Integrated Solid-Phase Extraction, Ultra-High-Performance Liquid Chromatography–Quadrupole-Orbitrap High-Resolution Mass Spectrometry, and Multidimensional Data-Mining Techniques to Unravel the Metabolic Network of Dehydrocostus Lactone in Rats
Abstract
:1. Introduction
2. Results
2.1. The Construction and Interpretation of Analysis Strategy
2.2. Establishment of the MMDF Screening Method
2.3. Analysis of the Fragmentation Behaviors of DL in the Positive Ion Mode
2.4. Structural Identification of DL Metabolites
2.5. Summary and Generalization of All Metabolites
2.6. Mapping of the Metabolic Network for DL in Rats
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Animals and Drug Administration
4.3. Biological Samples Collection
4.4. Samples Pre-Treatment—The SPE Method
4.5. Instrument and Conditions
4.6. Data Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, F.; Feng, S.; Wu, Y.; Bi, Y.; Wang, C.; Li, W. Quantitative analysis of costunolide and dehydrocostuslactone in rat plasma by ultraperformance liquid chromatography-electrospray ionization-mass spectrometry. Biomed. Chromatogr. 2011, 25, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; He, Q.; Chu, S.S.; Wang, C.F.; Du, S.S.; Deng, Z.W. Essential oil composition and larvicidal activity of Saussurea lappa roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 2012, 110, 2125–2130. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Gao, W.; Qu, Z.; Guo, H.; Liu, Z.; Liu, C. Pharmacokinetic study on costunolide and dehydrocostuslactone after oral administration of traditional medicine Aucklandia lappa Decne. by LC/MS/MS. J. Ethnopharmacol. 2014, 151, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, R.; Wang, Z.; Hou, X.; Wang, C.; Ai, Y.; Shi, W.; Zhan, X.; Wang, J.-B.; Xiao, X.; et al. Dehydrocostus lactone inhibits NLRP3 inflammasome activation by blocking ASC oligomerization and prevents LPS-mediated inflammation in vivo. Cell. Immunol. 2020, 349, 104046. [Google Scholar] [CrossRef] [PubMed]
- Deyno, S.; Mtewa, A.G.; Hope, D.; Bazira, J.; Makonnen, E.; Alele, P.E. Antibacterial Activities of Echinops kebericho Mesfin Tuber Extracts and Isolation of the Most Active Compound, Dehydrocostus Lactone. Front. Pharmacol. 2021, 11, 608672. [Google Scholar] [CrossRef]
- Dong, G.-z.; Shim, A.-R.; Hyeon, J.S.; Lee, H.J.; Ryu, J.-H. Inhibition of Wnt/-Catenin Pathway by Dehydrocostus Lactone and Costunolide in Colon Cancer Cells. Phytother. Res. 2015, 29, 680–686. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Xie, Y.; Hu, H. Antitumor activity and mechanism of costunolide and dehydrocostus lactone: Two natural sesquiterpene lactones from the Asteraceae family. Biomed. Pharmacother. 2020, 125, 109955. [Google Scholar] [CrossRef]
- Hsu, H.F.; Wu, Y.C.; Chen, L.C.; Houng, J.Y. Induction of Apoptosis of A549 Lung Cancer Cell Line by Dehydrocostus Lactone Isolated from Glossogyne Tenuifolia. J. Food Drug Anal. 2009, 17, 107–115. [Google Scholar] [CrossRef]
