Chemical Composition and Biological Activity of Argentinian Propolis of Four Species of Stingless Bees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Material
2.3. Headspace/Solid-Phase Microextraction for Volatile Analysis
2.4. Extraction of Propolis
2.5. Component Identification
2.6. Cell Viability Tests
2.6.1. Cell Culture
2.6.2. Cell Viability Assay
2.6.3. Statistical Analysis
2.7. Screening for Antimicrobial Activity
2.7.1. Minimal Inhibitory, Minimal Bactericidal and Minimal Fungicidal Concentrations
2.7.2. Biofilm Formation Assay
3. Results and Discussion
3.1. Chemical Composition of Volatile Compounds
3.2. Extractive Compounds
3.3. Anticancer Activity of Ether Extracts
3.4. Antibacterial Activity
3.5. Anti-Biofilm Action
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simone-Finstrom, M.; Spivak, M. Propolis and bee health: The natural history and significance of resin use by honey bees. Apidologie 2010, 41, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Simone-Finstrom, M.; Borba, R.S.; Wilson, M.; Spivak, M. Propolis counteracts some threats to honey bee health. Insects 2017, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanahan, M.; Spivak, M. Resin use by stingless bees: A Review. Insects 2021, 12, 719. [Google Scholar] [CrossRef]
- Salleh, S.N.A.S.; Johari, W.L.W.; Hanapiah, N.A.M. A comprehensive review on chemical compounds, biological actions and potential health benefits of stingless bee propolis. Sains Malays. 2022, 51, 733–745. [Google Scholar] [CrossRef]
- Campos, J.F.; dos Santos, H.F.; Bonamigo, T.; Domingues, N.L.D.; Souza, K.D.; dos Santos, E.L. Stinglessbee propolis: New insights for anticancer drugs. Oxidat. Med. Cell. Longev. 2021, 2021, 2169017. [Google Scholar] [CrossRef]
- dos Santos, C.M.; Campos, J.F.; dos Santos, H.F.; Balestieri, J.B.P.; Silva, D.B.; de Picoli Souza, K.; Carollo, C.A.; Estevinho, L.M.; dos Santos, E.L. Chemical composition and pharmacological effect of geopropolis produces by Melipona quadrifasciata anthidioides. Oxid. Med. Cell. Longev. 2017, 2017, 8320804. [Google Scholar] [CrossRef] [Green Version]
- Popova, M.; Trusheva, B.; Bankova, V. Propolis of stingless bees: A phytochemist’s guide through the jungle of tropical biodiversity. Phytomedicine 2021, 86, 153098. [Google Scholar] [CrossRef]
- Zulhendri, F.; Perera, C.O.; Chandrasekaran, K.; Ghosh, A.; Tandean, S.; Abdulah, R.; Herman, H.; Lesmana, R. Propolis of stingless bees for the development of novel functional food and nutraceutical ingredients: A systematic scoping review of the experimental evidence. J. Funct. Foods 2022, 88, 104902. [Google Scholar] [CrossRef]
- Campos, J.F.; dos Santos, U.P.; da Rocha, P.S.; Damião, M.J.; Balestieri, J.B.P.; Cardoso, C.A.L.; Paredes-Gamero, E.J.; Estevinho, L.M.; Souza, K.D.; dos Santos, E.L. Antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities of propolis from the stingless bee Tetragonisca fiebrigi (Jataí). Evid.-Based Complement. Altern. Med. 2015, 2015, 296186. [Google Scholar] [CrossRef] [Green Version]
- Coelho, G.R.; Mendonca, R.Z.; Vilar, K.D.; Figueiredo, C.A.; Badari, J.C.; Taniwaki, N.; Namiyama, G.; de Oliveira, M.I.; Curti, S.P.; Silva, P.E.; et al. Antiviral action of hydromethanolic extract of geopropolis from Scaptotrigona postica against antiherpes simplex virus (HSV-1). Evid.-Based Complement. Altern. Med. 2015, 2015, 296086. [Google Scholar] [CrossRef]
- Brodkiewicz, I.; Marcinkevicius, K.; Reynoso, M.A.; Salomon, V.; Maldonado, L.; Vera, N.R. Studies of the biological and therapeutic effects of Argentine stingless bee propolis. J. Drug Deliv. Therap. 2018, 8, 382–392. [Google Scholar] [CrossRef]
