Next Article in Journal
Synthesis, Biosynthesis, and Biological Activity of Diels–Alder Adducts from Morus Genus: An Update
Next Article in Special Issue
Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases
Previous Article in Journal
Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review
Previous Article in Special Issue
Evidence of the Beneficial Effects of Ursolic Acid against Lung Cancer
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021

by
Abdalla A. Hassan
1,
Hassan E. Khalid
1,*,
Abdelwahab H. Abdalla
2,
Maowia M. Mukhtar
3,
Wadah J. Osman
1,4 and
Thomas Efferth
5,*
1
Faculty of Pharmacy, University of Khartoum, Khartoum 11115, Sudan
2
Faculty of Agriculture, University of Khartoum, Khartoum 11115, Sudan
3
Tropical Medicine Institute, University of Khartoum, Khartoum 11115, Sudan
4
Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
5
Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
*
Authors to whom correspondence should be addressed.
Molecules 2022, 27(21), 7579; https://doi.org/10.3390/molecules27217579
Submission received: 30 September 2022 / Revised: 21 October 2022 / Accepted: 24 October 2022 / Published: 4 November 2022
(This article belongs to the Special Issue Advances in Functional Foods)

Abstract

:
Leishmaniasis is one of the most neglected tropical diseases that present areal public health problems worldwide. Chemotherapy has several limitations such as toxic side effects, high costs, frequent relapses, the development of resistance, and the requirement for long-term treatment. Effective vaccines or drugs to prevent or cure the disease are not available yet. Therefore, it is important to dissect antileishmanial molecules that present selective efficacy and tolerable safety. Several studies revealed the antileishmanial activity of medicinal plants. Several organic extracts/essential oils and isolated natural compounds have been tested for their antileishmanial activities. Therefore, the aim of this review is to update and summarize the investigations that have been undertaken on the antileishmanial activity of medicinal plants and natural compounds derived, rom plants from January 2015 to December 2021. In this review, 94 plant species distributed in 39 families have been identified with antileishmanial activities. The leaves were the most commonly used plant part (49.5%) followed by stem bark, root, and whole plant (21.9%, 6.6%, and 5.4%, respectively). Other plant parts contributed less (<5%). The activity was reported against amastigotes and/or promastigotes of different species (L. infantum, L. tropica, L. major, L. amazonensis, L. aethiopica, L. donovani, L. braziliensis, L. panamensis, L. guyanensis, and L. mexicana). Most studies (84.2%) were carried out in vitro, and the others (15.8%) were performed in vivo. The IC50 values of 103 plant extracts determined in vitro were in a range of 0.88 µg/mL (polar fraction of dichloromethane extract of Boswellia serrata) to 98 µg/mL (petroleum ether extract of Murraya koenigii). Among the 15 plant extracts studied in vivo, the hydroalcoholic leaf extract of Solanum havanense reduced parasites by 93.6% in cutaneous leishmaniasis. Voacamine extracted from Tabernaemontana divaricata reduced hepatic parasitism by ≈30 times and splenic parasitism by ≈15 times in visceral leishmaniasis. Regarding cytotoxicity, 32.4% of the tested plant extracts against various Leishmania species have a selectivity index higher than 10. For isolated compounds, 49 natural compounds have been reported with anti-Leishmania activities against amastigotes and/or promastigotes of different species (L. infantum, L. major, L. amazonensis, L. donovani and L. braziliensis). The IC50 values were in a range of 0.2 µg/mL (colchicoside against promastigotes of L. major) to 42.4 µg/mL (dehydrodieuginol against promastigotes of L. amazonensis). In conclusion, there are numerous medicinal plants and natural compounds with strong effects (IC50 < 100 µg/mL) against different Leishmania species under in vitro and in vivo conditions with good selectivity indices (SI > 10). These plants and compounds may be promising sources for the development of new drugs against leishmaniasis and should be investigated in randomized clinical trials.

