Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021
Abstract
:1. Introduction
2. Results
- Some medicinal plants are enriched with essential oils composed of different hydrophobic molecules which can diffuse easily across cell membranes and consequently gain access to intracellular targets [67,69]. They may also act on ATPases and other proteins located in cytoplasmic membranes that are surrounded by lipid molecules. They can also cause a distortion of lipid–protein interactions in hydrophobic parts of the proteins, or they can interact with the enzymes involved in the synthesis of structural sections.
- The diversity of terpenoids increases their biological activity spectrum, including several Leishmania species [70]. Terpenes can easily penetrate the lipid bilayer of the cell membrane and produce changes in the integrity of cell structure and the mitochondrial membrane of Leishmania parasites [67]. For example, Artemisinin induced apoptosis, depolarization of the mitochondrial membrane potential, and DNA fragmentation [71,72]. Ursolic acid induce programmed cell death independent of caspase 3/7 but dependent on mitochondria. The compound reduced the lesion size and parasite load of cutaneous leishmaniasis in vivo [70]. (−)-α-Bisabolol induced phosphatidylserine externalization and caused cytoplasmic membrane damage, both of which are apoptosis indicators. The compound also decreased ATP levels and disrupted the mitochondrial membrane potential [73].
- Plants enriched with antioxidant compounds such as flavonoids may act by initiating morphological changes and causing a loss of cellular integrity, leading to cell cycle arrest in the G1 phase [59]. They also may act by damaging the mitochondria of the parasites [67]. For example, apigenin increased intracellular reactive oxygen species (ROS) and the number of double-membrane vesicles as well as myelin-like membrane inclusions, which are characteristics of the autophagic pathway. Furthermore, the fusion between autophagosome-like structures and parasitophorous vacuoles was observed [65]. Epigallocatechin 3-O-gallate (EGCG) has increased ROS levels, which decreased the mitochondrial membrane potential and the ATP levels [58].
- The diversity of structures within the coumarin group enables them to exhibit many biological activities, including anti-Leishmania activity. It represents a promising natural compound that can act on two fronts: as a treatment for leishmaniasis (able to induce mitochondrial membrane damage and changes in ultrastructure [74] and as a tool to control Leishmania vectors (might block the transmission of leishmaniasis since they decrease parasite loads [27].
- Many alkaloids have been described as having biological activities against trypanosomatids, such as Leishmania spp. For example, heterocyclic steroids (solamargine and solasonine) induced different immunochemical pathways in macrophages and dendritic cells. Additionally, they were capable of enhancing the expression levels of transcription factors, such as NFκB/AP-1 [43]. In addition, isoquinoline alkaloid (berberine) has leishmanicidal activity through a reduction in the viability of promastigotes and the generation of ROS in these cells. It also increased the levels of mitochondrial superoxide and induced the depolarization of mitochondrial transmembrane potential [53].
3. Methods
3.1. Study Design and Setting
3.2. Search Strategies
3.3. Inclusion and Exclusion Criteria
3.4. Data Extraction and Analysis
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Leishmaniasis Fact-Sheets; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 23 September 2022).
- Center for Food Security and Public Health. Leishmaniasis (Cutaneous and Visceral); Iowa State of University, College of Veterinary Medicine: Ames, IA, USA, 2009. [Google Scholar]
- Bereket, A.; Mihiretu, A. Leishmaniasis: A review on parasite, vector and reservoir host. Health Sci. J. 2017, 11, 519. [Google Scholar]
- Roberts, L.; Janovy, J.; Schmidt, G. Foundations of Parasitology, 8th ed.; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Gagandeep, K.; Bhawana, R. Comparative analysis of the omics technologies used to study antimonial, amphotericin B, and pentamidine resistance in Leishmania. J. Parasitol. Res. 2014, 2014, 726328. [Google Scholar]
- Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: Drug or vaccine therapy? Drug Des. Develop. Ther. 2018, 12, 25–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawed, J.; Majumdar, S. Recent trends in Leishmania research: A therapeutic perspective. J. Infect. Epidemiol. 2018, 1, 1–4. [Google Scholar] [CrossRef]
- Haldar, A.; Sen, P.; Roy, S. Use of antimony in the treatment of leishmaniasis: Current status and future directions. Mol. Biol. Int. 2011, 2011, 571242. [Google Scholar] [CrossRef] [Green Version]
- Murugan, N.; Natarajan, D. Bionanomedicine for antimicrobial therapy—A case study from Glycosmis pentaphylla plant-mediated silver nanoparticles for control of multidrug-resistant bacteria. Lett. Appl. NanoBioSci. 2018, 8, 523–540. [Google Scholar]
- Et-Touys, A.; Bouyahyal, A.; Fellah, H.; Mniouil, M.; El Bouryl, H.; Dakka, N.; Bakri, Y. Antileishmanial activity of medicinal plants from Africa: A review. Asian Pac. J. Trop. Dis. 2017, 7, 826–840. [Google Scholar] [CrossRef]
- Santos, D.; Coutinho, C.; Madeira, M.; Bottino, C.; Vieira, R.; Nascimento, S.; Rodrigues, C. Leishmaniasis treatment a challenge that remains: A review. Parasitol. Res. 2008, 103, 1–10. [Google Scholar] [CrossRef]
- Arévalo-Lopéz, D.; Nelida, N.; Ticona, J.C.; Limachi, I.; Salamanca, E.; Udaeta, E.; Paredes, C.; Espinoza, B.; Serato, A.; Garnica, D.; et al. Leishmanicidal and cytotoxic activity from plants used in Tacana traditional medicine (Bolivia). J. Ethnopharmacol. 2018, 216, 120–133. [Google Scholar] [CrossRef]
- Ohashi, M.; Amoa-Bosompem, M.; Kwofie, K.; Agyapong, J.; Adegle, R.; Sakyiamah, M.; Ayertey, F.; Owusu, K.; Tuffour, I.; Atcholog, P.; et al. In vitro antiprotozoan activity and mechanisms of action of selected Ghanaian medicinal plants against Trypanosoma, Leishmania, and Plasmodium parasites. Phytother. Res. 2018, 32, 1617–1630. [Google Scholar] [CrossRef]
- Costa, L.; Alves, M.; Brito, L.; Abi-Chacra, E.; Barbosa-Filho, J.; Gutierrez, S.; Barreto, H.; Carvalho, F. In vitro antileishmanial and immunomodulatory activities of the synthetic analogue riparin E. Chem. Biol. Interact. 2021, 336, 109389. [Google Scholar] [CrossRef]
- Bouyahya, A.; Et-Touys, A.; Dakka, N.; Fellah, H.; Abrini, J.; Bakri, Y. Antileishmanial potential of medicinal plant extracts from the North-West of Morocco. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 50–54. [Google Scholar] [CrossRef]
- Sultana, S. In vitro antileishmanial activity of three medicinal plants: Argemone mexicana Murraya Koenig and Cinnamomum tamala against miltefosine resistant promastigotes of Leishmania donovani parasites. Int. J. Pharm. Pharmaceut. Sci. 2021, 13, 27–33. [Google Scholar] [CrossRef]
- Mathlouthi, A.; Belkessan, M.; Sdiri, M.; Fethi-Diouani, M.; Souli, A.; El-Bok, S.; Ben-Attia, M. Chemical composition and anti-leishmania major activity of essential oils from Artemesia spp. grown in central Tunisia. J. Essent. Oil Bear. Plants 2018, 21, 1186–1198. [Google Scholar] [CrossRef]
- Eddaikra, N.; Boudjelal, A.; Sbabdji, M.A.; Eddaikra, A.; Boudrissa, A.; Bouhenna, M.M.; Smain, C.; Zoubir, H. Leishmanicidal and cytotoxic activity of Algerian medicinal plants on Leishmania major and Leishmania infantum. J. Med. Microbiol. Infect. Dis. 2019, 7, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Cesa, S.; Sisto, F.; Zengin, G.; Scaccabarozzi, D.; Kokolakis, A.; Scaltrito, M.; Grande, R.; Locatelli, M.; Cacciagrano, F.; Angiolella, L.; et al. Phytochemical analyses and pharmacological screening of neem oil. S. Afr. J. Bot. 2019, 120, 331–337. [Google Scholar] [CrossRef]
