Thiolated Janus Silsesquioxane Tetrapod: New Precursors for Functional Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Ethoxydimethyl(2-naphthylethyl)silane
2.2. Synthesis of Bifunctional T4 Janus Tetrapod
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis and Purification Methods
3.2.1. Synthesis of Ethoxydimethyl(2-naphthylethyl)silane
3.2.2. Synthesis of Chlorodimethyl(2-naphthylethyl)silane (S1)
3.2.3. Synthesis of Tetrakis(dimethyl(2-naphthylethyl)silyloxy)tetravinylcyclotetrasiloxane (J1)
3.2.4. Synthesis of Tetrakis(dimethyl(2-naphthylethyl)silyloxy)tetra(ethyl(ethanethioate))cyclotetrasiloxane (J2)
3.2.5. Synthesis of Tetrakis(dimethyl(2-naphthylethyl)silyloxy)-tetramercaptoethyl-cyclotetrasiloxane (J3)
3.3. Characterization Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kickelbick, G. Silsesquioxanes. In Functional Molecular Silicon Compounds I; Scheschkewitz, D., Ed.; Springer: Cham, Switzerland, 2014; pp. 1–28. [Google Scholar]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2010, 15, 3559–3592. [Google Scholar] [CrossRef]
- Kawakami, Y. Structural control and functionalization of oligomeric silsesquioxanes. React. Funct. Polym. 2007, 67, 1137–1147. [Google Scholar] [CrossRef]
- Brown, J.F., Jr.; Vogt, L.H., Jr. The Polycondensation of Cyclohexylsilanetriol. J. Am. Chem. Soc. 1965, 87, 4313–4317. [Google Scholar] [CrossRef]
- Feher, F.J.; Budzichowski, T.A.; Blanski, R.L.; Weller, K.J.; Ziller, J.W. Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics 1991, 10, 2526–2528. [Google Scholar] [CrossRef]
- Asuncion, M.Z.; Ronchi, M.; Abu-Seir, H.; Laine, R.M. Synthesis, functionalization and properties of incompletely condensed “half cube” silsesquioxanes as a potential route to nanoscale Janus particles. Comptes Rendus. Chim. 2010, 13, 270–281. [Google Scholar] [CrossRef]
- Oguri, N.; Egawa, Y.; Takeda, N.; Unno, M. Janus-Cube Octasilsesquioxane: Facile Synthesis and Structure Elucidation. Angew. Chem. Int. Ed. 2016, 55, 9336–9339. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Egawa, Y.; Adachi, T.; Oguri, N.; Kobayashi, M.; Kudo, T.; Takeda, N.; Unno, M.; Tanaka, R. Synthesis, Structures, and Thermal Properties of Symmetric and Janus “Lantern Cage” Siloxanes. Chem.–A Eur. J. 2018, 25, 1683–1686. [Google Scholar] [CrossRef]
- Sugiyama, T.; Shiba, H.; Yoshikawa, M.; Wada, H.; Shimojima, A.; Kuroda, K. Synthesis of Polycyclic and Cage Siloxanes by Hydrolysis and Intramolecular Condensation of Alkoxysilylated Cyclosiloxanes. Chem.–A Eur. J. 2019, 25, 2764–2772. [Google Scholar] [CrossRef]
- Unno, M.; Suto, A.; Takada, K.; Matsumoto, H. Synthesis of Ladder and Cage Silsesquioxanes from 1,2,3,4-Tetrahydroxycyclotetrasiloxane. Bull. Chem. Soc. Jpn. 2000, 73, 215–220. [Google Scholar] [CrossRef]
- Panisch, R.; Bassindale, A.R.; Korlyukov, A.A.; Pitak, M.B.; Coles, S.J.; Taylor, P.G. Selective Derivatization and Characterization of Bifunctional “Janus-Type” Cyclotetrasiloxanes. Organometallics 2013, 32, 1732–1742. [Google Scholar] [CrossRef]