- Lavinas, F.C.; Macedo, E.H.B.C.; Sá, G.B.L.; Amaral, A.C.F.; Silva, J.R.; Azevedo, M.; Rodrigues, I.A.; Vieira, B.A.; Domingos, T.F.S.; Vermelho, A.B.; et al. Brazilian stingless bee propolis and geopropolis promising source of biologically active compounds. Rev. Braz. Farmacogn. 2018, 29, 389–399. [Google Scholar] [CrossRef]
- de Souza, E.C.A.; da Silva, E.J.G.; Cordiero, H.K.; Filho, N.M.L.; da Silva, F.M.A.; dos Reis, D.L.S.; Porto, C.; Pilau, E.J.; da Costa, L.A.M.A.; de Souza, A.D.L.; et al. Chemical composition and antioxidant and antimicrobial activities of propolis produces by Frieseomelitta longipes and Apis mellifera bees. Quim. Nova 2018, 41, 485–491. [Google Scholar] [CrossRef]
- Torres, A.R.; Sandjo, P.L.; Friedemann, M.T.; Tomazzoli, M.M.; Maraschin, M.; Mello, C.F.; Santos, A.R.S. Chemical characterization, antioxidant and antimicrobial activity of propolis obtained from Melipona quadrifasciata quadrifasciata and Tetragonisca angustula stingless bees. Braz. J. Med. Biol. Res. 2018, 51, e7118. [Google Scholar] [CrossRef] [PubMed]
- Negri, G.; Silva, C.C.F.; Coelho, G.R.; do Nascimento, R.M.; Mendonça, R.Z. Cardanol detected in non-polar propolis extracts from Scaptotrigona aff. postica (Hymenoptera, Apidae, Meliponini). Braz. J. Food Technol. 2019, 22, e2018265.1019. [Google Scholar] [CrossRef]
- Ngaini, Z.; Hussain, H.; Kelabo, E.S.; Wahi, R.; Farooq, S. Chemical profiling, biological properties and environmental contaminants of stingless bee honey and propolis. J. Apicul. Res. 2021, 1–17. [Google Scholar] [CrossRef]
- Hochheim, S.; Guedes, A.; Faccin-Galhardi, L.; Rechenchoski, D.Z.; Nozawa, C.; Linhares, R.E.; Filho, H.H.d.; Rau, M.; Siebert, D.A.; Micke, G.; et al. Determination of phenolic profile by HPLC-ESI-MS/MS, antioxidant activity, in vitro cytotoxicity and anti-herpetic activity of propolis from Brazilian native bee Melipona quadrifasciata. Rev. Brasil. Farmacogn. 2019, 29, 339–350. [Google Scholar] [CrossRef]
- Ishizu, E.; Honda, S.; Ohta, T.; Vongsak, B.; Kumazawa, S. Component analysis and antiangiogenic activity of Thailand stingless bee propolis. Makara J. Technol. 2019, 23, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Arung, E.T.; Ramadhan, R.; Khairunnisa, B.; Amen, Y.; Matsumoto, M.; Nagata, M.; Shimizu, K.; WijayaKusuma, I.; Paramita, S.; Yadi, S.; et al. Cytotoxicity effect of honey, bee pollen, and propolis from seven stingless bees in some cancer cell lines. Saudi J. Biol. Sci. 2021, 28, 7182–7189. [Google Scholar] [CrossRef]
- Pereira, F.A.N.; Barboza, J.R.; Vasconcelos, C.C.; Lopes, A.J.O.; Ribeiro, M.N.D. Use of stingless bee propolis and geopropolis against cancer-A literature review of preclinical studies. Pharmaceuticals 2021, 14, 1161. [Google Scholar] [CrossRef]
- Ferreira, J.M.; Fernandes-Silva, C.C.; Salatino, A.; Message, D.; Negri, G. Antioxidant activity of a geopropolis from Northeast Brazil: Chemical characterization and likely botanical origin. Evid.-Based Complement. Altern. Med. 2017, 2017, 4024721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodkiewicz, I.Y.; Reynoso, M.A.; Vera, N.R. In vivo evaluation of pharmacological properties of Argentine stingless bee geopropolis. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9, 32. [Google Scholar] [CrossRef]
- Balica, G.; Vostinaru, O.; Stefanescu, C.; Mogosan, C.; Iaru, I.; Cristina, A.; Pop, C.E. Potential role of propolis in the prevention and treatment of metabolic diseases. Plants 2021, 10, 883. [Google Scholar] [CrossRef] [PubMed]