1. Introduction

Leishmaniasis is a group of diseases caused by protozoa parasites from more than 20 Leishmania species. In 2018, 92 countries and 83 territories were considered endemic for Leishmania species or had previously reported cases of cutaneous and visceral leishmania, respectively. Today, more than 1 billion people live in areas endemic to leishmaniasis and are at risk of infection. An estimated 30,000 new cases of visceral leishmania and more than 1 million new cases of cutaneous leishmania occur annually [1]. The parasite is categorized into two main groups: Old World leishmaniasis, which is endemic in Africa, Asia, the Mediterranean, and the Middle East. Leishmania tropica, L. major, L. aethiopica, and L. donovani are the four common species causing Old World leishmaniasis. New World leishmaniasis is caused by L. mexicana, L. amazonensis, L. braziliensis, L. panamensis, L. peruviana, L. guyanensis, L. pifanoi, L. venezuelensis, L. shawi, and L. lainsoni [2]. There are three clinical forms of leishmaniasis in humans: namely, cutaneous, mucocutaneous and visceral leishmaniasis. Cutaneous leishmaniasis is a less severe form of the disease which usually manifests in self-healing ulcers. Mucocutaneous leishmaniasis results in disfiguring lesions of mucous membranes in the nose, mouth, and throat. Visceral leishmaniasis is the most severe form of the disease which can result in 95% mortality of infected patients if not treated [3].
In 2020, more than 90% of new cases of visceral leishmaniasis reported to the WHO occurred in Bangladesh, Brazil, China, Ethiopia, Eritrea, India, Kenya, Somalia, South Sudan, Sudan, and Yemen [1]. Over 90% of mucocutaneous leishmaniasis occurred in Bolivia, Brazil, Ethiopia, and Peru, and more than 85% of cutaneous leishmaniasis cases appeared in Afghanistan, Algeria, Brazil, Colombia, Iran, Libya, Pakistan, Peru, Syria, and Tunisia [1]. Depending on the stage of its life cycle, the parasite exhibits two morphological forms in its life cycle: The amastigotes in macrophages of the mammalian host and the promastigotes in the gut of the sand fly vectors. The life cycle of the Leishmania parasite starts if a parasitized female sand fly takes a blood meal from a vertebrate host to produce its eggs. As the sand fly feeds, infective promastigotes enter the vertebrate host via the insect’s proboscis. The promastigotes are then phagocytosed by macrophages which they transform into amastigotes and reproduce by binary fission. They increase in number until the cell eventually bursts and then infects other phagocytic cells to continue the cycle [4]. Over the years, a number of drugs have been employed for the treatment of leishmaniasis. A brief account of the mechanism of action and mode of administration of these drugs has been presented in Table 1 [5].
Latest developments in the prevention and treatment regarding a permanent solution for leishmaniasis in terms of successful human vaccination is still a major challenge. However, there are different vaccinations currently being tested in mouse models. One of them uses “killed but metabolically active” parasites to induce host immune system reaction. Using salivary peptides of the sandfly holds the potential to be used as a vaccine component. However, the complex immune response makes it a challenge [6]. Macrophage-targeted drug delivery systems are another novel approach to directly affect Leishmania parasites that live in the macrophages. As getting into macrophages is a challenge, liposomes, microspheres, nanoparticles, and carbon nanotubes are some of the various drug carriers that are studied to target macrophages. In addition, the use of specific receptors expressed by macrophages to actively deliver a drug is also used [7].
The current treatment by chemical drugs has several limitations such as toxic side effects, high costs, frequent relapses, the development of resistance, and the requirement for long-term treatment [8,9]. Thus, investments in novel drug development against this parasitic disease may be a risky affair. Medicinal plants are centuries-old sources in the various traditional herbal medicine systems of the world. For instance, their importance lies in the fact that the WHO concludes that about 80% of the world’s population relies on them for primary health care [10]. Moreover, 25 to 50% of the pharmacopeias worldwide contain plant products and drugs derived from natural products [11]. Therefore, current research approaches for the treatment of leishmaniasis should largely consider medicinal plants as an important area of search.
The aim of this review is to update and summarize the investigations that have been undertaken on the antileishmanial activity of medicinal plants and natural compounds derived from plants from January 2015 to December 2021.