- Greve, H.; Kaiser, M.; Mäser, P.; Schmidt, T. Boswellic acids show in vitro activity against Leishmania donovani. Molecules 2021, 26, 3651. [Google Scholar] [CrossRef]
- Mohammad, R.; Sareh, J.; Katrin, E.; Massumeh, N.; Maryam, S.; Mehrdad, K.; Sam, K. Cytotoxic and antileishmanial effect of various extracts of Cappris spinose L. Turk. J. Pharm. Sci. 2020, 18, 146–150. [Google Scholar]
- Shah, N.A.; Khan, M.R.; Nigussie, D. Phytochemical, antioxidant and anti-Leishmania activity of selected Pakistani plants. J. Pharmacol. Clin. Res. 2016, 1, 53461276. [Google Scholar]
- Bouyahya, A.; Bakri, Y.; Belmehdi, O.; Et-Touys, A.; Abrini, J.; Dakka, N. Phenolic extracts of Centaurium erythraea with novel antiradical, antibacterial and antileishmanial activities. Asian Pac. J. Trop. Dis. 2019, 7, 433–439. [Google Scholar] [CrossRef]
- Ahmet, Y.; Tulay, A.; Sahra, C.; Husniye, K.; Eda, T.; Cuneyt, B. Assessment of in vitro activity of Cynara scolymus extracts against leishmania tropica. Kafkas Univ. Vet. Fak. Derg. 2021, 27, 381–387. [Google Scholar]
- Beatriz, M.; Adriana, B.; Sonia, A.; Eliana, R.; Eric, U.; João, H.; Márcia, D.; Susan, P.; Luiz, F. Ethnopharmacology study of plants from Atlantic forest with leishmanicidal activity. Evid. Based Complement. Alternat. Med. 2019, 2019, 8780914. [Google Scholar]
- Nigatu, H.; Belay, A.; Ayalew, H.; Abebe, B.; Tadesse, A.; Tewabe, Y.; Degu, A. In vitro antileishmanial activity of some Ethiopian medicinal plants. J. Exp. Pharmacol. 2021, 13, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.; Passos, C.; Soares, D.; Costa, K.; Rezende, M.; Lobao, A.; Pinto, A.; Hamerski, L.; Saraiva, E. Leishmanicidal activity of alkaloids-rich fraction from Guatteria latifolia. Exp. Parasitol. 2017, 172, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Ronna, D.; Lianet, M.; Abel, P.; Heike, V.; Fausto, R.; Cesar, I.; Alejandra, R. In vitro antileishmanial activity of Mexican medicinal plants. Heliyon 2017, 3, e00394. [Google Scholar]
- Wilson, C.; Sara, R.; Fernando, A.; Andres, F.; Cristian, H.; Ivan, D.; Juan, C.; Isabel, V. Antileishmanial and cytotoxic activities of four Andean plant extracts from Colombia. Vet. World 2020, 13, 2178–2182. [Google Scholar]
- Bouyahya, A.; Et-Touys, A.; Bakri, Y.; Talbaui, A.; Fellah, H.; Abrini, J.; Dakka, N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathog. 2017, 111, 41–49. [Google Scholar] [CrossRef]
- Rodrigues, L.; Barbosa-Filho, J.; de Oliveira, M.; do Nascimento, N.; Borges, F.; Mioso, R. Synthesis and antileishmanial activity of natural dehydrodieugenol and its mono- and dimethyl ethers. Chem. Biodivers. 2016, 13, 870–874. [Google Scholar] [CrossRef]
- Albakhit, S.; Khademvatan, S.; Doudi, M.; Forutan-Rad, M. Antileishmanial activity of date (Phoenix dactylifera L.) fruit pit extract in vitro. Evid. Based Complement. Altern. Med. 2016, 21, NP98–NP102. [Google Scholar] [CrossRef]
- Ticona, J.; Bilbao-Ramos, P.; Flores, N.; Dea-Ayuela, M.; Bolás-Fernández, F.; Jiménez, I.; Bazzocchi, I. (E)-Piplartine isolated from Piper pseudoarboreum, a lead compound against leishmaniasis. Foods 2020, 9, 1250. [Google Scholar] [CrossRef]
- Mutile, M.; Muli, M.; Muita, G. Safety and efficacy of Prosopis juliflora leaf extract as a potential treatment against visceral leishmaniasis. Iran. J. Parasitol. 2021, 16, 652–662. [Google Scholar] [CrossRef]
- Nargis, S.; Naveeda, A.; Attiya, I.; Asma, A.; Huma, F. Evaluation of safety, antileishmanial and chemistry of ethanolic leaves extracts of seven medicinal plants: An in-vitro study. Open Chem. J. 2020, 7, 27. [Google Scholar]
- Et-Touys, A.; Fellah, H.; Sebti, F.; Mniouil, M.; Elboury, H.; Talbaoui, A.; Bakri, Y. In vitro antileishmanial activity of extracts from endemic Moroccan medicinal plant Salvia verbenaca (L.) Briq. ssp verbenaca Maire (S. clandestina Batt. non L.). Eur. J. Med. Plants 2016, 16, 1–8. [Google Scholar] [CrossRef]
- Albalawi, A. Antileishmanial activity of Ziziphus spina-christi leaves extract and its possible cellular mechanisms. Microorganism 2021, 9, 2113. [Google Scholar] [CrossRef]
- Afrin, F.; Chouhan, G.; Islamuddin, M.; Want, M.; Ozbak, H.; Hemeg, H. Cinnamomum cassia exhibits antileishmanial activity against Leishmania donovani infection in vitro and in vivo. PLoS Negl. Trop. Dis. 2019, 13, e0007227. [Google Scholar] [CrossRef] [Green Version]
- Araújo, I.; de Paula, R.; Alves, C.; Faria, K.; Oliveira, M.; Mendes, G.; Dias, E.; Ribeiro, R.; Oliveira, A.; Silva, S. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Exp. Parasitol. 2019, 199, 67–73. [Google Scholar] [CrossRef]
- Khalifa, E.; Adil, A.; Banaz, M.; Zinah, A.; Wasnaa, S. Topical 40% Loranthus europaeus ointment as an alternative medicine in the treatment of acute cutaneous leishmaniasis versus topical 25% podophyllin solution. J. Cosmetics Dermatol. Sci. Appl. 2017, 7, 148–163. [Google Scholar]
- Gupta, G.; Peine, K.; Abdelhamid, D.; Snider, H.; Shelton, A.; Rao, L.; Kotha, S.; Huntsman, A.; Varikuti, S.; Oghumu, S.; et al. A novel sterol isolated from a plant used by Mayan traditional healers is effective in treatment of visceral leishmaniasis caused by Leishmania donovani. ACS Infect. Dis. 2015, 1, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Paul, C.; Janssens, J.; Abel, P.; Osmany, C.; Arianna, Y.; Alexis, D.; Wagner, V.; Lianet, M. Efficacy of four Solanum spp. extracts in an animal model of cutaneous leishmaniasis. Medicines 2018, 5, 49. [Google Scholar]
- Lezama-Dávila, M.; McChesney, D.; Bastos, K.; Miranda, A.; Tiossi, F.; da Costa, J.; Bentley, D.; Gaitan-Puch, M.; Marquez, I. A new antileishmanial preparation of combined solamargine and solasonine heals cutaneous leishmaniasis through different immunochemical pathways. Antimicrob. Agents Chemother. 2016, 60, 2732–2738. [Google Scholar] [CrossRef] [Green Version]
- Badirzadeh, A.; Heidari-Kharaji, M.; Fallah-Omrani, V.; Dabiri, H.; Araghi, A.; Salimi Chirani, A. Antileishmanial activity of Urtica dioica extract against zoonotic cutaneous leishmaniasis. PLoS Negl. Trop. Dis. 2020, 14, e0007843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Castro, O.; Brito, L.; de Moraes, A.; Amorim, L.; Sobrinho-Júnior, E.; de Carvalho, C.; Rodrigues, K.; Arcanjo, D.; Cito, A.; Carvalh, F. In vitro effects of the neolignan 2,3-dihydrobenzofuran against Leishmania amazonensis. Basic Clin. Pharmacol. Toxicol. 2017, 120, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Brito, J.; Passero, L.; Bezerra-Souza, A.; Laurenti, M.; Romoff, P.; Barbosa, H.; Ferreira, E.; Lago, J. Antileishmanial activity and ultrastructural changes of related tetrahydrofuran dineolignans isolated from Saururus cernuus L. (Saururaceae). J. Pharm. Pharmacol. 2019, 71, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.; Silva, J.; Nunes, T.; Sousa, J.; Rodrigues, G.; Monteiro, A.; Tavares, J.; Rodriqes, K.; Junior, F.; Scotti, L.; et al. Virtual screening and the in vitro assessment of the antileishmanial activity of lignans. Molecules 2020, 25, 2281. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Gomes, K.; Costa-Silva, T.; Romanelli, M.; Tempone, A.; Sartorelli, P.; Lago, J. Calanolides E1 and E2, two related coumarins from Calophyllum brasiliense Cambess. (Clusiaceae), displayed in vitro activity against amastigote forms of Trypanosoma cruzi and Leishmania infantum. Nat. Prod. Res. 2020, 35, 5373–5377. [Google Scholar] [CrossRef]