- Long, H.Y.; Huang, Q.X.; Yu, Y.Y.; Zhang, Z.B.; Yao, Z.W.; Chen, H.B.; Feng, J.W. Dehydrocostus lactone inhibits in vitro gastrinoma cancer cell growth through apoptosis induction, sub-G1 cell cycle arrest, DNA damage and loss of mitochondrial membrane potential. Arch. Med. Sci. 2019, 15, 765–773. [Google Scholar] [CrossRef]
- Pyun, H.; Kang, U.; Seo, E.K.; Lee, K. Dehydrocostus lactone, a sesquiterpene from Saussurea lappa Clarke, suppresses allergic airway inflammation by binding to dimerized translationally controlled tumor protein. Phytomedicine 2018, 43, 46–54. [Google Scholar] [CrossRef]
- Wu, Y.X.; Jiang, F.J.; Liu, G.; Wang, Y.Y.; Gao, Z.Q.; Jin, S.H.; Nie, Y.J.; Chen, D.; Chen, J.L.; Pang, Q.F. Dehydrocostus Lactone Attenuates Methicillin-Resistant Staphylococcus aureus-Induced Inflammation and Acute Lung Injury via Modulating Macrophage Polarization. Int. J. Mol. Sci. 2021, 22, 9754. [Google Scholar] [CrossRef]
- Zhang, R.; Hao, J.; Wu, Q.; Guo, K.; Wang, C.; Zhang, W.K.; Liu, W.; Wang, Q.; Yang, X. Dehydrocostus lactone inhibits cell proliferation and induces apoptosi s by PI3K/Akt/Bad and ERS signalling pathway in human laryngeal carcin oma. J. Cell. Mol. Med. 2020, 24, 6028–6042. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhang, W.X.; He, Z.Q.; Wu, B.S.; Shen, Z.F.; Shang, H.T.; Chen, T.; Wang, Q.; Chen, Y.G.; Han, S.T. The Possible Anti-Inflammatory Effect of Dehydrocostus Lactone on DSS-Induced Colitis in Mice. Evid.-Based Complement. Altern. Med. 2020, 2020, 5659738. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yu, Z.; Wang, C.; Tian, X.; Huo, X.; Wang, Y.; Sun, C.; Feng, L.; Ma, J.; Zhang, B.; et al. Dehydrocostus lactone, a natural sesquiterpene lactone, suppresses the biological characteristics of glioma, through inhibition of the NF-kB/COX-2 signaling pathway by targeting IKK beta. Am. J. Cancer Res. 2017, 7, 1270–1284. [Google Scholar]
- Cai, H.; Qin, X.; Yang, C. Dehydrocostus Lactone Suppresses Proliferation of Human Chronic Myeloid Leukemia Cells Through Bcr/Abl-JAK/STAT Signaling Pathways. J. Cell. Biochem. 2017, 118, 3381–3390. [Google Scholar] [CrossRef]
- Chen, T.T.; Wang, X.N.; Chen, P.; Zheng, Y.Y.; He, Y.; Zeng, X.; Peng, W.; Su, W.W. Chemical components analysis and in vivo metabolite profiling of Jian’er Xiaoshi oral liquid by UHPLC-Q-TOF-MS/MS. J. Pharm. Biomed. Anal. 2022, 211, 114629. [Google Scholar] [CrossRef]
- Guo, J.D.; Shang, Y.; Yang, X.H.; Li, J.; He, J.; Gao, X.M.; Chang, Y.X. An online stepwise background subtraction-based ultra-high pressure liquid chromatography quadrupole time of flight tandem mass spectrometry dynamic detection integrated with metabolic molecular network strategy for intelligent characterization of the absorbed chemical-fingerprint of QiangHuoShengShi decoction in vivo. J. Chromatogr. A 2022, 1675, 463172. [Google Scholar] [CrossRef]