- Matos, V.R.; dos Santos, F.D.R. The pollen spectrum of the propolis of Apis mellifera L. (Apidae) from the Atlantic Rainforest of Bahia, Brazil. Palynology 2017, 41, 207–215. [Google Scholar] [CrossRef]
- dos Santos Pereira, A.; Bicalho, B.; de Aquino Netto, F.R. Comparison of propolis from Apis mellifera and Tetragonisca angustula. Apidologie 2003, 34, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Sawaya, A.C.H.F.; Cunha, I.B.S.; Marcucci, M.C.; de Olivera Rodriges, R.F.; Eberlin, M.N. Brazilian propolis of Tetragonisca angustula and Apis mellifera. Apidologie 2006, 37, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Araύjo, M.J.A.M.; Bύfalo, M.C.; Conti, B.J.; Fernandes, A., Jr.; Trusheva, B.; Bankova, V.; Sforcin, J.M. The chemical composition and pharmacological activities of geopropolis produced by Melipona fasciculata Smith in Northeast Brazil. J. Mol. Pathophys. 2015, 4, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Cardozo, D.V.; Mokochinski, J.B.; Schineider, C.M.; Sawaya, A.C.H.F.; Caetano, I.K.; Felsner, M.L.; Torres, Y.R. Variabilidade química de geoprópolis produzida pelas abelhas sem ferrão Jataí, Mandaçaia e Mandurí. Rev. Virtual Quim. 2015, 7, 2457–2474. [Google Scholar] [CrossRef]
- Carniero, M.J.; Lopez, B.G.-C.; Lacellotti, M.; Franchi, G.C.; Nowill, A.E.; Sawaya, A.C.H.F. Evaluation of chemical composition and biological activity of extracts of Tetragonisca angustula propolis and Schinus terebinthifolius Raddi (Anacardiaceae). J. Apicul. Res. 2016, 55, 315–323. [Google Scholar] [CrossRef]
- de Souza, S.A.; da Silva, T.M.G.; da Silva, E.M.S.; Camara, C.A.; Silva, T.M.S. Characterization of phenolic compounds by UPLC-QTOF-MS/MS of geopropolis from the stingless bee Melipona subnitida (jandaíra). Phytochem. Anal. 2017, 29, 549–558. [Google Scholar] [CrossRef]
- Dutra, R.P.; Bezerra, J.L.; da Silva, M.C.P.; Batista, M.C.A.; Patrício, F.J.B.; Nascimento, F.R.F.; Guerra, R.N.M.; Ribeiro, M.N.S. Antileishmanial activity and chemical composition from Brazilian geopropolis produced by stingless bee Melipona fasciculata. Rev. Bras. Farmacog. 2019, 29, 287–293. [Google Scholar] [CrossRef]
- Peter, C.M.; Picoli, T.; Zani, J.L.; Latosinski, G.S.; de Lima, M.; Vargas, G.D.; de Oliveira, H.; Fischer, G. Atividade antiviral e virucida de extractos hidroalcoólicos de propolis marrom, verde e de abelhas Jataí (Tetragonisca angustula) frente ao herpesvirus bovino tipo 1 (BoHV-1) e ao virus da diarreia viral bovina (BVDV). Pesq. Vet. Bras. 2017, 37, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Pedro, S.R.M. The stingless bee fauna in Brazil (Hymenoptera: Apidae). Sociobiology 2014, 61, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Isidorov, V.A.; Szczepaniak, L.; Bakier, S. Rapid GC/MS determination of botanical precursors of Eurasian propolis. Food Chem. 2014, 142, 101–106. [Google Scholar] [CrossRef]
- Isidorov, V.; Pirożnikow, E.; Zambrzycka, M.; Swiecicka, I. Selective behaviour of honeybees in acquiring European propolis plant precursors. J. Chem. Ecol. 2016, 42, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Isidorov, V.A. What does propolis smell like? In Honey Bee Alchemy. A Contemporary Look at the Mysterious World of Bees, Hive Products and Health; IBRA-NBB: UK, 2022; pp. 109–115. [Google Scholar]
- Adams, R.A. Identification of Essential Oil Components by Gas Chromatography/ Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Tkachev, A.V. Investigation of Plant’s Volatile Compounds; Ofset Publ.: Novosibirsk, Russia, 2008. [Google Scholar]
- NIST Chemistry WebBook. National Institute of Standards and Technology: Gaitherburg, MD, USA. Available online: http://webbook.nist.gov/chemistry (accessed on 1 January 2022).