- Bortoleti, B.; Tomiotto-Pellissiera, F.; Gonçalves, M.; Miranda-Sapla, M.; Assolini, J.; Carloto, A.; Lima, D.M.; Silveira, G.F.; Almeida, R.S.; Costa, I.N.; et al. Caffeic acid has antipromastigote activity by apoptosis-like process; and anti-amastigote by TNF-α/ROS/NO production and decreased of iron availability. Phytomedicine 2019, 57, 262–270. [Google Scholar] [CrossRef]
- Garcia, A.; Oliveira, D.; Amaral, A.; Jesus, J.; Rennó Sodero, A.; Souza, A.; Supuran, C.; Vermelho, A.; Rodrigues, I.; Pinheiro, A. Leishmania infantum arginase: Biochemical characterization and inhibition by naturally occurring phenolic substances. J. Enzyme Inhib. Med. Chem. 2019, 34, 1100–1109. [Google Scholar] [CrossRef] [Green Version]
- Vieira-Araújo, F.; Macedo Rondon, F.; Pinto Vieira, Í.; Pereira Mendes, F.; Carneiro de Freitas, J.; Maia de Morais, S. Synergism between alkaloids piperine and capsaicin with meglumine antimoniate against Leishmania infantum. Exp. Parasitol. 2018, 188, 79–82. [Google Scholar] [CrossRef]
- Lacerda, R.; Freitas, T.; Martins, M.; Teixeira, T.; da Silva, C.; Candido, P.; Oliveira, R.; Junior, C.; Bolzani, V.; Danuello, A.; et al. Isolation, leishmanicidal evaluation and molecular docking simulations of piperidine alkaloids from Senna spectabilis. Bioorg. Med. Chem. 2018, 26, 5816–5823. [Google Scholar] [CrossRef]
- De Sarkar, S.; Sarkar, D.; Sarkar, A.; Dighal, A.; Staniek, K.; Gille, L.; Chatterjee, M. Berberine chloride mediates its antileishmanial activity by inhibiting Leishmania mitochondria. Parasitol. Res. 2018, 118, 335–345. [Google Scholar] [CrossRef]
- Azadbakht, M.; Davoodi, A.; Hosseinimehr, S.; Keighobadi, M.; Fakhar, M.; Valadan, R.; Farindnia, R.; Emami, S.; Azadbakht, M.; Bakhtiyari, A. Tropolone alkaloids from Colchicum kurdicum (Bornm.) Stef. (Colchicaceae) as the potent novel antileishmanial compounds, purification, structure elucidation, antileishmanial activities, and molecular docking studies. Exp. Parasitol. 2020, 213, 107902. [Google Scholar] [CrossRef]
- Corpas-López, V.; Merino-Espinosa, G.; Díaz-Sáez, V.; Morillas-Márquez, F.; Navarro-Moll, M.; Martín-Sánchez, J. The sesquiterpene (–)-α-bisabolol is active against the causative agents of Old World cutaneous leishmaniasis through the induction of mitochondrial-dependent apoptosis. Apoptosis 2016, 21, 1071–1081. [Google Scholar] [CrossRef]
- Cartuche, L.; Sifaoui, I.; López-Arencibia, A.; Bethencourt-Estrella, C.; San Nicolás-Hernández, D.; Lorenzo-Morales, J.; Pinero, J.; Marrero, A.; Fernandez, J. Antikinetoplastid activity of indolocarbazoles from Streptomyces sanyensis. Biomolecules 2020, 10, 657. [Google Scholar] [CrossRef]
- Dimmer, J.; Cabral, F.; Sabino, C.; Silva, C.; Núñez-Montoya, S.; Cabrera, J.; Ribeiro, M. Natural anthraquinones as novel photosensitizers for antiparasitic photodynamic inactivation. Phytomedicine 2019, 61, 152894. [Google Scholar] [CrossRef]
- Inacio, J.; Fonseca, M.; Almeida-Amaral, E. (−) -Epigallocatechin 3-O-gallate as a new approach for the treatment of visceral leishmaniasis. J. Nat. Prod. 2019, 82, 2664–2667. [Google Scholar] [CrossRef]
- Sen, R.; Chatterijee, M. Plant-derived therapeutics for the treatment of leishmaniasis. Phytomedicine 2011, 18, 1056–1069. [Google Scholar] [CrossRef]
- Gervazoni, L.; Gonçalves-Ozório, G.; Almeida-Amaral, E. 2′-Hydroxyflavanone activity in vitro and in vivo against wild-type and antimony-resistant Leishmania amazonensis. PLoS Negl. Trop. Dis. 2018, 12, e0006930. [Google Scholar] [CrossRef]
- Pereira, I.; Mendona, D.; Tavares, G.; Lage, D.; Ramos, F.; Oliveirada-Silva, J.; Antinarelli, L.; Machado, A.; Caravalh, A.; Salustiano, I.; et al. Parasitological and immunological evaluation of a novel chemotherapeutic agent against visceral leishmaniasis. Parasite Immunol. 2020, 42, e12784. [Google Scholar] [CrossRef]
- Rocha, V.; Quintino, C.; Ferreira Queiroz, E.; Marcourt, L.; Vilegas, W.; Grimaldi, G.; Furrer, P.; Allemann, E.; Wolfender, J.; Soares, M. Antileishmanial activity of dimeric flavonoids isolated from Arrabidaea brachypoda. Molecules 2018, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Ghosh, S.; De, A.; Bera, T. Oral delivery of ursolic acid-loaded nanostructured lipid carrier coated with chitosan oligosaccharides: Development, characterization, in vitro and in vivo assessment for the therapy of leishmaniasis. Int. J. Biol. Macromol. 2017, 102, 996–1008. [Google Scholar] [CrossRef]
- Shilling, A.; Witowski, C.; Maschek, J.; Azhari, A.; Vesely, B.; Kyle, D.; Amsler, C.; McClintock, J.; Baker, B. Spongian diterpenoids derived from the antarctic sponge Dendrilla antarctica are potent inhibitors of the leishmania parasite. J. Nat. Prod. 2020, 83, 1553–1562. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Silva, F.; Canto-Cavalheiro, M.; Menna-Barreto, R.; Almeida-Amaral, E. Effect of apigenin on Leishmania amazonensis is associated with reactive oxygen species production followed by mitochondrial dysfunction. J. Nat. Prod. 2015, 78, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; von Salm, J.; Clark, S.; Ferlit, S.; Nemani, P.; Azhari, A.; Rice, C.; Wilson, N.; Kyle, D.; Baker, B. Keikipukalides, furanocembrane diterpenes from the antarctic deep sea octocoral Plumarella delicatissima. J. Nat. Prod. 2018, 81, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colares, A.; Almeida-Souza, F.; Taniwaki, N.; Souza, S.; da Costa, J.; Calabrese, K.; Abreu-Silva, A. In vitro antileishmanial activity of essential oil of Vanillosmopsis arborea (Asteraceae) Baker. Evid. Based Complement. Alternat. Med. 2013, 2013, 727042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gervazoni, L.; Barcellos, G.; Ferreira-Paes, T.; Almeida-Amaral, E. Use of natural products in leishmaniasis chemotherapy: An overview. Front. Chem. 2020, 8, 579891. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Dinis, A.; Santos-Rosa, M.; Alves, V.; Salgueiro, L.; Cavaleiro, C.; Sousa, M. Activity of Thymus capitellatus volatile extract, 1, 8-cineole and borneol against Leishmania species. Vet. Parasitol. 2014, 200, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, E.; Campos, B.; Jesus, J.; Laurenti, M.; Ribeiro, S.; Kallas, E.; Fernandes, M.; Gomes, G.; Silva, M.; Seessa, D.; et al. The effect of ursolic acid on Leishmania (Leishmania) amazonensis is related to programed cell death and present therapeutic potential in experimental cutaneous leishmaniasis. PLoS ONE 2015, 10, e0144946. [Google Scholar] [CrossRef] [Green Version]
- Sen, R.; Bandyopadhyay, S.; Dutta, A.; Mandal, G.; Ganguly, S.; Saha, P.; Chatterjee, M. Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. J. Med. Microbiol. 2007, 56, 1213–1218. [Google Scholar] [CrossRef] [Green Version]
- Sen, R.; Ganguly, S.; Saha, P.; Chatterjee, M. Efficacy of artemisinin in experimental visceral leishmaniasis. Int. J. Antimicrob. Agents 2010, 36, 43–49. [Google Scholar] [CrossRef]
- Hajaji, S.; Sifaoui, I.; Arencibia, A.; Batlle, M.; Jimenez, I.; Bazzocchi, I.; Valladares, B.; Akkari, H.; Morales, J.; Pinero, J. Leishmanicidal activity of α-bisabolol from Tunisian chamomile essential oil. Parasitol. Res. 2018, 117, 2055–2867. [Google Scholar] [CrossRef]
- Brenzan, M.; Santos, A.; Nakamura, C.; Filho, B.; Ueda Nakamura, T.; Young, M.; Correa, A.; Junior, J.; Diaz, J.; Cortez, D. Effects of (−) mammea A/BB isolated from Calophyllum brasiliense leaves and derivatives on mitochondrial membrane of Leishmania amazonensis. Phytomedicine 2012, 19, 223–230. [Google Scholar] [CrossRef]
- Guyatt, G.; Sackett, D.; Cook, D. Users’ guides to the medical literature II: How to use an article about therapy or prevention. J. Am. Med. Assoc. 1994, 1, 59–63. [Google Scholar] [CrossRef]