- Noest, X.H.; Pferschy-Wenzig, E.M.; Nikles, S.; He, X.J.; Fan, D.P.; Lu, A.P.; Yuk, J.; Yu, K.; Isaac, G.; Bauer, R. Identification of Constituents Affecting the Secretion of Pro-Inflammatory Cytokines in LPS-Induced U937 Cells by UHPLC-HRMS-Based Metabolic Profiling of the Traditional Chinese Medicine Formulation Huangqi Jianzhong Tang. Molecules 2019, 24, 3116. [Google Scholar] [CrossRef] [Green Version]
- An, Y.L.; Wei, W.L.; Li, H.J.; Li, Z.W.; Yao, C.L.; Qu, H.; Yao, S.; Huang, Y.; Zhang, J.Q.; Bi, Q.R.; et al. An enhanced strategy integrating offline superimposed two-dimensional separation with mass defect filter and diagnostic ion filter: Comprehensive characterization of steroid alkaloids in Fritillariae Pallidiflorae Bulbus as a case study. J. Chromatogr. A 2021, 1643, 462029. [Google Scholar] [CrossRef]
- Dhurjad, P.S.; Marothu, V.K.; Rathod, R. Post-acquisition data mining techniques for LC-MS/MS-acquired data in drug metabolite identification. Bioanalysis 2017, 9, 1265–1278. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, Q.S.; Mo, C.L.; Zhang, H.; Zhou, T.; Tan, W. Determination of endogenous inflammation-related lipid mediators in ischemic stroke rats using background subtracting calibration curves by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 6537–6547. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Wang, Y.; Gu, X.; Guo, X.; Yan, C. Study on the pharmacokinetics and metabolism of costunolide and dehydrocostus lactone in rats by HPLC-UV and UPLC-Q-TOF/MS. Biomed. Chromatogr. 2014, 28, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Wang, S.P.; Dong, F.; Lin, Y.; Li, H.R.; Shi, L.; Wang, Z.B.; Zhang, J.Y. Comprehensive analysis of resveratrol metabolites in rats using ultra high performance liquid chromatography coupled with high resolution mass spectrometry. Arab. J. Chem. 2020, 13, 7055–7065. [Google Scholar] [CrossRef]
- Mei, X.D.; Wang, Y.Q.; Li, J.; Liu, Z.H.; Lang, S.; Ouyang, W.Z.; Zhang, J.Y. Comprehensive metabolism study of polydatin in rat plasma and urine using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2019, 1117, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Mei, X.D.; Liu, Z.H.; Li, J.; Zhang, X.X.; Lang, S.; Dai, L.; Zhang, J.Y. Drug Metabolite Cluster-Based Data-Mining Method for Comprehensive Metabolism Study of 5-hydroxy-6,7,3′,4′-tetramethoxyflavone in Rats. Molecules 2019, 24, 3278. [Google Scholar] [CrossRef] [Green Version]
- Keshavarz, L.; Pishnamazi, M.; Khandavilli, U.B.R.; Shirazian, S.; Collins, M.N.; Walker, G.M.; Frawley, P.J. Tailoring crystal size distributions for product performance, compaction of paracetamol. Arab. J. Chem. 2021, 14, 103089. [Google Scholar] [CrossRef]
- Song, C.; Zhang, Y.; Manzoor, M.A.; Li, G. Identification of alkaloids and related intermediates of Dendrobium officinale by solid-phase extraction coupled with high-performance liquid chromatography tandem mass spectrometry. Front. Plant Sci. 2022, 13, 2581. [Google Scholar] [CrossRef]