- Clegg, W.; Sheldrick, G.M.; Vater, N. Dodeca(phenylsilasesquioxane). Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1980, 36, 3162–3164. [Google Scholar] [CrossRef] [Green Version]
- Cordes, D.B.; Lickiss, P.D.; Rataboul, F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110, 2081–2173. [Google Scholar] [CrossRef] [PubMed]
- Laird, M.; Van Der Lee, A.; Dumitrescu, D.G.; Carcel, C.; Ouali, A.; Bartlett, J.R.; Unno, M.; Man, M.W.C. Styryl-Functionalized Cage Silsesquioxanes as Nanoblocks for 3-D Assembly. Organometallics 2020, 39, 1896–1906. [Google Scholar] [CrossRef]
- Kausar, A. State-of-the-Art Overview on Polymer/POSS Nanocomposite. Polym. Technol. Eng. 2017, 56, 1401–1420. [Google Scholar] [CrossRef]
- Zhou, H.; Ye, Q.; Xu, J. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater. Chem. Front. 2016, 1, 212–230. [Google Scholar] [CrossRef]
- Bivona, L.A.; Giacalone, F.; Carbonell, E.; Gruttadauria, M.; Aprile, C. Proximity Effect using a Nanocage Structure: Polyhedral Oligomeric Silsesquioxane-Imidazolium Tetrachloro- palladate Salt as a Precatalyst for the Suzuki-Miyaura Reaction in Water. ChemCatChem 2016, 8, 1685–1691. [Google Scholar] [CrossRef]
- Sellinger, A.; Tamaki, R.; Laine, R.M.; Ueno, K.; Tanabe, H.; Williams, E.; Jabbour, G.E. Heck coupling of haloaromatics with octavinylsilsesquioxane: Solution processable nanocomposites for application in electroluminescent devices. Chem. Commun. 2005, 3700–3702. [Google Scholar] [CrossRef]
- Vautravers, N.R.; André, P.; Slawin, A.M.Z.; Cole-Hamilton, D.J. Synthesis and characterization of photoluminescent vinylbiphenyl decorated polyhedral oligomeric silsesquioxanes. Org. Biomol. Chem. 2008, 7, 717–724. [Google Scholar] [CrossRef]
- Lo, M.Y.; Ueno, K.; Tanabe, H.; Sellinger, A. Silsesquioxane-based nanocomposite dendrimers with photo-luminescent and charge transport properties. Chem. Rec. 2006, 6, 157–168. [Google Scholar] [CrossRef]
- Chanmungkalakul, S.; Ervithayasuporn, V.; Hanprasit, S.; Masik, M.; Prigyai, N.; Kiatkamjornwong, S. Silsesquioxane cages as fluoride sensors. Chem. Commun. 2017, 53, 12108–12111. [Google Scholar] [CrossRef]
- Chanmungkalakul, S.; Ervithayasuporn, V.; Boonkitti, P.; Phuekphong, A.; Prigyai, N.; Kladsomboon, S.; Kiatkamjornwong, S. Anion identification using silsesquioxane cages. Chem. Sci. 2018, 9, 7753–7765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaiprasert, T.; Liu, Y.; Takeda, N.; Unno, M. Janus ring siloxane: A versatile precursor of the extended Janus ring and tricyclic laddersiloxanes. Dalton Trans. 2020, 49, 13533–13537. [Google Scholar] [CrossRef] [PubMed]
- Chaiprasert, T.; Liu, Y.; Takeda, N.; Unno, M. Vinyl-Functionalized Janus Ring Siloxane: Potential Precursors to Hybrid Functional Materials. Materials 2021, 14, 2014. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.F. The Polycondensation of Phenylsilanetriol. J. Am. Chem. Soc. 1965, 87, 4317–4324. [Google Scholar] [CrossRef]