- Dey, S.; Mukherjee, D.; Chakraborty, S.; Mallick, S.; Dutta, A.; Ghosh, J.; Swapana, N.; Maiti, S.; Ghorai, N.; Singh, C.B.; et al. Protective effect of Croton caudatus Geisel leaf extract against experimental visceral leishmaniasis induces proinflammatory cytokines in vitro and in vivo. Exp. Parasitol. 2015, 1512, 84–95. [Google Scholar] [CrossRef]
Name of the Drug | Mode of Action | Mode of Administration | Adverse Effects |
---|---|---|---|
Pentavalent antimonials | Inhibition of glycolysis and β-oxidation of fatty acids of parasite | Intralesional for CL, Parenteral | Abdominal pain, erythema, nausea, toxicity (hepatic, pancreas, renal, muscular, and skeletal cardiothrombocytopenia or leukopenia) |
Amphotericin B | Binding to parasite’s membrane sterols and changing its permeability selective to K+ and Mg2+ | Liposomal formulations, Deoxycholate formulations | Fever, nausea, hypokalemia, anorexia, leukopenia, kidney failure, and heart problems |
Pentamidine | Interferes with DNA synthesis and modifies the morphology of kinetoplast | Parenteral, Intramuscular administration | Pain, nausea, vomiting, dizziness, myalgia, hypertension, headache, hypoglycemia, and transient hyperglycemia |
Miltefosine | Associated with phospholipid biosynthesis and alkyl-lipid metabolism in leishmania | Oral for VL | Nausea, vomiting, diarrhea, and raised creatinine |
Paromomycin | Inhibition of protein biosynthesis in sensitive organism | Topical for CL Parenteral for VL | Erythema, pain, edema, and ototoxicity (damage to the internal ear) |
No | Family Name | Scientific Name | Part Used |
---|---|---|---|
1. | Anacardiaceae | Pistacia lentiscus | Leaves |
Schinus terebinthifolia | Fruits | ||
Schinus molle | Leaves | ||
Spondias mombin | Leaves | ||
2. | Annonaceae | Annona senegalensis | Stem bark |
Bocageopsis multiflora | Leaves | ||
Guatteria latifolia | Branch | ||
Cleistopholis patens | Stem bark | ||
3. | Apiaceae | Ferula communis | Whole plant |
4. | Apocynaceae | Tabernaemontana divaricata | Voacamine |
Mondia whitei | Roots | ||
Pentalinon andrieuxii | Pentalinon sterol | ||
5. | Araliaceae | Oreopanax floribundus | Leaves |
6. | Arecaceae | Phoenix dactylifera | Kernel and date fruit |
7. | Asteraceae | Acanthospermum hispidum | Whole plant |
Tessaria integrifolia | Leaves | ||
Abuta grandifolia | Leaves | ||
Cynara scolymus | Leaves | ||
Artemisia absinthium | Leaves | ||
Artemisia campestris | Leaves | ||
Artemisia herba-alba | Aerial parts, Leaves | ||
Bidens pilosa | Whole plant | ||
Tessaria integrifolia | Whole plant | ||
8. | Balanophoracea | Thonningia sanguinea | Whole plant |
9. | Bignoniaceae | Handroanthus serratifolius | Lapachol |
Jacaranda glabra | Bark | ||
10. | Burseraceae | Boswellia serrata | Resin |
11. | Cannabaceae | Celtis australis | Leaves |
12. | Capparaceae | Capparis spinosa | Fruits |
13. | Cistaceae | Citrus sinensis | Leaves |
14. | Combretaceae | Terminalia ivorensis | Leaves |
15. | Cupressaceae | Juniperus excelsa | Leaves, fruits |
16. | Ericaceae | Arbutus unedo | Leaves |
Erica arborea | Flower | ||
17. | Euphorbiaceae | Bridelia ferruginea | Leaves |
Ejije bidu | Leaves | ||
Croton caudatus | Leaves | ||
18. | Fabaceae | Afzelia africana | Stem bark |
Baphia nitida | Stem bark | ||
Cassia alata | Leaves | ||
Cassia gloca | Leaves | ||
Cassia sieberiana | Roots, leaves | ||
Prosopis laevigata | Leaves | ||
Parkia clappertoniana | Stem bark, leaves | ||
Tamarindus indica | Leaves | ||
Prosopis juliflora | Leaves | ||
19. | Gentianaceae | Anthocleista nobilis | Leaves, stem bark, root |
Centaurium erythraea | Flowering, stems | ||
20. | Lamiaceae | Marrubium vulgare | Leaves |
Mentha pulegium | Leaves | ||
Otostegia integrifolia | Whole plant | ||
Rosmarinus officinalis | Leaves | ||
Salvia clandestina | Aerial parts | ||
Vitex fosteri | Stem bark, leaves | ||
21. | Lauraceae | Aniba riparia | Fruits |
Persea ferruginea | Leaves | ||
Cinnamomum cassia | Bark | ||
22. | Loranthaceae | Loranthus europaeus | Aerial part |
23. | Malvaceae | Ceiba pentandra | Stem bark |
Cola acuminata | Stem bark | ||
Cola cordifolia | Stem bark, leaves | ||
Glyphaea brevis | Leaves | ||
24. | Marantaceae | Thalia geniculata | Roots |
Iresine diffusa | Flower | ||
25. | Meliaceae | Khaya grandifoliola | Stem bark |
Cedrela spp | Bark | ||
Azadirachta indica | Leaves | ||
26. | Moraceae | Treculia africana | Stem bark |
Ficus capensis | Stem bark, leaves | ||
27. | Myrtaceae | Eugenia uniflora | Leaves, seed |
28. | Ochnaceae | Lophira lanceolata | Stem bark, roots |
29. | Olacaceae | Ximenia americana | Stem and twigs |
30. | Papaveraceae | Argemone mexicana | Aerial parts |
31. | Piperaceae | Piper pseudoarboreum | Leaves |
32. | Rhamnaceae | Ziziphus spina-christi | Whole plant |
33. | Rosaceae | Pyrus communis | Leaves |
Pyrus pashia | Leaves | ||
Prunus armeniaca | Leaves | ||
Eryobotrya japonica | Leaves | ||
34. | Rubiaceae | Mitragyna inermis | Stem bark, leaves |
Psychotria buhitenii | Leaves | ||
35. | Rutaceae | Zanthoxylum zanthoxyloides | Roots, stem bark |
Murraya koenigii | Stem bark | ||
Clausena anisata | Roots | ||
36. | Scrophulariaceae | Scoparia dulcis | Aerial part |
Licania salicifolia | Leaves | ||
37. | Solanaceae | Solanum havanense | Leaves |
Solanum lycocarpum | Leaves | ||
Solanum myriacanthum | Leaves | ||
Solanum nudum | Leaves | ||
Physalis angulata | Flowers | ||
Solanum seaforthianum | Leaves | ||
38. | Urticaceae | Urtica dioica | Leaves |
39. | Verbenaceae | Lantana camara | Leaves |
No. | Scientific Name | Organism | Stage | Part Used | Most Active Extract/ Essential Oil | IC50 (µg/mL) | Bioactive Compounds | Data Analysis (Activity) | Reference |
---|---|---|---|---|---|---|---|---|---|
1. | Abuta grandifolia | L. amazonensis | Promastigotes | Leaves | Ethanol | 38.1 | Alkaloids, triterpenes, saponins | Moderate | [12] |
L. braziliensis | 31.1 | Moderate | |||||||
2. | Acanthospermum hispidum | L. donovani | Promastigotes | Whole plant | 50% aqueous ethanol | 32.10 | Essential oil, alkaloids | Moderate | [13] |
3. | Afzelia africana | L. donovani | Promastigotes | Stem bark | 50% aqueous ethanol | 77.10 | Alkaloids, tannins, flavonoids, saponins | Weak | [13] |
4. | Aniba riparia | L. amazonensis | Amastigotes | Fruits | 50% aqueous ethanol | 1.30 | Riparin E | High | [14] |
Promastigotes | 4.70 | High | |||||||
5. | Annona senegalensis | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 10.80 | Alkaloids, tannins, flavonoids, saponins, terpenoids, glycosides | Moderate | [13] |
Stem bark | 27.80 | Moderate | |||||||
6. | Anthocleista nobilis | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 41.50 | Glycosides, saponins, steroids | Moderate | [13] |
Root | 79.0 | Anthocleistol | Weak | ||||||
7. | Arbutus unedo | L. infantum | Promastigotes | Leaves | n-Hexane | 64.05 | Phenolics, flavonoids | Weak | [15] |
L. tropica | 79.57 | Weak | |||||||
8. | Argemone mexicana | L. donovani | Promastigotes | Aerial part | Petroleum ether | 50.0 | - | Moderate | [16] |
9. | Artemisia absinthium | L. major | Promastigotes | Leaves | Hydrodistillation | 1.49 | Essential oil | High | [17] |
10. | Artemisia campestris | L. major | Promastigotes | Leaves | Hydrodistillation | 2.20 | Essential oil | High | [17] |
11. | Artemisia herba-alba | L. major | Promastigotes | Leaves | Hydrodistillation | 1.20 | Essential oil | High | [17] |
12. | Artemisia herba-alba | L. infantum. | Amastigote | Aerial part | Methanol extract | 68.25 | - | Weak | [18] |
L. major | 37.87 | Moderate | |||||||
L. infantum | Promastigotes | 77.97 | Weak | ||||||