- Mejias, C.; Martin, J.; Luis Santos, J.; Aparicio, I.; Isabel Sanchez, M.; Alonso, E. Development and validation of a highly effective analytical method for the evaluation of the exposure of migratory birds to antibiotics and their metabolites by faeces analysis. Anal. Bioanal. Chem. 2022, 414, 3373–3386. [Google Scholar] [CrossRef]
- Lin, R.; Yin, J.; Wu, M.; Ding, H.; Han, L.; Yang, W.; Song, X.; Bie, S.; Wang, C.; He, Y.; et al. Global identification and determination of the major constituents in Kai-Xin-San by ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry and gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2021, 206, 114385. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Zhao, D.; Xie, H.; Wang, H.; Sun, M.; Yang, X.; Qian, Y.; Wang, X.; Li, X.; et al. A novel ion mobility separation-enabled and precursor ions list-included high-definition data-dependent acquisition (HDDDA) approach: Method development and its application to the comprehensive multicomponent characterization of Fangji Huangqi Decoction. Arab. J. Chem. 2021, 14, 103087. [Google Scholar] [CrossRef]
- Wang, H.-D.; Wang, H.-M.; Wang, X.-Y.; Xu, X.-Y.; Hu, Y.; Li, X.; Shi, X.-J.; Wang, S.-M.; Liu, J.; Qian, Y.-X.; et al. A novel hybrid scan approach enabling the ion-mobility separation and the alternate data-dependent and data-independent acquisitions (HDDIDDA): Its combination with off-line two-dimensional liquid chromatography for comprehensively characterizing the multicomponents from Compound Danshen Dripping Pill. Anal. Chim. Acta 2022, 1193, 339320. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Wang, Z.-J.; Zhang, Q.; Wang, F.; Ma, Q.; Lin, Z.-Z.; Lu, J.-Q.; Qiao, Y.-J. Rapid screening and identification of target constituents using full scan-parent ions list-dynamic exclusion acquisition coupled to diagnostic product ions analysis on a hybrid LTQ-Orbitrap mass spectrometer. Talanta 2014, 124, 111–122. [Google Scholar] [CrossRef]
Number | Template Definition | Molecular Formula | m/z Value |
---|---|---|---|
1 | Original drug (DL) | C15H18O2 | 230.13013 |
N-acetylcysteine conjugation | C20H25O5NS | 391.14480 | |
Sulfate conjugation | C15H18O5S | 310.08695 | |
2 | Hydrated DL | C15H20O3 | 248.14070 |
N-acetylcysteine conjugation | C20H27O6NS | 409.15536 | |
Sulfate conjugation | C15H20O6S | 328.09751 | |
3 | Dehydrated DL | C15H16O | 212.11957 |
N-acetylcysteine conjugation | C20H23O4NS | 373.13423 | |
Sulfate conjugation | C15H16O4S | 292.07638 |
Peak | tR/Min | Formula [M+H]+ | Theoretical Mass m/z | Experimental Mass m/z | Error (ppm) | MS/MS Fragment Ions | Identification/Reactions | P | U | F |
---|---|---|---|---|---|---|---|---|---|---|
M0 | 13.34 | C15H19O2 | 231.13796 | 231.13864 | 2.96 | MS2[231]:185(100),143(51),157(25),213(16),195(13) | Dehydrocostus lactone | + | + | + |
M1 | 3.63 | C18H26O5NS | 368.15262 | 368.15439 | 4.81 | MS2[368]:157(100),183(22),229(21),322(7),350(6) | Hydration, cysteine-S-conjugation | — | + | — |
M2 | 3.75 | C18H26O5NS | 368.15262 | 368.15445 | 4.97 | MS2[368]:157(100),183(26),229(19),322(7),350(5) | Hydration, cysteine-S-conjugation | — | + | — |