- Unno, M.; Kawaguchi, Y.; Kishimoto, Y.; Matsumoto, H. Stereoisomers of 1,3,5,7-Tetrahydroxy-1,3,5,7-tetraisopropylcyclotetrasiloxane: Synthesis and Structures in the Crystal. J. Am. Chem. Soc. 2005, 127, 2256–2263. [Google Scholar] [CrossRef]
- Ito, R.; Kakihana, Y.; Kawakami, Y. Cyclic Tetrasiloxanetetraols: Formation, Isolation, and Characterization. Chem. Lett. 2009, 38, 364–365. [Google Scholar] [CrossRef]
- Yagihashi, F.; Igarashi, M.; Nakajima, Y.; Sato, K.; Yumoto, Y.; Matsui, C.; Shimada, S. Unexpected Selectivity in Cyclotetrasiloxane Formation by the Hydrolytic Condensation Reaction of Trichloro(phenyl)silane. Eur. J. Inorg. Chem. 2016, 2016, 201600454. [Google Scholar] [CrossRef]
- Pozdnyakova, Y.A.; Korlyukov, A.A.; Kononova, E.G.; Lyssenko, K.A.; Peregudov, A.S.; Shchegolikhina, O.I. Cyclotetrasiloxanetetrols with Methyl Groups at Silicon: Isomers all-cis- and cis-trans-cis-[MeSi(O)OH]4. Inorg. Chem. 2009, 49, 572–577. [Google Scholar] [CrossRef]
- Shchegolikhina, O.I.; Pozdnyakova, Y.A.; Chetverikov, A.A.; Peregudov, A.S.; Buzin, M.I.; Matukhina, E.V. cis-Tetra[(organo)(trimethylsiloxy)]cyclotetrasiloxanes: Synthesis and mesomorphic properties. Bull. Acad. Sci. USSR Div. Chem. Sci. 2007, 56, 83–90. [Google Scholar] [CrossRef]
- Shchegolikhina, O.; Pozdniakova, Y.; Antipin, M.; Katsoulis, D.; Auner, N.; Herrschaft, B. Synthesis and Structure of Sodium Phenylsiloxanolate. Organometallics 2000, 19, 1077–1082. [Google Scholar] [CrossRef]
- Unno, M.; Endo, H.; Takeda, N. Synthesis and Structures of Extended Cyclic Siloxanes. Heteroat. Chem. 2014, 25, 525–532. [Google Scholar] [CrossRef]
- Ronchi, M.; Pizzotti, M.; Biroli, A.O.; Macchi, P.; Lucenti, E.; Zucchi, C. Synthesis and structural characterization of functionalized cyclotetrasiloxane rings [4-RC6H4Si(O)OR′]4 (R=Cl, Br, CHCH2, CH2Cl; R′=Na, SiMe3) as scaffolds for the synthesis of models of a silica bound monolayer of fluorescent or second order NLO active organic chromophores. J. Organomet. Chem. 2007, 692, 1788–1798. [Google Scholar] [CrossRef]
- Feher, F.J.; Schwab, J.J.; Soulivong, D.; Ziller, J.W. Synthesis, Characterization and Reactivity of cis-cis-cis[(C6H5)4Si4O4(OH)4]. Main Group Chem. 1997, 2, 123–132. [Google Scholar] [CrossRef]
- Endo, H.; Takeda, N.; Unno, M. Stereoisomerization of Cyclic Silanols. Chem.-Asian J. 2017, 12, 1224–1233. [Google Scholar] [CrossRef]
- Vysochinskaya, Y.S.; Anisimov, A.A.; Milenin, S.; Korlyukov, A.A.; Dolgushin, F.M.; Kononova, E.G.; Peregudov, A.S.; Buzin, M.I.; Shchegolikhina, O.I.; Muzafarov, A. New all-cis-tetra(p-tolyl)cyclotetrasiloxanetetraol and its functionalization. Mendeleev Commun. 2018, 28, 418–420. [Google Scholar] [CrossRef]
- Makarova, N.N.; Volkova, L.M.; Chizhova, N.; Matukhina, E.V.; Kaznacheev, A.V.; Petrovskii, P.V. New stereoregular liquid-crystalline phenylcyclosiloxanes. Bull. Acad. Sci. USSR Div. Chem. Sci. 2003, 52, 2397–2405. [Google Scholar] [CrossRef]
