, M. Antioxidant Properties of Three Aromatic Herbs (Rosemary, Thyme and Lavender) in Oil-in-Water Emulsions. JAOCS J. Am. Oil Chem. Soc. 2013, 90, 1559–1568. [Google Scholar] [CrossRef]
- Azman, N.A.M.; Gordon, M.H.; Skowyra, M.; Segovia, F.; Almajano, M.P. Use of Lyophilised and Powdered Gentiana Lutea Root in Fresh Beef Patties Stored under Different Atmospheres. J. Sci. Food Agric. 2015, 95, 1804–1811. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.B.; Biswas, M.; Khurshid Alam, A.H.M. In Vitro Antioxidant and Free Radical Scavenging Activity of Different Parts of Tabebuia Pallida Growing in Bangladesh. BMC Res. Notes 2015, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Del Bano, M.J.; Lorente, J.; Castillo, J.; Benavente-Garcia, O.; Del Rio, J.A.; Ortuno, A.; Quirin, K.-W.; Gerard, D. Phenolic Diterpenes, Flavones, and Rosmarinic Acid Distribution during the Development of Leaves, Flowers, Stems, and Roots of Rosmarinus Officinalis. Antioxidant Activity. J. Agric. Food Chem. 2003, 51, 4247–4253. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, S.; Luitel, S.; Dahal, R.K. In Vitro Antimicrobial Activity of Some Medicinal Plants against Human Pathogenic Bacteria. J. Trop. Med. 2019, 2019, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Gallego, A.; Metón, I.; Baanante, I.V.; Ouazzani, J.; Adelin, E.; Palazon, J.; Bonfill, M.; Moyano, E. Viability-Reducing Activity of Coryllus Avellana L. Extracts against Human Cancer Cell Lines. Biomed. Pharmacother. 2017, 89, 565–572. [Google Scholar] [CrossRef]
- Kchaou, W.; Abbès, F.; Mansour, R.B.; Blecker, C.; Attia, H.; Besbes, S. Phenolic Profile, Antibacterial and Cytotoxic Properties of Second Grade Date Extract from Tunisian Cultivars (Phoenix Dactylifera L.). Food Chem. 2016, 194, 1048–1055. [Google Scholar] [CrossRef]
Leaf Extract | 50%-Aqueous EtOH | 80%-Aqueous EtOH | Absolute EtOH |
---|---|---|---|
EY (%) | 25.14 a | 19.04 b | 12.89 c |
Phenolic compound | TPC (mg GAE/g lyophilized sample) | 47.47 ± 0.03 a |
TFC (mg QE/g lyophilized sample) | 15.37 ± 0.12 b | |
TCTC (mg CE/g lyophilized sample) | 11.23 ± 0.13 c | |
Radical-Scavenging Activity | FRAP (mM TE/g lyophilized sample) | 2.30 ± 0.01 a |
TEAC (mM TE/g lyophilized sample) | 1.68 ± 0.08 b | |
ORAC (mM TE/g lyophilized sample) | 1.66 ± 0.08 b | |
DPPH (mM TE/g lyophilized sample) | 0.37 ± 0.01 c |
Peak N° | Tentative Identification | Chemical Formula | RT (min) | Molecular Weight | Ionization Mode | Fragment Ion (m/z) | Polyphenol Class | Content * | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|
Theoretical (m/z) | Observed (m/z) | |||||||||
1 | Chlorogenic acid | C16H18O9 | 7.29 | 354.3087 | [M − H]− | 353.0878 | 353.0880 | Phenolic acids | 1504.62 | Std/ [30] |
2 | Caffeic acid | C9H8O4 | 8.34 | 180.1574 | [M − H]− | 179.0345 | 179.0350 | Phenolic acids | 5568.44 | Std/ [30] |