M3 | 4.07 | C17H26O5N | 324.18059 | 324.18152 | 2.99 | MS2[324]:324(100),306(9),288(4),270(1),231(1),249(1) | Bi-hydration, glycine conjugation to ester | — | + | — |
M4 | 4.94 | C20H28O7NS | 426.15802 | 426.15948 | 3.24 | MS2[426]:130(100),199(33),227(25),245(12),217(11) | Dihydrodiolation, N-acetylcysteine-S-conjugation | + | + | — |
M5 | 5.04 | C15H15O2 | 227.10656 | 227.10732 | 2.92 | MS2[227]:181(100),153(15),167(7),209(4),199(3) | Di-dehydrogenation | + | + | — |
M6 | 5.04 | C15H17O3 | 245.11716 | 245.11794 | 2.93 | MS2[245]:181(100),199(31),155(19),227(14),209(6) | Dehydrogenation, hydroxylation | + | + | — |
M7 | 5.11 | C15H15O2 | 227.10656 | 227.10735 | 3.06 | MS2[227]:181(100),153(14),199(11),167(6),209(4) | Di-dehydrogenation | + | + | — |
M8 | 5.11 | C15H17O3 | 245.11716 | 245.11792 | 2.85 | MS2[245]:181(100),199(36),227(23),155(22),209(6) | Dehydrogenation, hydroxylation | + | + | — |
M9 | 5.20 | C18H28O6NS | 386.16319 | 386.16440 | 3.15 | MS2[386]:157(100),229(74),368(43),201(35),247(7) | Bi-hydration, cysteine-S-conjugation | + | + | — |
M10 | 5.51 | C15H17O3 | 245.11716 | 245.11792 | 3.18 | MS2[245]:181(100),199(47),227(20),155(18),209(15) | Dehydrogenation, hydroxylation | + | + | + |
M11 | 5.60 | C15H19O3 | 247.13286 | 247.13354 | 2.71 | MS2[247]:183(100),201(61),155(56),229(48),211(26) | Hydroxylation | + | + | — |
M12 | 5.63 | C18H26O5NS | 368.15262 | 368.15344 | 2.23 | MS2[368]:157(100),183(22),229(18),322(8),350(5) | Hydration, cysteine-S-conjugation | + | — | + |
M13 | 5.65 | C15H19O3 | 247.13286 | 247.13353 | 2.67 | MS2[247]:183(100),201(66),155(57),229(48),211(25) | Hydroxylation | + | + | — |
M14 | 5.70 | C15H19O3 | 247.13286 | 247.13348 | 2.46 | MS2[247]:183(100),201(56),229(55),155(52),211(21) | Hydroxylation | + | + | — |
M15 | 5.84 | C15H19O3 | 247.13286 | 247.13351 | 2.59 | MS2[247]:201(100),229(91),183(57),155(53),211(11) | Hydroxylation | + | + | — |
M16 | 5.86 | C15H21O4 | 265.14336 | 265.14413 | 2.62 | MS2[265]:183(100),229(57),201(37),247(31),217(16) | Dihydrodiolation | + | + | — |
M17 | 5.91 | C15H15O2 | 227.10656 | 227.10741 | 3.32 | MS2[227]:181(100),153(23),199(20),209(6),167(5) | Di-dehydrogenation | — | + | — |
M18 | 5.92 | C25H36O9N3S | 554.21676 | 554.21790 | 2.21 | MS2[554]:157(100),229(80),185(52),211(20),201(9) | Hydration, glutathione conjugation | + | — | — |
M19 | 5.92 | C16H23O6S | 343.12097 | 343.12195 | 2.81 | MS2[343]:173(100),263(80),227(71),199(57),245(26) | Hydration, methylation, sulfonation | — | + | — |
M20 | 5.93 | C12H15O4 | 223.09662 | 223.09727 | 3.52 | MS2[223]:121(100),135(80),181(54),177(12),205(6) | Dihydrodiolation, loss of 3CH2 | + | + | + |
M21 | 5.98 | C15H19O4 | 263.12776 | 263.12860 | 3.10 | MS2[263]:199(100),227(30),181(27),245(26),217(12) | Dihydroxylation | — | + | — |
M22 | 5.98 | C17H26O3NS | 324.16522 | 324.16385 | 3.27 | MS2[324]:157(100),155(24),159(10),129(9),143(3) | Loss of C3O2, N-acetylcysteine-S-conjugation | — | + | + |