- Makarova, N.N.; Petrova, I.M.; Petrovskii, P.V.; Kaznacheev, A.V.; Volkova, L.M.; Shcherbina, M.A.; Bessonova, N.P.; Chvalun, S.N.; Godovskii, Y.K. Synthesis of new stereoregular 2,4,6,8-tetraphenylcyclotetrasiloxanes with mesogenic groups and the influence of spatial isomerism on the phase state of individual isomers and their mixtures. Bull. Acad. Sci. USSR Div. Chem. Sci. 2004, 53, 1983–1992. [Google Scholar] [CrossRef]
- Zhemchugov, P.V.; Peregudov, A.S.; Malakhova, Y.N.; Buzin, A.I.; Shchegolikhina, O.I.; Muzafarov, A.M. Synthesis of siloxane analogs of calixarenes. Bull. Acad. Sci. USSR Div. Chem. Sci. 2015, 64, 1394–1399. [Google Scholar] [CrossRef]
- Wei, D.; Dong, C.; Chen, Z.; Liu, J.; Li, Q.; Lu, Z. A novel cyclic copolymer containing Si/P/N used as flame retardant and water repellent agent on cotton fabrics. J. Appl. Polym. Sci. 2018, 136. [Google Scholar] [CrossRef]
- Ahsan, S.; Sasaki, S.; Kawakami, Y. Liquid crystalline compounds with various rigid siloxane frameworks. React. Funct. Polym. 2007, 67, 1200–1210. [Google Scholar] [CrossRef]
- Chinnam, P.R.; Chatare, V.; Chereddy, S.; Mantravadi, R.; Gau, M.; Schwab, J.; Wunder, S.L. Multi-ionic lithium salts increase lithium ion transference numbers in ionic liquid gel separators. J. Mater. Chem. A 2016, 4, 14380–14391. [Google Scholar] [CrossRef]
- Pakhomov, A.A.; Kononevich, Y.N.; Stukalova, M.V.; Svidchenko, E.A.; Surin, N.M.; Cherkaev, G.V.; Shchegolikhina, O.I.; Martynov, V.I.; Muzafarov, A.M. Synthesis and photophysical properties of a new BODIPY-based siloxane dye. Tetrahedron Lett. 2016, 57, 979–982. [Google Scholar] [CrossRef]
- Mróz, W.; Bombenger, J.; Botta, C.; Biroli, A.; Pizzotti, M.; De Angelis, F.; Belpassi, L.; Tubino, R.; Meinardi, F. Oligothiophenes Nano-organized on a Cyclotetrasiloxane Scaffold as a Model of a Silica-Bound Monolayer: Evidence for Intramolecular Excimer Formation. Chem.–A Eur. J. 2009, 15, 12791–12798. [Google Scholar] [CrossRef]
- Ronchi, M.; Pizzotti, M.; Biroli, A.O.; Righetto, S.; Ugo, R.; Mussini, P.; Cavazzini, M.; Lucenti, E.; Salsa, M.; Fantucci, P. Second-Order Nonlinear Optical (NLO) Properties of a Multichromophoric System Based on an Ensemble of Four Organic NLO Chromophores Nanoorganized on a Cyclotetrasiloxane Architecture. J. Phys. Chem. C 2009, 113, 2745–2760. [Google Scholar] [CrossRef]
- Ronchi, M.; Biroli, A.O.; Marinotto, D.; Pizzotti, M.; Ubaldi, M.C.; Pietralunga, S.M. The Role of the Chromophore Size and Shape on the SHG Stability of PMMA Films with Embebbed NLO Active Macrocyclic Chromophores Based on a Cyclotetrasiloxane Scaffold. J. Phys. Chem. C 2011, 115, 4240–4246. [Google Scholar] [CrossRef]
- Zhang, J.; Sulaiman, S.; Madu, I.K.; Laine, R.M.; Goodson, T. Ultrafast Excited-State Dynamics of Partially and Fully Functionalized Silsesquioxanes. J. Phys. Chem. C 2019, 123, 5048–5060. [Google Scholar] [CrossRef]