L. major | 55.21 | Weak | |||||||
13. | Azadirachta indica | L. infantum | Amastigotes | Leaves | Oil | 15.3 | Phenolics, flavonoids | Moderate | [19] |
L. tropica | 17.6 | Moderate | |||||||
14. | Baphia nitida | L. donovani | Promastigotes | Stem-bark | 50% aqueous ethanol | 34.40 | Tannins, flavonoids, saponins, glycosides | Moderate | [13] |
15. | Bidens pilosa | L. donovani | Promastigotes | Whole plant | 50% aqueous ethanol | 28.90 | Essential oil, flavonoids, alkaloids, saponins, triterpenes | Moderate | [13] |
16. | Bocageopsis multiflora | L. amazonensis | Promastigotes | Leaves | Ethanol | 37.9 | Essential oil, alkaloids | Moderate | [12] |
L. braziliensis | 19.1 | Moderate | |||||||
17. | Boswellia serrata | L. donovani | Amastigotes | Resin | Polar fractions of dichloromethane | 0.88 | Boswellic acids | High | [20] |
18. | Bridelia ferruginea | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 16.50 | Flavonoids, tannins, triterpenoids | Moderate | [13] |
19. | Capparis spinosa | L. tropica | Promastigotes | Fruits | Methanol | 44.6 | Tannins, alkaloids, saponins, terpenoids, glycosides | Moderate | [21] |
Aqueous | 28.5 | Moderate | |||||||
20. | Cassia alata | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 10.10 | Flavonoids, glycosides | Moderate | [22] |
21. | Cassia gloca | L. tropica | Promastigotes | Leaves | Methanol | 9.62 | Flavonoids | High | [22] |
22. | Cassia sieberiana | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 62.90 | Flavonoids, alkaloids | Weak | [23] |
23. | Cedrela spp. | L. amazonensis | Promastigotes | Bark | Ethanol | 36.8 | Sesquiterpenes, triterpenes | Moderate | [22] |
L. braziliensis | 18.2 | Moderate | |||||||
24. | Ceiba pentandra | L. donovani | Promastigotes | Stem bark | 50% aqueous ethanol | 31.10 | Isoflavones, sesquiterpenoids | Moderate | [13] |
25. | Centaurium erythraea | L. tropica | Promastigotes | Flowering stems | n-Hexane | 37.20 | Phenolics, flavonoids | Moderate | [23] |
L. major | 64.52 | Weak | |||||||
26. | Celtis australis | L. tropica | Promastigotes | Leaves | Methanol | 69.13 | Flavonoids | Weak | [22] |
27. | Cistus crispus | L. major | Promastigotes | Leaves | Methanol | 84.29 | Phenolics, flavonoids | Weak | [15] |
L. infantum | n-Hexane | 82.39 | Weak | ||||||
L. tropica | 96.82 | Weak | |||||||
L. major | 47.29 | Moderate | |||||||
28. | Citrus sinensis | L. tropica | Promastigotes | Leaves | Methanol | 12.27 | Flavonoids | Moderate | [22] |
29. | Cola acuminata | L. donovani | Promastigotes | Stem bark | 50% aqueous ethanol | 47.80 | Purine alkaloids, catechins, (tannins) | Moderate | [13] |
30. | Cola cordifolia | L. donovani | Promastigotes | Stem bark | 50% aqueous ethanol | 25.10 | Tannins, phenolics | Moderate | [13] |
Leaves | 18.20 | Moderate | |||||||
31. | Clausena anisata | L. donovani | Promastigotes | Roots | 50% aqueous ethanol | 12.10 | Essential oil, indole alkaloids, coumarins | Moderate | [13] |
32. | Cleistopholis patens | L. donovani | Promastigotes | Stem bark | 50% aqueous ethanol | 60.20 | Flavonoids, saponins, alkaloids | Weak | [13] |
33. | Croton caudatus | L. donovani | Promastigotes | Leaves | Ethyl acetate –hexane (9:1) | 10.0 | Terpenoids | High | [23] |
Amastigote | 2.5 | High | |||||||
34. | Cynara scolymus | L. tropica | Promastigotes | Stem leaf | Ethanol | 80.0 | - | Weak | [24] |
35. | Ejije bidu | L. amazonensis | Promastigotes | Leaves | Ethanol | 17.8 | - | Moderate | [12] |
L. braziliensis | 13.3 | Moderate | |||||||
36. | Erica arborea | L. major | Promastigotes | Flower | Methanol | 43.98 | - | Moderate | [18] |
L. infantum. | 61.27 | Weak | |||||||
L. major | Amastigotes | 36 | Moderate | ||||||
L. infantum. | 53.93 | Weak | |||||||
37. | Eryobotrya japonica | L. tropica | Promastigotes | Leaves | Methanol | 10.59 | Flavonoids | Moderate | [22] |
38. | Eugenia uniflora | L. amazonensis | Amastigotes | Leaves | n-Hexane | 9.20 | Sesquiterpenes, flavonoids | High | [25] |
L. donovani | Promastigotes | Seeds | 50% aqueous ethanol | 26.60 | Essential oil, flavonoids, tannins | Moderate | [13] | ||
39. | Ferula communis | L. aethiopica | Promastigotes | Whole parts | 80% methanol | 11.38 | Phenolics, flavonoids | Moderate | [26] |
L. donovani | 23.41 | Moderate | |||||||
L. aethiopica | Amastigotes | 14.32 | Moderate | ||||||
L. donovani | 31.12 | Moderate | |||||||
40. | Ficus capensis | L. donovani | Promastigotes | Stem bark | 50% aqueous ethanol | 37.0 | Alkaloids, phenolics, flavonoids | Moderate | [13] |
Leaves | 88.90 | Weak | |||||||
41. | Glyphaea brevis | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 43.40 | Tannins, alkaloids, flavonoids | Moderate | [13] |
42. | Guatteria Latifolia | L. amazonensis | Promastigote | Branch | n-hexane fraction of ethanol | 51.7 | Alkaloids | Weak | [27] |
43. | Iresine diffusa | L. amazonensis | Promastigotes | Flower | Ethanol | 30.5 | Sesquiterpenes, triterpenes | Moderate | [12] |
L. braziliensis | 11.1 | Moderate | |||||||
44. | Jacaranda Glabra | L. amazonensis | Promastigotes | Bark | Ethanol | 29.8 | - | Moderate | [12] |
L. braziliensis | 17.4 | Moderate | |||||||
45. | Khaya grandifolia | L. donovani | Promastigotes | Stem bark | 50% aqueous ethanol | 43.20 | Alkaloids, saponins, tannins | Moderate | [13] |
46. | Lantana camara | L. amazonensis | Amastigotes | Leaves | Dichloromethane | 21.8 | Terpenoids | Moderate | [28] |
47. | Licania Salicifolia | L. panamensis | Amastigotes | Leaves | Ethyl acetate | 9.8 | Triterpenes, flavonoids | High | [29] |
48. | Lophira lanceolata | L. donovani | Promastigotes | Stem bark | 50% aqueous ethanol | 68.60 | Flavonoids, saponins, alkaloids | Weak | [13] |
Roots | 66.0 | Alkaloids | Weak | ||||||
49. | Marrubium vulgare | L. infantum | Amastigotes | Leaves | Methanol | 18.64 | - | Moderate | [18] |
L. major | 32.15 | Moderate | |||||||
L. infantum | Promastigotes | 35.63 | Moderate | ||||||
L. major | 45.84 | Moderate | |||||||
50. | Mentha pulegium | L. infantum | Promastigotes | Leaves | Essential oil | 2.0 | Menthone, pulegone | High | [30] |
L. tropica | 2.2 | High | |||||||
L. major | 1.30 | High | |||||||
51. | Mitragyna Inermis | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 21.90 | Indole alkaloids, triterpenoids | Moderate | [13] |
Stem bark | 28.0 | Moderate | |||||||
52. | Mondia whitei | L. donovani | Promastigotes | Roots | 50% aqueous ethanol | 31.0 | Glycosides | Moderate | [13] |
53. | Murraya koenigii | L. donovani | Promastigotes | Stem | Petroleum ether | 98.0 | - | Weak | [16] |
54. | Oreopanax floribundus | L. panamensis | Amastigotes | Leaves | Dichloromethane | 24.6 | Triterpenes | Moderate | [29] |
Ethyl acetate | 23.7 | Triterpenes, flavonoids | Moderate | ||||||
55. | Otostegia integrifolia | L. aethiopica | Promastigotes Amastigotes | Whole parts | 80% methanol | 13.03 | Phenolics, flavonoids | Moderate | [31] |
L. donovani | 17.24 | Moderate | |||||||
L. aethiopica | 16.84 | Moderate | |||||||
L. donovani | 14.55 | Moderate | |||||||
56. | Parkia clappertoniana | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 17.0 | Saponins, flavonoids, Tannins | Moderate | [13] |
Stem bark | 17.60 | Saponins, steroids, triterpenes | Moderate | ||||||
57. | Persea ferruginea | L. panamensis | Amastigotes | Leaves | Ethyl acetate | 25.5 | Triterpenes, leucoanthocyanidins, coumarins | Moderate | [29] |
58. | Phoenix dactylifera | L. major | Promastigotes | kernel | Methanol | 23.0 | Gallic acid | Moderate | [32] |
59. | Physalis angulata | L. amazonensis | Promastigotes | Flower | Ethanol | 17.6 | Terpenes, phenolic acids, flavonoids | Moderate | [12] |