- Isidorov, V.A. GC-MS of Biologically and Environmentally Significant Organic Compounds/TMS Derivatives; Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; 706 p. [Google Scholar]
- Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First International Supplement; No 1, M100-S21; CLSI: Wayne, PA, USA, 2011; Volume 31. [Google Scholar]
- Greenaway, W.; May, J.; Scaysbrook, T.; Whatley, F.R. Identification by gas chromatography-mass spectrometry of 150 compounds in propolis. Z. Naturforsch. C 1990, 46, 111–121. [Google Scholar] [CrossRef]
- Borčić, I.; Radonić, A.; Grzunov, K. Comparison of volatile constituents of propolis gathered in different regions of Croatia. Flav. Fragr. J. 1996, 11, 311–313. [Google Scholar] [CrossRef]
- Melliou, E.; Stratis, E.; Chinou, I. Volatile constituents of propolis from various regions of Greece—Antimicrobial activity. Food Chem. 2007, 103, 375–380. [Google Scholar] [CrossRef]
- Pellati, F.; Prescipe, F.P.; Benvenuti, S. Headspace solid-phase microextraction–gas-chromatography–mass spectrometry characterization of propolis volatile compounds. Pharm. Biomed. Anal. 2013, 84, 103–111. [Google Scholar] [CrossRef]
- Fenandes-Silva, C.; Lima, C.A.; Negri, D.; Salatino, M.L.F.; Salatino, A.; Mayworm, M.A.S. Composition of the volatile fraction of a sample of Brazilian green propolis and its phytotoxic activity. J. Sci. Food Agric. 2015, 95, 3091–3095. [Google Scholar] [CrossRef]
- Miranda, D.; Molina, R.; Aquino, D.; Pellizer, N.; Berdύn, A.; Fernándes, L.; Huk, L. Flora utilizada por Apis mellifera L. y Tetragonisca fiebrigi Schwarz en 5 departamentos de la zona centro-norte de la provincial De Misiones, Argentina. Rev. Forest. Yvyrar. 2018, 26, 38–54. [Google Scholar]
- Pinto da Luz, C.F.; Fidalgo, A.D.; Silva, S.A.Y.; Rodrigues, S.D.; Nocelli, R.C.F. Comparative floral preferences in nectar and pollen foraging by Scaptotrigona postica (Latreille 1807) in two different biomes in Sao Paulo (Brazil). GRANA 2019, 58, 200–226. [Google Scholar] [CrossRef]
- Inui, S.; Hosoya, T.; Kumazawa, S. Hawaiian propolis: Comparative analysis and botanical origin. Nat. Prod. Commun. 2014, 9, 165–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgieva, K.; Popova, M.; Dimitrova, L.; Trusheva, B.; ThanhI, L.N.; Phuong, D.T.L.; Lien, N.T.P.; Najdenski, H.; Bankova, V. Phytochemical analysis of Vietnamese propolis produced by the stingless bee Lisotrigona cacciae. PLoS ONE 2019, 14, e0216074. [Google Scholar] [CrossRef] [Green Version]
- Popova, M.P.; Graikou, K.; Chinou, I.; Bankova, V.S. GC-MS profiling of diterpene compounds in Mediterranean propolis from Greece. J. Agric. Food Chem. 2010, 58, 3167–3176. [Google Scholar] [CrossRef]
- Bankova, V.; Marcucci, M.C.; Simova, S.; Nikolova, N.; Popov, S. Antibacterial diterpenic acids from Brazilian propolis. Z. Naturforsch. C 1996, 52, 277–280. [Google Scholar] [CrossRef]