- Laine, R.M.; Sulaiman, S.; Brick, C.; Roll, M.; Tamaki, R.; Asuncion, M.Z.; Neurock, M.; Filhol, J.-S.; Lee, C.-Y.; Zhang, J.; et al. Synthesis and Photophysical Properties of Stilbeneoctasilsesquioxanes. Emission Behavior Coupled with Theoretical Modeling Studies Suggest a 3-D Excited State Involving the Silica Core. J. Am. Chem. Soc. 2010, 132, 3708–3722. [Google Scholar] [CrossRef]
- Vysochinskaya, Y.; Anisimov, A.; Krylov, F.; Buzin, M.; Buzin, A.; Peregudov, A.; Shchegolikhina, O.; Muzafarov, A. Synthesis of functional derivatives of stereoregular organocyclosilsesquioxanes by thiol-ene addition. J. Organomet. Chem. 2021, 954–955, 122072. [Google Scholar] [CrossRef]
- Belova, A.; Kononevich, Y.N.; Sazhnikov, V.; Safonov, A.; Ionov, D.; Anisimov, A.; Shchegolikhina, O.; Alfimov, M.; Muzafarov, A. Solvent-controlled intramolecular excimer emission from organosilicon derivatives of naphthalene. Tetrahedron 2021, 93, 132287. [Google Scholar] [CrossRef]
- Anisimov, A.A.; Drozdov, F.V.; Vysochinskaya, Y.S.; Minyaylo, E.O.; Peregudov, A.S.; Dolgushin, F.M.; Shchegolikhina, O.I.; Muzafarov, A.M. Organoboron Derivatives of Stereoregular Phenylcyclosilsesquioxanes. Chem.–A Eur. J. 2020, 26, 11404–11407. [Google Scholar] [CrossRef]
- Karabelas, K.; Hallberg, A. Synthesis of (E)-(2-arylethenyl)silanes by palladium-catalyzed arylation of vinylsilanes in the presence of silver nitrate. J. Org. Chem. 1986, 51, 5286–5290. [Google Scholar] [CrossRef]
- Czech, A.; Ganicz, T.; Noskowska, M.; Stańczyk, W.A.; Szeląg, A. Phenylethenyl-substituted silicones via Heck coupling reaction. J. Organomet. Chem. 2009, 694, 3386–3389. [Google Scholar] [CrossRef]
- Caseri, W.; Pregosin, P.S. Hydrosilylation chemistry and catalysis with cis-PtCl2(PhCH:CH2)2. Organometallics 1988, 7, 1373–1380. [Google Scholar] [CrossRef]
- Andre, S.; Guida-Pietrasanta, F.; Rousseau, A.; Boutevin, B.; Caporiccio, G. Synthesis and thermal properties of telechelic α,ω-bis anhydride oligosiloxanes. Polymer 2001, 42, 5505–5513. [Google Scholar] [CrossRef]
- Weisheim, E.; Reuter, C.G.; Heinrichs, P.; Vishnevskiy, Y.V.; Mix, A.; Neumann, B.; Stammler, H.-G.; Mitzel, N.W. Tridentate Lewis Acids Based on 1,3,5-Trisilacyclohexane Backbones and an Example of Their Host-Guest Chemistry. Chem.–A Eur. J. 2015, 21, 12436–12448. [Google Scholar] [CrossRef] [PubMed]
- Agina, E.V.; Sizov, A.S.; Yablokov, M.Y.; Borshchev, O.V.; Bessonov, A.A.; Kirikova, M.N.; Bailey, M.J.A.; Ponomarenko, S.A. Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks. ACS Appl. Mater. Interfaces 2015, 7, 11755–11764. [Google Scholar] [CrossRef]
- Li, Y.-S.; Ba, A. Spectroscopic studies of triethoxysilane sol–gel and coating process. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 70, 1013–1019. [Google Scholar] [CrossRef]
- Ávila-Costa, M.; Donnici, C.L.; dos Santos, J.D.; Diniz, R.; Barros-Barbosa, A.; Cuin, A.; de Oliveira, L.F.C. Synthesis, vibrational spectroscopy and X-ray structural characterization of novel NIR emitter squaramides. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117354. [Google Scholar] [CrossRef]