L. braziliensis | 43.5 | Moderate | |||||||
60. | Piper pseudoarboreum | L. amazonensis | Promastigotes | Leaves | Ethanol | 31.4 | Alkamides | Moderate | [33] |
L. braziliensis | 21.3 | Moderate | |||||||
L. guyanesis | 41.3 | Moderate | |||||||
L. infantum | 32.3 | Moderate | |||||||
61. | Pistacia lentiscus | L. infantum | Promastigotes | Leaves | Essential oil | 11.28 | Myrcene, α-pinene | Moderate | [23] |
L. tropica | 23.50 | Moderate | |||||||
L. major | 17.52 | Moderate | |||||||
L. infantum | Fruits | Essential oil | 8.0 | Limonene α-pinene | High | ||||
L. tropica | 26.20 | Moderate | |||||||
L. major | 21.42 | Moderate | |||||||
62. | Rosmarinus officinalis | L. infantum | Promastigotes | Leaves | Essential oil | 1.20 | α-Pinene, 1,8-cineole, borneol | High | [23] |
L. tropica | 3.50 | High | |||||||
L. major | 2.60 | High | |||||||
63. | Prosopis juliflora | L. donovani | Promastigotes | Leaves | Methanol | 3.12 | Saponins, tannins, flavonoids, alkaloids | High | [34] |
64. | Prosopis laevigata | L. amazonensis | Amastigotes | Leaves | Aqueous | 35.2 | Alkaloids, anthraquinones | Moderate | [28] |
65. | Prunus armeniaca | L. tropica | Promastigotes | Leaves | Ethanol | 16.18 | Alkaloids, phenolics, tannins, flavonoids, terpenoids, coumarins | Moderate | [35] |
66. | Psychotria buhitenii | L. panamensis | Amastigotes | Leaves | Dichloromethane | 21.5 | Triterpenes, flavonoids | Moderate | [29] |
Ethyl acetate | 14.1 | Triterpenes, saponins, Coumarins, anthocyanins | Moderate | ||||||
Ethanol | 29.4 | Saponins, phenolics, tannins, coumarins, anthocyanins | Moderate | ||||||
67. | Pyrus communis | L. tropica | Promastigotes | Leaves | Ethanol | 56.68 | Alkaloids, phenolics, tannins, flavonoids, terpenoids, quinones, saponins | Weak | [35] |
68. | Pyrus pashia | L. tropica | Promastigotes | Leaves | Ethanol | 60.95 | Alkaloids, phenolics, tannins, flavonoids, terpenoids, quinones, saponins | Weak | [35] |
69. | Salvia clandestina | L. infantum | Promastigotes | Aerial part | n-Hexane | 14.11 | - | Moderate | [36] |
L. infantum | Dichloromethane | 31.57 | Moderate | ||||||
L. tropica | 33.77 | Moderate | |||||||
L. major | 24.56 | Moderate | |||||||
70. | Schinus molle | L. amazonensis | Amastigotes | Leaves | Dichloromethane | 25.9 | Terpenoids | Moderate | [28] |
Dichloromethane: Methanol (1:1) | 21.8 | Terpenoids, phenolics | Moderate | ||||||
71. | Schinus terebinthifolia | L. amazonensis | Promastigotes | Fruits | n-Hexane | 13.90 | Triterpenes | Moderate | [29] |
72. | Scoparia dulcis | L. amazonensis | Promastigotes | Aerial part | Ethanol | 23.9 | Diterpenes, triterpenes, flavonoids | Moderate | [12] |
L. braziliensis | 25.1 | Moderate | |||||||
73. | Spondias mombin | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 81.50 | - | Weak | [13] |
74. | Tamarindus indica | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 58.12 | Phenolics, flavonoids | Weak | [13] |
75. | Terminalia ivorensis | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 24.90 | Terminolic acid, quercetin, β-glycyrrhetinic acid | Moderate | [13] |
76. | Tessaria integrifolia | L. amazonensis | Promastigotes | Leaves | Ethanol | 54.20 | Sesquiterpenes, flavonoids | Weak | [12] |
L. braziliensis | 31.60 | Moderate | |||||||
77. | Thalia geniculata | L. amazonensis | Promastigotes | Roots | Ethanol | 29.8 | Phytosterols | Moderate | [12] |
L. braziliensis | 17.4 | Moderate | |||||||
78. | Thonningia sanguinea | L. donovani | Promastigotes | Whole plant | 50% aqueous ethanol | 18.60 | Alkaloids, tannins, flavonoids | Moderate | [13] |
79. | Treculia africana | L. donovani | Promastigotes | Stem bark | 50% aqueous ethanol | 44.80 | Catechin, cyanidin glycosides | Moderate | [13] |
80. | Vitex fosteri | L. donovani | Promastigotes | Leaves | 50% aqueous ethanol | 72.40 | Essential oil, flavonoids | Weak | [13] |
Stem bark | 49.80 | Moderate | |||||||
81. | Ximenia americana | L. donovani | Promastigotes | Stem and twigs | 50% aqueous ethanol | 36.10 | Tannins, flavonoids, alkaloids | Moderate | [13] |
82. | Zanthoxylum zanthoxyloides | L. donovani | Promastigotes | Roots | 50% aqueous ethanol | 13.50 | Alkaloids, tannins, flavonoids, essential oil | Moderate | [13] |
Stem bark | 45.20 | Moderate | |||||||
83. | Ziziphus spina-christi | L. major | Amastigotes | Leaves | Methanol | 54.6 | Tannins, flavonoids, Glycosides, alkaloids, terpenoids | Moderate | [37] |
No. | Plant Species | Leishmania Species | Route, Dose, and Scheme of Treatment | Efficacy | Bioactive Compounds | Reference |
---|---|---|---|---|---|---|
1. | Cinnamomum cassia | Visceral leishmaniasis (L. donovani) | Oral: 100 mg/kg/d for 10 days | Reduction of hepatic parasitism by 80.9% and splenic parasitism by 82.9% | Cinnamaldehyde and its derivatives | [38] |
2. | Croton caudatus | Visceral leishmaniasis (L. donovani) | Oral: 5 mg/kg/d five consecutive days | Reduction of hepatic parasitism by 65% and splenic parasitism by 69.1% | Terpenoids | [23] |
3. | Handroanthus serratifolius | Cutaneous leishmaniasis (L. amazonensis) | Oral: 25 mg/kg/d for 10 days | 24.5-fold reduction of parasite number | Lapachol | [39] |
Visceral leishmaniasis (L. infantum) | Reduction parasite number in spleen (4.6-fold) and liver (5.3-fold) | |||||
4. | Loranthus europaeus | Cutaneous leishmaniasis (unspecific) | Topical: ointment (40%) once daily at bedtime for 6 h under occlusion for maximal 6 weeks | 79.0% cure rate without side effects | Flavonoids, alkaloids, glycosides, triterpenes, phenolic acids | [40] |
5. | Pentalinon andrieuxii | Visceral leishmaniasis (L. donovani) | 2.5 mg/kg i.v. | Reduction of 64, 83, and 57% of parasites in the liver, spleen, and bone marrow. | Pentalinonsterol | [41] |
6. | Piper pseudoarboreum | Cutaneous leishmaniasis (L. amazonensis) | Intralesional: 25 mg/kg/d for 4 days | Reduction of skin lesions by 40% and visceralization by 55%. | (E)-Piplartine | [33] |
7. | Prosopis juliflora | Visceral leishmaniasis (L. donovani) | Oral: 100 mg/kg/d for 21 days | 85.1% reduction of parasite number in spleen | Saponins, tannins, flavonoids, alkaloids | [34] |
8. | Solanum havanense | Cutaneous leishmaniasis (L. amazonensis) | Intralesional: 30 mg/kg every 4 days, 5 doses | 93.6% reduction of parasite number | Steroidal alkaloids, saponins, phenolics, triterpenes, coumarins | [42] |
9. | Solanum lycocarpum | Cutaneous leishmaniasis (L. mexicana) | Topical: 10 μg/d for 6 weeks | 71.4% reduction of parasite number | Alkaloids (solamargine, solasonine) | [43] |
10. | Solanum myriacanthum | Cutaneous leishmaniasis (L. amazonensis). | Intralesional: 30 mg/kg every 4 days, 5 doses | 56.8% reduction of parasite number | Steroidal alkaloids, saponins, phenolics, triterpenes, coumarins | [42] |
11. | Solanum nudum | Cutaneous leishmaniasis (L. amazonensis) | Intralesional: 30 mg/kg every 4 days, 5 doses | 80% reduction of parasite number | Steroidal alkaloids, saponins, phenolics, triterpenes, coumarins | [42] |
12. | Solanum seaforthianum | Cutaneous leishmaniasis (L. amazonensis) | Intralesional: 30 mg/kg every 4 days, 5 doses | 49.9% reduction of parasites in treated animals | Steroidal alkaloids, saponins, phenolics, triterpenes, coumarins | [42] |
13. | Tabernaemontana divaricata | Visceral leishmaniasis (L. donovani) | Intraperitoneal: 5 mg/kg twice a week for 3 weeks | Decreased the hepatic parasitism by ≈30 times and splenic parasitism by ≈15 times | Voacamine | [35] |
14. | Urtica dioica | Cutaneous leishmaniasis (L. major) | Intramuscular and intralesional: 250 mg/kg for 10 weeks | Intralesional treatment reduced lesions more than amphotericin B (control) | - | [44] |