- Bankova, V.; Boudorova-Krasteva, G.; Sforcin, J.; Frete, X.; Kujumjiev, A.; Maimoni-Rodella, R.; Popov, S. Phytochemical evidence for the plant origin of Brazilian propolis from São Paulo state, Z. Naturforsch. C 1999, 54, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Marcucci, M.C.; Rodriguez, J.; Ferreres, F.; Bankova, V. Chemical composition of Brazilian propolis from São Paulo state. Zeitschr. Naturforsch. C 1998, 53, 117–119. [Google Scholar] [CrossRef]
- Skakovsky, E.D.; Tychinskaya, L.Y.; Gapankova, E.I.; Latyshevich, I.A.; Shutova, A.G.; Shish, S.N.; Lamotkin, S.A. Composition of pine subgenus Pinus study by NMR method. Bullet. SPb. Forest Acad. 2021, 237, 242–257. (In Russian) [Google Scholar] [CrossRef]
- Trusheva, B.; Popova, M.; Koendhori, E.B.; Tsvetkova, I.; Naydenski, C.; Bankova, V. Indonesian propolis: Chemical composition, biological activity and botanical origin. Nat. Prod. Res. 2011, 25, 606–613. [Google Scholar] [CrossRef]
- Sanpa, S.; Popova, M.; Tunkasiri, T.; Eitssayeam, S.; Bankova, V.; Chantawannakul, P. Chemical profiles and antimicrobial activities of Thai propolis collected from Apis mellifera. Chiang Mai J. Sci. 2017, 44, 438–448. [Google Scholar]
- Burdock, G.A. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef]
- Salatino, A. Perspectives for uses of propolis in therapy against infectious diseases. Molecules 2022, 27, 4594. [Google Scholar] [CrossRef]
- Isidorov, V.; Buczek, K.; Zambrowski, G.; Miastkowski, K.; Swiecicka, I. In vitro study of the antimicrobial activity of European propolis against Paenibacillus larvae. Apidologie 2017, 48, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Genersch, E. American Foulbrood in honey bees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 2010, 103, S10–S19. [Google Scholar] [CrossRef]
- Popova, M.; Antonova, D.; Bankova, V. Chemical composition of propolis and American foulbrood: Is there any relationship? Bulgar. Chem. Commun. 2017, 49, 171–175. [Google Scholar]
- Isidorov, V.; Buczek, K.; Segiet, A.; Zambrowski, G.; Swiecicka, I. Activity of selected plant extracts against honey bee pathogen Paenibacillus larvae. Apidologie 2018, 49, 687–704. [Google Scholar] [CrossRef] [Green Version]
- Bryan, J.; Redden, P.; Traba, C. The mechanism of action of Russian propolis ethanol extracts against two antibiotic-resistant biofilm-forming bacteria. Lett. Appl. Microbiol. 2015, 62, 192–198. [Google Scholar] [CrossRef]
Sample Number | Scientific Name | Common Name |
---|---|---|
1 | Scaptotrigona aff. postica (Latreille, 1807) | Mandaguarí negra |
2 | Tetragona clavipes (Fabricius, 1804) | Borá |
3 | Melipona quadrifasciata quadrifasciata (le Peletier, 1836) | Mandazaia |
4 | Tetragonisca fiebrigi (Schwarz, 1938) | Yateí |
Group of Compounds | Relative Composition (% of TIC) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Monoterpene hydrocarbons, including: | 6.01 (5) * | 41.14 (18) | 59.50 (16) | 13.96 (9) |