M23 | 6.08 | C20H24O5NS | 390.13692 | 390.13815 | 3.03 | MS2[390]:183(100),181(62),227(31),199(3),209(1) | Dehydrogenation, N-acetylcysteine-S-conjugation | + | + | — |
M24 | 6.13 | C15H19O3 | 247.13286 | 247.13354 | 2.71 | MS2[247]:183(100),201(64),229(43),155(38),211(17) | Hydroxylation | + | + | — |
M25 | 6.31 | C20H28O7NS | 426.15802 | 426.15942 | 3.10 | MS2[426]:130(100),183(49),229(47),157(32),211(7) | Dihydrodiolation, N-acetylcysteine-S-conjugation | — | + | — |
M26 | 6.38 | C15H21O3 | 249.14856 | 249.14925 | 2.93 | MS2[249]:185(100),195(28),231(21),213(18),203(16) | Hydration | + | + | — |
M27 | 6.44 | C20H28O6NS | 410.16322 | 410.16449 | 3.18 | MS2[410]:130(100),229(62),201(37),185(22),247(2) | Hydration, N-acetylcysteine-S-conjugation | + | + | — |
M28 | 6.45 | C20H30O7NS | 428.17379 | 428.17484 | 2.55 | MS2[428]:130(100),229(47),201(31),247(4),386(1) | Bi-hydration, N-acetylcysteine-S-conjugation | + | + | + |
M29 | 6.48 | C15H19O3 | 247.13286 | 247.13361 | 2.99 | MS2[247]:183(100),201(91),229(62),155(50),211(31) | Hydroxylation | + | + | — |
M30 | 6.51 | C17H26O3NS | 324.16522 | 324.16388 | 3.36 | MS2[324]:157(100),155(19),129(17),143(8),159(7) | Loss of C3O2, N-acetylcysteine-S-conjugation | — | + | — |
M31 | 6.54 | C20H28O6NS | 410.16322 | 410.16428 | 2.67 | MS2[410]:130(100),229(44),201(31),185(18),247(3) | Hydration, N-acetylcysteine-S-conjugation | + | + | — |
M32 | 6.56 | C20H30O7NS | 428.17379 | 428.17459 | 1.96 | MS2[428]:130(100),229(75),386(34),201(30),247(4) | Bi-hydration, N-acetylcysteine-S-conjugation | + | + | + |
M33 | 6.67 | C15H17O2 | 229.12226 | 229.12296 | 2.85 | MS2[229]:183(100),155(39),141(19),211(8),193(4) | Dehydrogenation | + | + | + |
M34 | 6.90 | C15H17O3 | 245.11716 | 245.11794 | 2.93 | MS2[245]:181(100),217(67),199(12),227(5),155(4) | Dehydrogenation, hydroxylation | + | + | — |
M35 | 7.04 | C15H15O2 | 227.10656 | 227.10742 | 3.36 | MS2[227]:181(100),153(14),167(6),209(5),199(2) | Di-dehydrogenation | + | + | — |
M36 | 7.16 | C20H26O5NS | 392.15266 | 392.15356 | 2.40 | MS2[392]:185(100),229(60),157(26),201(12),211(5) | N-acetylcysteine-S-conjugation | + | + | + |
M37 | 7.19 | C20H28O6NS | 410.16322 | 410.16412 | 2.28 | MS2[410]:229(100),185(89),157(54),130(35),201(30) | Hydration, N-acetylcysteine-S-conjugation | + | + | + |
M38 | 7.19 | C15H17O2 | 229.12226 | 229.12288 | 2.50 | MS2[229]:183(100),155(25),141(13),211(7),193(5) | Dehydrogenation | + | + | + |
M39 | 7.46 | C15H17O5 | 277.10697 | 277.10785 | 2.89 | MS2[277]:121(100),217(16),189(13),231(9),259(3) | Dehydrogenation, tri-hydroxylation | — | — | + |
M40 | 7.70 | C14H17 | 185.13249 | 185.13304 | 3.04 | MS2[185]:185(100),143(87),157(51),129(49),131(6) | Dehydration, loss of CO | + | + | — |
M41 | 7.71 | C20H26O5NS | 392.15266 | 392.15381 | 3.03 | MS2[392]:185(100),229(44),157(14),201(2),211(1) | N-acetylcysteine-S-conjugation | + | + | + |
M42 | 7.74 | C15H17O2 | 229.12226 | 229.12279 | 2.11 | MS2[229]:183(100),155(33),129(13),141(10),211(7) | Dehydrogenation | + | + | + |