15. | Ziziphus spina-christi | Cutaneous leishmaniasis (L. major) | Topical: 100 and 200 mg/kg/d for 4 weeks | Reduction of lesion size by 6.4- and 8.6-fold | Tannins, flavonoids, glycosides, alkaloids, terpenoids | [37] |
No. | Plant Species | Leishmania Species | Part Used | Bioactive Extract/ Compounds | Cytotoxicity (CC50 µg/mL) | Selectivity Index (CC50/IC50) | Reference |
---|---|---|---|---|---|---|---|
1. | Abuta grandifolia | L. amazonensis p | Leaves | Ethanol | 15.2 | 0.4 | [12] |
L. braziliensis p | 15.6 | 0.5 | |||||
2. | Acanthospermum hispidum | L. donovani p | Whole plant | 50% aqueous ethanol | 55.5 | 1.73 | [13] |
3. | Afzelia africana | L. donovani p | Stem bark | 50% aqueous ethanol | 232.8 | 3.02 | [13] |
4. | Aniba riparia | L. amazonensis a | Fruits | 50% aqueous ethanol | 50.6 | 38.9 | [14] |
5. | Annona senegalensis | L. donovani p | Leaves | 50% aqueous ethanol | 273.5 | 25.32 | [13] |
Stem bark | 127.9 | 4.60 | |||||
6. | Anthocleista nobilis | L. donovani p | Leaves | 50% aqueous ethanol | 245.7 | 5.92 | [13] |
Root | 716.5 | 9.07 | |||||
7. | Argemone mexicana | L. donovani p | Aerial part | Petroleum ether | 52.1 | 0.95 | [16] |
8. | Artemisia absinthium | L. major p | Leaves | Essential oils | 11.22 | 7.5 | [17] |
9. | Artemisia campestris | L. major p | Leaves | Essential oils | 21.12 | 9.6 | [17] |
10. | Artemisia herba-alba | L. major p | Leaves | Essential oils | 11.24 | 9.4 | [17] |
11. | Artemisia herba-alba | L. major p | Aerial part | Methanol | 131.5 | 2.38 | [18] |
L. infantum p | 131.5 | 1.86 | |||||
12. | Azadirachta indica | L. infantum a | Leaves | Oil | 703.8 | 46 | [19] |
L. tropica a | 721.6 | 41 | |||||
13. | Baphia nitida | L. donovani p | Stem bark | 50% aqueous ethanol | 990.7 | 28.8 | [13] |
14. | Bidens pilosa | L. donovani p | Whole plant | 50% aqueous ethanol | 192.8 | 6.67 | [13] |
15. | Bridelia ferruginea | L. donovani p | Leaves | 50% aqueous ethanol | 392.9 | 23.81 | [13] |
16. | Bocageopsis multifolia | L. amazonensis p | Leaves | Ethanol | 26.5 | 0.7 | [12] |
L. braziliensis p | 26.7 | 1.4 | |||||
17. | Boswellia serrata | L. donovani a | Resin | Polar fractions of dichloromethane | 33 | 38 | [20] |
18. | Capparis spinosa | L. tropica p | Fruits | Methanol | 44.6 | 9.1 | [21] |
Aqueous | 28.5 | 8.4 | |||||
19. | Cassia gloca | L. tropica p | Leaves | Methanol | 1030 | - | [22] |
20. | Cassia alata | L. donovani p | Leaves | 50% aqueous ethanol | 371.5 | 36.78 | [13] |
21. | Cassia sieberiana | L. donovani p | Leaves | 50% aqueous ethanol | 62.90 | 0.77 | [13] |
22. | Cedrela spp. | L. amazonensis p | Bark | Ethanol | 66.3 | 1.8 | [12] |
L. braziliensis p | 67.4 | 3.7 | |||||
23. | Ceiba pentandra | L. donovani P | Stem bark | 50% aqueous ethanol | 160.7 | 3.32 | [13] |
24. | Celtis australis | L. tropica p | Leaves | Methanol | 1209 | - | [22] |
25. | Cinnamomum cassia | L. donovani a | Barks | Dichloromethane fraction | No cytotoxicity at 500 µg/mL | - | [38] |
26. | Citrus sinensis | L. tropica p | Leaves | Methanol | 1755 | - | [22] |
27. | Clausena anisata | L. donovani p | Roots | 50% aqueous ethanol | 29.2 | 24.23 | [13] |
28. | Cleistopholis patens | L. donovani p | Stem bark | 50% aqueous ethanol | 214.9 | 3.57 | [13] |
29. | Cola cordifolia | L. donovani p | Stem bark | 50% aqueous ethanol | 465.6 | 18.55 | [13] |
Leaves | 465.6 | 25.58 | |||||
30. | Cola acuminata | L. donovani p | Stem bark | 50% aqueous ethanol | 156.8 | 3.28 | [13] |
31. | Cynara scolymus | L. tropica p | Stem leaves | Ethanol | 40.0 | 4.96 | [24] |
32. | Ejije bidu | L. amazonensis p | Leaves | Ethanol | 133.5 | 7.5 | [12] |
L. braziliensis p | 133.0 | 10 | |||||
33. | Erica arborea | L. major p | Flower | Methanol | 89.6 | 2.04 | [18] |
L. infantum p | 89.6 | 1.46 | |||||
34. | Eryobotrya japonica | L. tropica p | Leaves | Methanol | 1903 | - | [22] |
35. | Eugenia uniflora | L. amazonensis a | Leaves | n-Hexane | 50.5 | 3.6 | [25] |
36. | Eugenia uniflora | L. donovani p | Seed | 50% aqueous ethanol | 94.4 | 3.55 | [13] |
37. | Ferula communis | L. aethiopica a, | Aerial part | 80% methanol | 175.22 | - | [26] |
L. donovani a, | |||||||
38. | Ficus capensis | L. donovani p | Stem bark | 50% aqueous ethanol | 56.6 | 1.53 | [13] |
Leaves | 257.8 | 2.90 | |||||
39. | Glyphaea brevis | L. donovani p | Leaves | 50% aqueous ethanol | 962.2 | 22.17 | [13] |
40. | Handroanthus serratifolius | L. amazonensis p | Lapachol | Lapachol | 3405.8 | 42.6 | [39] |
L. infantum p | 33.0 | ||||||
41. | Iresine diffusa | L. amazonensis p | Flower | Ethanol | 39.7 | 1.3 | [12] |
L. braziliensis p | 11.1 | 1.7 | |||||
42. | Jacaranda glabra | L. amazonensis p | Bark | Ethanol | 18.9 | 6.4 | [12] |
L. braziliensis p | 191.4 | 11 | |||||
43. | Khaya grandifolia | L. donovani p | Stem bark | 50% aqueous ethanol | 50.1 | 1.16 | [13] |
44. | Lantana camara | L. amazonensis a | Leaves | Aqueous | 125.9 | >9 | [28] |
45. | Licania salicifolia | L. panamensis a | Leaves | Ethyl acetate | >200 | >20.4 | [29] |
46. | Lophira lanceolata | L. donovani p | Stem bark | 50% aqueous ethanol | 45.962 | 0.67 | [13] |
Roots | 38.9 | 0.59 | |||||
47. | Marrubium vulgare | L. major p | Leaves | Methanol | 107.4 | 2.34 | [18] |
L. infantum p | 107.2 | 3.01 | |||||
48. | Mitragyna inermis | L. donovani p | Leaves | 50% aqueous ethanol | 193.2 | 8.82 | [13] |
Stem bark | 424.5 | 15.16 | |||||
49. | Mondia whitei | L. donovani p | Roots | 50% aqueous ethanol | 434.5 | 13.97 | [13] |
50. | Murraya koenigii | L. donovani p | Stem | Petroleum ether | 73.9 | 1.32 | [16] |
51. | Oreopanax floribundus | L. panamensis a | Leaves | Dichloromethane | 47.4 | 2.0 | [29] |
Ethyl acetate | 54.1 | 2.2 | |||||
52. | Otostegia integrifolia | L. aethiopica a, | Aerial part | 80% methanol | 144.55 | - | [26] |
L. donovani a,p | |||||||
53. | Parkia clappertoniana | L. donovani p | Leaves | 50% aqueous ethanol | 112.7 | 6.63 | [13] |
Stem bark | 42.4 | 2.41 | |||||
54. | Persea ferruginea | L. panamensis a | Leaves | Ethyl acetate | >200 | >7.8 | [29] |
55. | Physalis angulata | L. amazonensis p | Flower | Ethanol | 19.4 | 1.1 | [12] |
L. braziliensis p | 17.4 | 0.4 | |||||
56. | Piper pseudoarboreum | L. amazonensis p | Leaves | Ethanol | 55.0 | 1.8 | [33] |
L. braziliensis p | 2.6 | ||||||
L. guyanesis p | 1.3 | ||||||
L. infantum p | 1.7 | ||||||
57. | Prosopis juliflora | L. donovani p | Leaves | Methanol | 0.85 | 0.26 | [34] |
58. | Prosopis laevigata | L. amazonensis a | Leaves | Dichloromethane | 57.0 | 7 | [28] |
59. | Prunus armeniaca | L. tropica p | Leaves | Ethanol | 1912.31 | - | [44] |
60. | Psychotria buhitenii | L. panamensis a | Leaves | Dichloromethane | 76.8 | 3.57 | [29] |
Ethyl acetate | 109.5 | 7.75 | |||||
Ethanol | >200 | >6.81 | |||||
61. | Pyrus communis | L. tropica p | Leaves | Ethanol | 1411.30 | - | [35] |
62. | Pyrus pashia | L. tropica p | Leaves | Ethanol | 1230.66 | - | [35] |
63. | Schinus molle | L. amazonensis a | Leaves | Dichloromethane | 69.7 | 5 | [28] |
Dichloromethane: Methanol (1:1) | 186.8 | 6 | |||||
64. | Schinus terebinthifolia | L. amazonensis p | Fruits | n-Hexane | 52.0 | 3.7 | [25] |
65. | Scoparia dulcis | L. amazonensis p | Aerial part | Ethanol | 71.7 | 3.0 | [12] |
L. braziliensis p | 72.8 | 2.9 | |||||
66. | Solanum lycocarpum | L. mexicana a | Fruits | Solamargine | 1515.5 | 43.3 | [43] |
Solasonine | 1397.9 | 38.3 | |||||
67. | Spondias mombin | L. donovani p | Leaves | 50% aqueous ethanol | 55.42 | 0.68 | [13] |
68. | Tamarindus indica | L. donovani p | Leaves | 50% aqueous ethanol | 77.9 | 1.34 | [13] |