- Moores, A.; Defieber, C.; Mézailles, N.; Maigrot, N.; Ricard, L.; Le Floch, P. Siloxa-bridged-cyclophanes featuring benzene, thiophene and pyridine units. N. J. Chem. 2003, 27, 994–999. [Google Scholar] [CrossRef]
- Shaw, M.F.; Osborn, D.L.; Jordan, M.J.T.; Kable, S.H. Infrared Spectra of Gas-Phase 1- and 2-Propenol Isomers. J. Phys. Chem. A 2017, 121, 3679–3688. [Google Scholar] [CrossRef]
- Laird, M.; Yokoyama, J.; Carcel, C.; Unno, M.; Bartlett, J.R.; Man, M.W.C. Sol–gel processing of polyhedral oligomeric silsesquioxanes: Nanohybrid materials incorporating T8 and T10 cages. J. Sol-Gel Sci. Technol. 2020, 95, 760–770. [Google Scholar] [CrossRef]
- Lestard, M.E.D.; Tuttolomondo, M.E.; Ben Altabef, A. Vibrational spectroscopy and conformation of S-ethyl thioacetate: CH3COSCH2CH3 and comparison with C(O)S and C(O)O compounds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Handke, B.; Jastrzębski, W.; Kwaśny, M.; Klita, L. Structural studies of octahydridooctasilsesquioxane—H8Si8O12. J. Mol. Struct. 2012, 1028, 68–72. [Google Scholar] [CrossRef]
- Roth, M.; Oesterreicher, A.; Mostegel, F.H.; Moser, A.; Pinter, G.; Edler, M.; Piock, R.; Griesser, T. Silicon-based mercaptans: High-performance monomers for thiol-ene photopolymerization. J. Polym. Sci. Part A Polym. Chem. 2015, 54, 418–424. [Google Scholar] [CrossRef]
- Strauch, H.; Engelmann, J.; Scheffler, K.; Mayer, H.A. A simple approach to a new T8-POSS based MRI contrast agent. Dalton Trans. 2016, 45, 15104–15113. [Google Scholar] [CrossRef]
- Schwan, A.L.; Brillon, D.; Dufault, R. Synthesis, reactions, and interconversions of some 2-(trimethylsilyl)ethyl substituted sulfur compounds. Can. J. Chem. 1994, 72, 325–333. [Google Scholar] [CrossRef]
- Durig, J.R.; Klaassen, J.J.; Deodhar, B.S.; Gounev, T.K.; Conrad, A.R.; Tubergen, M.J. Microwave, infrared, and Raman spectra, r0 structural parameters, conformational stability, and vibrational assignment of allyl thiol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 87, 214–227. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laird, M.; Carcel, C.; Unno, M.; Bartlett, J.R.; Wong Chi Man, M. Thiolated Janus Silsesquioxane Tetrapod: New Precursors for Functional Materials. Molecules 2022, 27, 7680. https://doi.org/10.3390/molecules27227680
Laird M, Carcel C, Unno M, Bartlett JR, Wong Chi Man M. Thiolated Janus Silsesquioxane Tetrapod: New Precursors for Functional Materials. Molecules. 2022; 27(22):7680. https://doi.org/10.3390/molecules27227680
Chicago/Turabian StyleLaird, Mathilde, Carole Carcel, Masafumi Unno, John R. Bartlett, and Michel Wong Chi Man. 2022. "Thiolated Janus Silsesquioxane Tetrapod: New Precursors for Functional Materials" Molecules 27, no. 22: 7680. https://doi.org/10.3390/molecules27227680
APA StyleLaird, M., Carcel, C., Unno, M., Bartlett, J. R., & Wong Chi Man, M. (2022). Thiolated Janus Silsesquioxane Tetrapod: New Precursors for Functional Materials. Molecules, 27(22), 7680. https://doi.org/10.3390/molecules27227680