| - ** | - | 1.24 | - |
| - | 0.81 | 1.29 | - |
| - | - | - | 0.20 |
| 1.98 | 12.16 | 20.97 | 5.34 |
| 0.08 | 2.63 | 3.29 | - |
| 0.52 | 8.57 | 10.10 | 1.96 |
| - | 2.19 | 4.29 | 0.40 |
| 3.17 | 2.35 | 3.93 | 4.57 |
| - | 1.77 | - | - |
| 0.25 | 1.77 | 6.74 | 0.81 |
| - | 1.37 | 1.37 | 0.25 |
| - | 3.18 | 3.55 | 0.32 |
Monoterpenoids, including: | 0.40 (3) | 10.35 (23) | 10.60 (27) | 0.19 (1) |
| - | 0.18 | 0.10 | - |
| - | - | 0.17 | - |
| 0.16 | - | - | 0.19 |
| - | 0.26 | 0.11 | - |
| - | 0.45 | 0.36 | - |
| - | 0.82 | - | - |
| - | 0.35 | 0.47 | - |
| - | 0.72 | 0.45 | - |
| - | 2.10 | 1.83 | - |
| - | 0.66 | 2.19 | - |
| - | 0.67 | 0.08 | - |
Sesquiterpene hydrocarbons, including: | 5.98 (10) | 14.71 (23) | 2.91 (14) | 12.25 (10) |
| 0.10 | 1.30 | 0.63 | - |
| 0.31 | 0.73 | 0.24 | trace *** |
| - | 0.42 | 0.12 | - |
| 2.55 | - | - | 5.14 |
| - | 0.37 | 0.54 | - |
| - | 0.34 | 0.34 | - |
| 1.41 | 3.02 | 0.45 | 2.83 |
| 0.40 | 0.83 | 0.08 | 0.98 |
| 0.16 | - | - | - |
| - | 0.91 | 0.09 | - |
| - | 1.49 | - | - |
| 0.47 | - | - | 1.28 |
| 0.43 | - | - | 1.41 |
| - | 0.72 | 0.08 | - |
| 0.09 | 1.19 | 0.23 | trace |
Sesquiterpenoids, including: | - | 0.81 (9) | 0.08 (1) | - |
| - | 0.13 | - | - |
| - | 0.10 | - | - |
| - | 0.02 | - | - |
| - | 0.24 | - | - |
| - | 0.08 | 0.08 | - |
| - | 0.07 | - | - |
Aliphatic alcohols, including: | 33.40 (5) | 3.83 (4) | 4.74 (4) | 29.39 (9) |
| 3.36 | 1.70 | 1.06 | 8.35 |
| 1.95 | 0.97 | - | 1.22 |
| - | - | 0.08 | - |
| - | 1.10 | 0.03 | 1.05 |
| 0.43 | - | - | 0.63 |
| 0.47 | - | - | 0.18 |
| 27.04 | - | 3.58 | 17.14 |
| - | 0.06 | - | |
| 0.02 | - | - | 0.12 |
Aliphatic acids, including: | 8.70 (2) | 4.44 (3) | 0.25 (1) | 12.48 (2) |
| 7.60 | 2.68 | 0.25 | 12.24 |
| 1.10 | 1.33 | - | 0.24 |
| - | 0.43 | - | - |
Esters, including: | 30.20 (18) | 14.54 (17) | 0.51 (2) | 23.26 (17) |
| 4.30 | 5.31 | 0.41 | 6.83 |
| 1.86 | trace | - | - |
| 6.60 | 2.87 | - | 2.76 |
| - | - | - | 2.63 |
| 1.98 | - | - | - |
| - | - | - | 0.67 |
| 5.14 | 1.90 | - | - |
| 0.24 | - | - | - |
| - | 0.89 | - | - |
| 0.48 | - | - | - |
| 0.32 | - | - | 1.26 |
| 12.58 | 0.22 | 0.10 | 0.26 |
| 0.07 | 0.93 | - | 0.94 |
Aromatics, including: | 2.01 (5) | 8.78 (4) | 17.50 (12) | 2.40 (5) |
| - | - | 1.07 | 0.80 |
| 1.65 | 1.39 | 6.46 | 0.68 |
| 0.17 | - | - | - |
| - | - | 0.16 | - |
| 0.09 | 6.85 | 5.70 | 0.28 |
| - | - | 0.24 | 0.32 |
| 0.08 | - | - | 0.32 |
| 0.02 | - | - | - |
| - | 0.28 | 0.26 | - |
| - | - | 1.14 | - |
| - | 0.25 | 0.18 | - |
Other, including: | 0.27 (2) | 2.70 (1) | 1.90 (4) | 3.08 (3) |
| - | - | 0.06 | - |
| - | 2.70 | 0.73 | - |
| - | - | - | 1.99 |
| 0.10 | - | - | 0.09 |
NN | 0.52 (5) | 0.57 (2) | 1.97 (6) | 2.90 (6) |
Group of Compounds | Relative Composition (% of TIC) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Monoterpenoids, including: | - * | 1.10 (11) ** | 4.09 (20) | - |