69. | Terminalia ivorensis | L. donovani p | Leaves | 50% aqueous ethanol | 939.2 | 37.72 | [13] |
70. | Tessaria integrifolia | L. amazonensis p | Leaves | Ethanol | 119.2 | 2.2 | [12] |
L. braziliensis p | 120.0 | 3.8 | |||||
71. | Thalia geniculata | L. amazonensis p | Roots | Ethanol | 50.7 | 1.7 | [12] |
L. braziliensis p | 50.4 | 2.9 | |||||
72. | Thonningia sanguinea | L. donovani p | Whole plant | 50% aqueous ethanol | 286.1 | 15.38 | [13] |
73. | Treculia africana | L. donovani p | Stem bark | 50% aqueous ethanol | 172.0 | 3.84 | [13] |
74. | Urtica dioica | L. major p | Leaves | Aqueous | 4500 | 4.4 | [44] |
75. | Vitex fosteri | L. donovani p | Leaves | 50% aqueous ethanol | 114.4 | 1.58 | [13] |
Stem bark | 420.3 | 8.44 | |||||
76. | Ximenia americana | L. donovani p | Stem and twigs | 50% aqueous ethanol | 42.3 | 1.17 | [13] |
77. | Zanthoxylum zanthoxyloides | L. donovani p | Roots | 50% aqueous ethanol | 247.1 | 18.30 | [13] |
Stem bark | 583.5 | 12.91 | |||||
78. | Ziziphus spina-christi | L. major a | Leaves | Methanol | 563.3 | 10.31 | [37] |
No. | Compound Name | Leishmania Species | Stage | Assay | Values (IC50) | Data Analysis (Activity) | Authors |
---|---|---|---|---|---|---|---|
1 | 2,3-Dihydrobenzofuran | L. amazonensis | Promastigotes | In vitro | 1.04 µg/mL | High | [45] |
Amastigotes | 1.4 µg/mL | High | |||||
2 | Dehydrodieuginol | L. amazonensis | Promastigotes | In vitro | 42.4 µg/mL | Moderate | [31] |
3 | Erytro-manassatin A | L. amazonensis | Promastigotes | In vitro | 35.4 µg/mL | Moderate | [46] |
Amastigotes | 20.4 µg/mL | Moderate | |||||
4 | Threo-manassatin A | L. amazonensis | Promastigotes | In vitro | 17.6 µg/mL | Moderate | [46] |
Amastigotes | 16.0 µg/mL | Moderate | |||||
5 | Epipinoresinol-4-O-β-D-glucopyranoside | L. major | Promastigotes | In vitro | 36.5 µg/mL | Moderate | [47] |
6 | Calanolide E1 | L. major | Promastigotes | In vitro | 36.5 µg/mL | Moderate | [48] |
7 | Calanolide E2 | L. major | Promastigotes | In vitro | 29.1 µg/mL | Moderate | [48] |
8 | Caffeic acid | L. infantum | Promastigotes | In vitro | 12.5 µg/mL | Moderate | [49] |
Amastigotes | 21.9 µg/mL | Moderate | [50] | ||||
10 | Capsaicin | L. infantum | Promastigotes | In vitro | 5.01 µg/mL | High | [51] |
Amastigotes | 24.2 µg/mL | Moderate | |||||
11 | Cassine | L. amazonensis | Promastigotes | In vitro | 25.2 µg/mL | Moderate | [52] |
12 | Spectaline | L. amazonensis | Promastigotes | In vitro | 15.8 µg/mL | Moderate | [52] |
13 | Berberine | L. donovani | Promastigotes | In vitro | 4.8 µg/mL | High | [53] |
14 | Colchicoside | L. major | Promastigotes | In vitro | 0.2 µg/mL | High | [54] |
Amastigotes | 4.0 µg/mL | High | |||||
15 | Bisabolol | L. donovani | Visceral leishmaniasis | In vivo | 39.4 µM | Moderate | [55] |
16 | 2-Demethyl colchicine | L. major | Promastigotes | In vitro | 0.5 µg/mL | High | [54] |
Amastigotes | 10.2 µg/mL | Moderate | |||||
17 | 3-Demethyl colchicine | L. major | Promastigotes | In vitro | 0.4 µg/mL | High | [54] |
Amastigotes | 11.1 µg/mL | Moderate | |||||
18 | Cornigerine | L. major | Promastigotes | In vitro | 0.8 µg/mL | High | [54] |
Amastigotes | 11.9 µg/mL | Moderate | |||||
19 | Piperine | L. infantum | Promastigotes | In vitro | 3.03 µg/mL | High | [51] |
20 | Colchicine | L. major | Promastigotes | In vitro | 0.4 µg/mL | High | [54] |
Amastigotes | 8.7 µg/mL | High | |||||
21 | N-deacetyl-N-formyl colchicine | L. major | Promastigotes | In vitro | 0.5 µg/mL | High | [54] |
Amastigotes | 10.2 µg/mL | Moderate | |||||
22 | Colchifoline | L. major | Promastigotes | In vitro | 0.7 µg/mL | High | [54] |
Amastigotes | 14.0 µg/mL | Moderate | |||||
23 | Demecolcine | L. major | Promastigotes | In vitro | 0.7 µg/mL | High | [54] |
Amastigotes | 14.8 µg/mL | Moderate | |||||
24 | Staurosporine | L. amazonensis | Promastigotes | In vitro | 0.08 µM | High | [56] |
Amastigotes | 10.0 µM | High | |||||
L. donovani | Promastigotes | 2.1 µM | High | ||||
25 | 7-Oxostaurosporine | L. amazonensis | Promastigotes | In vitro | 3.6 µM | High | [56] |
Amastigotes | 0.1 µM | High | |||||
L. donovani | Promastigotes | 0.6 µM | High | ||||
26 | 4′-Demethylamine-4′- oxostaurosporine | L. amazonensis | Promastigotes | In vitro | 17.1 µM | Moderate | [56] |
Amastigotes | 2.0 µM | High | |||||
27 | Streptocarbazole B | L. amazonensis | Promastigotes | In vitro | 10.4 µg/mL | Moderate | [56] |
Amastigotes | 2.5 µg/mL | High | |||||
28 | 3-O-acetylspectaline | L. donovani | Promastigotes | In vitro | 25.9 µg/mL | Moderate | [53] |
29 | 3-O-acetylcassine | L. donovani | Promastigotes | In vitro | 30.3 µg/mL | Moderate | [53] |
30 | Soranjidiol | L. amazonensis | Promastigotes | In vitro | 16.3 J/cm2 | Moderate | [57] |
31 | Epigallocatechin 3-O- gallate | L. infantum | Visceral leishmaniasis | In vivo | ED50 = 12.4 mg/kg/day | Moderate | [58] |
32 | 5-Chlorosoranjidiol | L. amazonensis | Promastigotes | In vitro | 13.8 J/cm2 | Moderate | [58] |
33 | Bisoranjidiol | L. amazonensis | Promastigotes | In vitro | 15.2 J/cm2 | Moderate | [58] |
34 | Gallic acid | L. major | Promastigotes | In vitro | 23.0 µg/mL | Moderate | [32] |
35 | Calanolides E1 | L. infantum. | Amastigotes | In vitro | 37.1 µM | Moderate | [48] |
36 | Calanolides E2 | 29.1 µM | Moderate | ||||
37 | Apigenin | L. amazonensis | Promastigotes | In vitro | 23.7 µM | Moderate | [59] |
Amastigotes | 4.3 µM | High | |||||
38 | 2′-hydroxyflavanone | L. amazonensis | Promastigotes | In vitro | 20.5 µM | Moderate | [60] |
Amastigotes | 3.09 µM | High | |||||
39 | 5,7,3′,4′-tetrahydroxy- 6,8-diprenylisoflavone | L. amazonensis | Promastigotes | In vitro | 2.7 µM | High | [61] |
Amastigotes | 1.1 µM | High | |||||
40 | Brachydin B | L. braziliensis | Promastigotes | In vitro | 7.05 µM | High | [62] |
41 | Brachydin C | L. amazonensis | Promastigotes | In vitro | 10.0 µM | High | [62] |
Amastigotes | 6.25 µM | High | |||||
L. braziliensis | Promastigotes | 8.8 µM | High | ||||
42 | Ursolic acid | L. amazonensis | Promastigotes | In vitro | 6.2 µg/mL | High | [63] |
L. donovani | Amastigotes | 1.8 µM | High | ||||
43 | Aplysulphurin | L. donovani | Amastigotes | In vitro | 3.1 µM | High | [64] |
44 | Tetrahydroaplysulphurin-1 | L. donovani | Amastigotes | In vitro | 3.5 µM | High | [64] |
45 | Membranolide | L. donovani | Amastigotes | In vitro | 9.7 µM | High | [64] |
46 | Apigenin | Cutaneous leishmaniasis | Cutaneous leishmaniasis | In vivo | ED50 = 0.73 mg/kg | High | [65] |
47 | Darwinolide | L. donovani | Amastigotes | In vitro | 11.2 µM | Moderate | [63] |
48 | Pukalide aldehyde | L. donovani | Amastigotes | In vitro | 1.9 µM | High | [66] |
49 | Epigallocatechin 3-O- gallate | L. infantum | Amastigotes | In vitro | 2.6 µM | High | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, A.A.; Khalid, H.E.; Abdalla, A.H.; Mukhtar, M.M.; Osman, W.J.; Efferth, T. Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021. Molecules 2022, 27, 7579. https://doi.org/10.3390/molecules27217579
Hassan AA, Khalid HE, Abdalla AH, Mukhtar MM, Osman WJ, Efferth T. Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021. Molecules. 2022; 27(21):7579. https://doi.org/10.3390/molecules27217579
Chicago/Turabian StyleHassan, Abdalla A., Hassan E. Khalid, Abdelwahab H. Abdalla, Maowia M. Mukhtar, Wadah J. Osman, and Thomas Efferth. 2022. "Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021" Molecules 27, no. 21: 7579. https://doi.org/10.3390/molecules27217579
APA StyleHassan, A. A., Khalid, H. E., Abdalla, A. H., Mukhtar, M. M., Osman, W. J., & Efferth, T. (2022). Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021. Molecules, 27(21), 7579. https://doi.org/10.3390/molecules27217579