M43 | 7.74 | C17H24O4N | 306.17002 | 306.17114 | 3.77 | MS2[306]:159(100),260(18),242(4),231(2),288(1) | Hydration, glycine conjugation to ester | + | + | — |
M44 | 7.82 | C20H26O5NS | 392.15266 | 392.15384 | 3.11 | MS2[392]:185(100),229(78),157(38),201(18),211(7) | N-acetylcysteine-S-conjugation | + | + | + |
M45 | 7.82 | C20H28O6NS | 410.16322 | 410.16446 | 3.11 | MS2[410]:229(100),185(79),157(45),130(30),201(23) | Hydration, N-acetylcysteine-S-conjugation | + | + | — |
M46 | 8.19 | C20H28O7NS | 426.15802 | 426.15955 | 3.40 | MS2[426]:145(100),130(10),217(8),245(3),263(1) | Dihydrodiolation, N-acetylcysteine-S-conjugation | — | + | — |
M47 | 8.20 | C18H26O4NS | 352.15772 | 352.15842 | 2.03 | MS2[352]:159(100),213(31),185(13),306(10),231(5) | Hydration, cysteine conjugation to ester | + | + | + |
M48 | 8.50 | C20H26O6NS | 408.14757 | 408.14896 | 3.49 | MS2[408]:130(100),157(32),229(26),183(24),199(7) | Hydroxylation, N-acetylcysteine-S-conjugation | — | + | — |
M49 | 8.55 | C20H26O6NS | 408.14757 | 408.14902 | 3.64 | MS2[408]:130(100),157(33),183(22),229(17),211(7) | Hydroxylation, N-acetylcysteine-S-conjugation | — | + | — |
M50 | 8.62 | C17H26O5NS | 356.15262 | 356.15369 | 3.00 | MS2[356]:229(100),201(35),187(21),183(5),217(3) | Hydration, taurine conjugation to ester | — | + | — |
M51 | 8.74 | C20H26O5NS | 392.15266 | 392.15378 | 2.96 | MS2[392]:185(100),157(33),229(10),211(6),201(2) | N-acetylcysteine-S-conjugation | — | + | + |
M52 | 8.77 | C20H28O6NS | 410.16322 | 410.16409 | 2.21 | MS2[410]:130(100),159(36),185(12),213(8),231(2) | Hydration, N-acetylcysteine-S-conjugation | — | + | + |
M53 | 9.22 | C15H19O2 | 231.13796 | 231.13858 | 2.70 | MS2[231]:185(100),143(52),157(29),213(17),195(16) | Dehydrocostus lactone isomer | — | + | — |
M54 | 9.22 | C15H17O | 213.12746 | 213.12802 | 2.95 | MS2[213]:195(100),143(61),171(32),157(30),185(29) | Dehydration | — | + | — |
M55 | 9.22 | C15H15 | 195.11689 | 195.11739 | 2.89 | MS2[195]:195(100),165(66),167(12),155(5),193(3) | Bi-dehydration | — | + | — |
M56 | 9.51 | C15H17O3 | 245.11716 | 245.11804 | 3.34 | MS2[245]:181(100),155(5),227(4),199(3),209(1) | Dehydrogenation, hydroxylation | + | + | + |
M57 | 9.58 | C15H19O2 | 231.13796 | 231.13857 | 2.66 | MS2[231]:185(100),143(50),157(29),213(16),195(15) | Dehydrocostus lactone isomer | + | + | — |
M58 | 9.58 | C15H17O | 213.12746 | 213.12805 | 3.09 | MS2[213]:195(100),143(55),157(30),171(28),185(20) | Dehydration | + | + | — |
M59 | 9.58 | C15H15 | 195.11689 | 195.11742 | 3.04 | MS2[195]:195(100),165(80),167(11),155(7),193(4) | Bi-dehydration | + | + | — |
M60 | 9.70 | C15H17O | 213.12746 | 213.12810 | 3.32 | MS2[213]:195(100),143(54),157(28),171(27),185(20) | Dehydration | + | + | — |
M61 | 9.70 | C15H19O2 | 231.13796 | 231.13866 | 3.04 | MS2[231]:185(100),143(49),157(26),213(15),195(14) | Dehydrocostus lactone isomer | + | + | — |