| - | 0.86 | 1.89 | - |
| - | 0.29 | 0.73 | - |
| - | 0.06 | 0.16 | - |
Sesquiterpenoids, including: | trace *** (5) | 2.06 (20) | 0.23 (3) | - |
| trace | 0.32 | - | - |
| - | 0.36 | - | - |
| - | 0.11 | - | - |
| - | 0.25 | - | - |
Diterpene acids, including: | 0.03 (4) | 57.52 (16) | 64.81 (16) | 2.38 (9) |
| - | 1.34 | 2.20 | trace |
| trace | 4.11 | 5.79 | - |
| - | 5.32 | 5.90 | - |
| trace | 6.43 | 2.23 | 0.13 |
| 0.01 | 3.10 | 8.10 | 0.08 |
| - | 7.03 | 1.39 | 0.07 |
| trace | 5.75 | 10.35 | - |
| - | 6.67 | 15.20 | - |
| - | 4.08 | 8.48 | - |
Other diterpenoids, including: | - | 6.61 (16) | 20.36 (22) | 0.62 (2) |
| - | 0.06 | 0.09 | - |
| - | 0.22 | 0.94 | - |
| - | 2.83 | 5.99 | trace |
| - | 0.90 | 0.45 | - |
| - | 0.15 | 0.79 | - |
| - | 0.65 | 4.81 | - |
Triterpenoids, including: | 76.93 (29) | 12.54 (22) | 0.39 (3) | 49.91 (32) |
| 7.50 | - | - | 11.54 |
| 9.87 | - | - | 3.444 |
| 9.91 | 0.40 | 0.07 | 3.96 |
| 8.73 | 0.69 | 0.11 | 5.08 |
| - | - | - | 1.87 |
| 7.50 | - | - | - |
| 2.53 | - | - | 0.71 |
| 2.41 | - | - | 2.06 |
| 2.46 | - | - | 1.99 |
| 3.81 | - | - | 5.01 |
Phenols, including: | 1.60 (7) | - | - | 1.03 (6) |
| 0.07 | - | - | 0.08 |
| 0.30 | - | - | 0.55 |
| 0.07 | - | - | 0.10 |
| 0.15 | - | - | 0.15 |
| 0.12 | - | - | 0.14 |
| 0.84 | - | - | - |
Resorcinols, including: | 8.16 (10) | - | - | 9.38 (9) |
| 0.61 | - | - | 0.23 |
| 1.00 | - | - | 0.61 |
| 3.04 | - | - | 4.29 |
| - | - | - | 0.25 |
| 0.51 | - | - | 0.25 |
| 0.60 | - | - | 0.81 |
| 2.32 | - | - | 1.40 |
| - | - | - | 1.14 |
| 0.59 | - | - | - |
Salicylates, including: | 2.76 (6) | - | - | 4.07 (8) |
| 0.06 | - | - | - |
| 0.82 | - | - | 1.63 |
| 0.25 | - | - | 0.09 |
| 0.21 | - | - | 0.39 |
| 0.97 | - | - | 0.61 |
| - | - | - | 0.61 |
| 0.45 | - | - | - |
Aliphatic alcohols, including: | 0.04 (1) | 3.32 (4) | - | 6.73 (7) |
| - | 0.22 | - | - |
| - | 1.69 | - | - |
| - | 1.22 | - | 2.68 |
| - | 0.19 | - | 3.72 |
Aliphatic acids, including: | 0.39 (10) | 0.65 (7) | - | 1.15 (10) |
| 0.12 | 0.15 | - | 0.21 |
| 0.04 | trace | - | 0.06 |
| 0.12 | 0.21 | - | 0.22 |
Aliphatic esters | 2.14 (2) | 4.57 (7) | - | 4.56 (6) |
| - | 1.44 | - | |
| - | 1.38 | - | |
| - | 0.30 | 3.15 | |
| 2.14 | - | 0.51 | |
Other | 0.61 (9) | 2.56 (5) | 1.05 (1) | 11.68 (9) |
NN | 7.44 (8) | 9.48 (31) | 9.08 (21) | 8.49 (17) |
Propolis Sample | IC50 (μg mL−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A375 | C32 | SCC-25 | AGS | DLD-1 | Fibroblasts | |||||||
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |
1 | 52.4 ± 3.9 | 29.4 ± 2.1 | 34.0 ± 1.8 | 31.4 ± 2.2 | 26.3 ± 1.4 | 21.6 ± 1.6 | 54.9 ± 3.6 | 29.3 ± 1.5 | 67.3 ± 4.2 | 31.9 ± 2.0 | 35.0 ± 2.1 | 33.9 ± 1.9 |
2 | 79.4 ± 6.1 | 16.8 ± 1.5 | 37.7 ± 2.3 | 17.3 ± 1.3 | 22.3 ± 1.6 | 20.5 ± 1.2 | 38.2 ± 2.4 | 12.6 ± 0.9 | 50.4 ± 2.3 | 20.2 ± 1.5 | 52.0 ± 4.6 | 34.2 ± 1.4 |