3 | Syringic acid | C9H10O5 | 8.68 | 198.1727 | [M − H]− | 198.0528 | 197.0453 | Phenolic acids | 102.209 | Std/ [31] |
4 | (-)-Epicatechin | C15H14O6 | 10.15 | 290.2681 | [M − H]− | 289.0717 | 289.0717 | Flavonoids | 1178.12 | Std/ [32] |
5 | p-Coumaric acid | C9H8O3 | 11.46 | 164.1580 | [M − H]− | 163.0401 | 163.0393 | Phenolic acids | 5326.11 | Std/ [30] |
6 | Ferulic acid | C10H10O4 | 13.09 | 194.1840 | [M − H]− | 193.0506 | 193.0502 | Phenolic acids | 418.63 | Std/ [30] |
7 | Sinapinic acid | C11H12O5 | 13.38 | 224.2100 | [M − H]− | 223.0612 | 223.0603 | Phenolic acids | 7699.18 | Std/ [32] |
8 | Myricetin | C15H10O8 | 18.27 | 318.2351 | [M + H]+ | 319.0449 | 319.0427 | Flavonoids | 4382.05 | Std/ [33] |
9 | Quercetin | C15H10O7 | 21.32 | 302.2357 | [M − H]− | 301.0354 | 301.0375 | Flavonoids | 1154.11 | Std/ [33] |
10 | Luteolin C-hexoside I | C21H20O11 | 22.47 | 448.3769 | [M − H]− | 448.1006 | 447.0935 | Flavonoids | 3618 | [31] |
11 | Cyanidin 3-O-galactoside | C21H21O11 | 23.11 | 449.3848 | [M − H]− | 448.1011 | 448.0982 | Flavonoids | 2845 | [33] |
Samples | Penicillin | A. indica 50%EtOH Leaf Extract | CTR (+) | CTR (−) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cc (mg/mL) | 0.062 | 0.125 | 0.25 | 0.5 | 1 | 0.062 | 0.125 | 0.25 | 0.5 | 1 | ||
S. aureus | + | + | − | − | − | + | + | + | + | − | + | − |
M. luteus | + | + | − | − | − | + | + | + | − | − | + | − |
S. paratyphi | + | + | − | − | − | + | + | + | − | − | + | − |
E. coli | + | + | + | − | − | + | + | + | + | − | + | − |
MIC (mg/mL) | ||
---|---|---|
Penicillin | A. indica 50%-Aqueous EtOH Extract | |
S. aureus | 0.62 | 0.50 |
M. luteus | 0.62 | 0.75 |
S. paratyphi | 0.62 | 0.75 |
E. coli | 0.75 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouerfelli, M.; Metón, I.; Codina-Torrella, I.; Almajano, M.P. Antibacterial and Antiproliferative Activities of Azadirachta indica Leaf Extract and Its Effect on Oil-in-Water Food Emulsion Stability. Molecules 2022, 27, 7772. https://doi.org/10.3390/molecules27227772
Ouerfelli M, Metón I, Codina-Torrella I, Almajano MP. Antibacterial and Antiproliferative Activities of Azadirachta indica Leaf Extract and Its Effect on Oil-in-Water Food Emulsion Stability. Molecules. 2022; 27(22):7772. https://doi.org/10.3390/molecules27227772
Chicago/Turabian StyleOuerfelli, Manel, Isidoro Metón, Idoia Codina-Torrella, and María Pilar Almajano. 2022. "Antibacterial and Antiproliferative Activities of Azadirachta indica Leaf Extract and Its Effect on Oil-in-Water Food Emulsion Stability" Molecules 27, no. 22: 7772. https://doi.org/10.3390/molecules27227772
APA StyleOuerfelli, M., Metón, I., Codina-Torrella, I., & Almajano, M. P. (2022). Antibacterial and Antiproliferative Activities of Azadirachta indica Leaf Extract and Its Effect on Oil-in-Water Food Emulsion Stability. Molecules, 27(22), 7772. https://doi.org/10.3390/molecules27227772