M62 | 9.71 | C20H26O5NS | 392.15266 | 392.15390 | 3.26 | MS2[392]:229(100),157(24),201(24),211(15),185(12) | N-acetylcysteine-S-conjugation | — | + | — |
M63 | 9.93 | C15H21O4 | 265.14336 | 265.14444 | 3.79 | MS2[265]:145(100),229(81),201(72),183(56),247(16) | Dihydrodiolation | — | + | — |
M64 | 10.09 | C14H17 | 185.13249 | 185.13310 | 3.37 | MS2[185]:185(100),143(79),157(54),129(42),131(6) | Dehydration, loss of CO | — | + | — |
M65 | 10.12 | C20H26O5NS | 392.15266 | 392.15393 | 3.34 | MS2[392]:157(100),185(61),229(26),143(16),211(15) | N-acetylcysteine-S-conjugation | — | + | — |
M66 | 10.34 | C20H28O5NS | 394.16832 | 394.16916 | 2.26 | MS2[394]:159(100),185(81),213(33),231(27),352(5) | Hydration, N-acetylcysteine conjugation to ester | + | + | + |
M67 | 10.38 | C15H17O | 213.12746 | 213.12798 | 2.76 | MS2[213]:195(100),143(48),157(32),171(24),185(17) | Dehydration | + | + | + |
M68 | 10.38 | C14H19 | 187.14816 | 187.14859 | 2.47 | MS2[187]:187(100),145(99),131(75),105(40),159(18) | Loss of CO+O | + | + | + |
M69 | 10.38 | C15H19O2 | 231.13796 | 231.13855 | 2.57 | MS2[231]:185(100),143(61),157(33),129(28),213(18) | Dehydrocostus lactone isomer | + | + | + |
M70 | 13.38 | C15H17O | 213.12746 | 213.12808 | 3.23 | MS2[213]:195(100),143(46),157(27),171(23),185(17) | Dehydration | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Ma, B.; Liu, C.; Zhao, X.; Yu, S.; Li, Y.; Tian, S.; Pei, H.; Wang, Z.; Zuo, Z.; et al. Integrated Solid-Phase Extraction, Ultra-High-Performance Liquid Chromatography–Quadrupole-Orbitrap High-Resolution Mass Spectrometry, and Multidimensional Data-Mining Techniques to Unravel the Metabolic Network of Dehydrocostus Lactone in Rats. Molecules 2022, 27, 7688. https://doi.org/10.3390/molecules27227688
Tian Y, Ma B, Liu C, Zhao X, Yu S, Li Y, Tian S, Pei H, Wang Z, Zuo Z, et al. Integrated Solid-Phase Extraction, Ultra-High-Performance Liquid Chromatography–Quadrupole-Orbitrap High-Resolution Mass Spectrometry, and Multidimensional Data-Mining Techniques to Unravel the Metabolic Network of Dehydrocostus Lactone in Rats. Molecules. 2022; 27(22):7688. https://doi.org/10.3390/molecules27227688
Chicago/Turabian StyleTian, Yingying, Beibei Ma, Chuang Liu, Xinyue Zhao, Shangyue Yu, Yilin Li, Shiqiu Tian, Hailuan Pei, Zijian Wang, Zeping Zuo, and et al. 2022. "Integrated Solid-Phase Extraction, Ultra-High-Performance Liquid Chromatography–Quadrupole-Orbitrap High-Resolution Mass Spectrometry, and Multidimensional Data-Mining Techniques to Unravel the Metabolic Network of Dehydrocostus Lactone in Rats" Molecules 27, no. 22: 7688. https://doi.org/10.3390/molecules27227688
APA StyleTian, Y., Ma, B., Liu, C., Zhao, X., Yu, S., Li, Y., Tian, S., Pei, H., Wang, Z., Zuo, Z., & Wang, Z. (2022). Integrated Solid-Phase Extraction, Ultra-High-Performance Liquid Chromatography–Quadrupole-Orbitrap High-Resolution Mass Spectrometry, and Multidimensional Data-Mining Techniques to Unravel the Metabolic Network of Dehydrocostus Lactone in Rats. Molecules, 27(22), 7688. https://doi.org/10.3390/molecules27227688