3 | 89.6 ± 4.2 | 43.9 ± 3.6 | 40.5 ± 2.8 | 34.1 ± 2.4 | 42.9 ± 3.5 | 33.4 ± 1.8 | 51.1 ± 2.9 | 23.0 ± 1.4 | 70.9 ± 5.9 | 32.9 ± 2.4 | 68.9 ± 4.2 | 57.9 ± 3.7 |
4 | 54.6 ± 3.1 | 36.1 ± 2.4 | 45.0 ± 3.1 | 43.0 ± 3.0 | 29.2 ± 2.3 | 26.5 ± 3.0 | 55.6 ± 4.6 | 43.0 ± 3.1 | 70.4 ± 5.1 | 44.3 ± 3.6 | 53.8 ± 5.0 | 43.2 ± 2.9 |
Sample | Gram-Positive Bacteria | Gram-Negative Bacteria | Fungus | ||||
---|---|---|---|---|---|---|---|
P. larvae | S. aureus | B. cereus | B. subtilis | E. coli | P. aeruginosa | C. albicans | |
MIC, µg mL−1 (reading after 48 h) | |||||||
1 | 31.25 | 125 | 1.95 | 7.81 | 500 | 500 | 125 |
2 | 125 | 31.25 | 0.12 | 0.12 | 125 | 500 | 31.25 |
3 | 125 | 31.25 | 0.12 | 0.12 | 125 | 500 | 31.25 |
4 | 31.25 | 31.25 | 0.49 | 0.49 | 500 | 500 | 31.25 |
5 | 7.8–62.4 a | 16–62 b | 31–62 b | - | >2500 b | 250–500 b | 39–312 a |
MBC/MFC, µg mL−1 (reading after 48 h) | |||||||
1 | 125 | 2000 | 7.81 | 31.25 | 2000 | >2000 | 500 |
2 | 500 | 125 | 0.49 | 0.49 | 500 | >2000 | 500 |
3 | 500 | 125 | 0.49 | 0.49 | 500 | >2000 | 125 |
4 | 125 | 2000 | 1.95 | 1.95 | 2000 | >2000 | 500 |
Sample | Gram-Positive Bacteria | Gram-Negative Bacteria | ||
---|---|---|---|---|
P. larvae ATCC 9545 | B. cereus ATCC 10987 | B. subtilis ATCC 6633 | E. coli ATCC 11229 | |
1 | 23.57 ± 2.53 | 1.45 ± 0.37 | 5.90 ± 0.90 | 280.86 ± 57.60 * |
2 | 111.97 ± 25.51 | 0.06 ± 0.01 | 0.049 ± 0.001 | 53.39 ± 4.60 |
3 | 97.91 ± 4.06 | 0.04 ± 0.002 | 0.035 ± 0.001 | 50.76 ± 2.97 |
4 | 16.57 ± 2.00 | 0.21 ± 0.02 | 0.21 ± 0.011 | 311.47 ± 29.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isidorov, V.A.; Maslowiecka, J.; Szoka, L.; Pellizzer, N.; Miranda, D.; Olchowik-Grabarek, E.; Zambrzycka, M.; Swiecicka, I. Chemical Composition and Biological Activity of Argentinian Propolis of Four Species of Stingless Bees. Molecules 2022, 27, 7686. https://doi.org/10.3390/molecules27227686
Isidorov VA, Maslowiecka J, Szoka L, Pellizzer N, Miranda D, Olchowik-Grabarek E, Zambrzycka M, Swiecicka I. Chemical Composition and Biological Activity of Argentinian Propolis of Four Species of Stingless Bees. Molecules. 2022; 27(22):7686. https://doi.org/10.3390/molecules27227686
Chicago/Turabian StyleIsidorov, Valery A., Jolanta Maslowiecka, Lukasz Szoka, Naldo Pellizzer, Dora Miranda, Ewa Olchowik-Grabarek, Monika Zambrzycka, and Izabela Swiecicka. 2022. "Chemical Composition and Biological Activity of Argentinian Propolis of Four Species of Stingless Bees" Molecules 27, no. 22: 7686. https://doi.org/10.3390/molecules27227686
APA StyleIsidorov, V. A., Maslowiecka, J., Szoka, L., Pellizzer, N., Miranda, D., Olchowik-Grabarek, E., Zambrzycka, M., & Swiecicka, I. (2022). Chemical Composition and Biological Activity of Argentinian Propolis of Four Species of Stingless Bees. Molecules, 27(22), 7686. https://doi.org/10.3390/molecules27227686