2. Results

As shown in Table 2, 92 plant species distributed in 39 families have been identified with anti-Leishmania activities. The family Fabaceae accounted for the highest percentage (9.7%) followed by Asteraceae (7.6%). Lamiaceae and Solanaceae account for 6.5% each.
The leaves were the most commonly used plant part as compared to other parts (49.5%) followed by stem bark, roots, and whole plant (21.9%, 6.6%, and 5.4%, respectively). Aerial parts and fruits accounted for 4.5% each. Other plant parts (flowers, seeds, resins, branches, and kernels) contributed less (<4%) (Figure 1).
With respect to the test methods, 84.2% of studies were carried in vitro, while 15.8% of them were performed using in vivo assays (Table 3 and Table 4). For in vitro assay, 80 medicinal plants were screened in vitro for antileishmanial activities against different Leishmania species (L. infantum, L. tropica, L. major, L. amazonensis, L. aethiopica, L. donovani, L. braziliensis, L. panamensis, L. guyanensis, and L. mexicana) and life cycle forms (amastigotes and/or promastigotes). The IC50 value of 103 plant extracts/essential oils determined in vitro was in a range of 0.88 µg/mL (polar fraction of dichloromethane extract of Boswellia serrata) to 98 µg/mL (petroleum ether extract of Murraya koenigii) (Table 3). B. serrata (resins), R. officinalis (leaves), A. riparia (fruits), M. pulegium (leaves) as extracts had strong anti-Leishmania activity (0.88, 1.2, 1.3, and 1.3 µg/mL, respectively).
For in vivo assay, among the 15 medicinal plants studied in vivo, the highest activity against cutaneous leishmaniasis was exhibited by the hydroalcoholic leaf extract of Solanum havanense, which reduced parasites by 93.6%, and the highest activity against visceral leishmaniasis was shown by the voacamine compound extracted from Tabernaemontana divaricata, which reduced the hepatic and splenic parasitism by ≈30 times and ≈15 times, respectively (Table 4). For cytotoxic activity, 32.4% of tested plant extracts have good cytotoxic activity with a selectivity index of SI > 10. (Table 5).
For isolated compounds, 49 natural compounds have been identified with anti-Leishmania activities against amastigotes and/or promastigotes of different species (L. infantum, L. major, L. amazonensis, L. donovani and L. braziliensis). The IC50 values were in the range of 0.2 µg/mL (colchicoside against promastigotes of L. major) to 42.4 µg/mL (dehydrodieuginol against promastigotes of L. amazonensis) (Table 6).
Numerous natural compounds were isolated from different parts of the plants that were used in traditional medicine to treat leishmaniasis [67]. These compounds act against Leishmania by various mechanisms including the disintegration of cytoplasmic membranes, electron flow disturbances, active transport of crucial substances, coagulation of the cell contents, and destabilization of proton motive forces [68]. For example:
  • Some medicinal plants are enriched with essential oils composed of different hydrophobic molecules which can diffuse easily across cell membranes and consequently gain access to intracellular targets [67,69]. They may also act on ATPases and other proteins located in cytoplasmic membranes that are surrounded by lipid molecules. They can also cause a distortion of lipid–protein interactions in hydrophobic parts of the proteins, or they can interact with the enzymes involved in the synthesis of structural sections.
  • The diversity of terpenoids increases their biological activity spectrum, including several Leishmania species [70]. Terpenes can easily penetrate the lipid bilayer of the cell membrane and produce changes in the integrity of cell structure and the mitochondrial membrane of Leishmania parasites [67]. For example, Artemisinin induced apoptosis, depolarization of the mitochondrial membrane potential, and DNA fragmentation [71,72]. Ursolic acid induce programmed cell death independent of caspase 3/7 but dependent on mitochondria. The compound reduced the lesion size and parasite load of cutaneous leishmaniasis in vivo [70]. (−)-α-Bisabolol induced phosphatidylserine externalization and caused cytoplasmic membrane damage, both of which are apoptosis indicators. The compound also decreased ATP levels and disrupted the mitochondrial membrane potential [73].
  • Plants enriched with antioxidant compounds such as flavonoids may act by initiating morphological changes and causing a loss of cellular integrity, leading to cell cycle arrest in the G1 phase [59]. They also may act by damaging the mitochondria of the parasites [67]. For example, apigenin increased intracellular reactive oxygen species (ROS) and the number of double-membrane vesicles as well as myelin-like membrane inclusions, which are characteristics of the autophagic pathway. Furthermore, the fusion between autophagosome-like structures and parasitophorous vacuoles was observed [65]. Epigallocatechin 3-O-gallate (EGCG) has increased ROS levels, which decreased the mitochondrial membrane potential and the ATP levels [58].
  • The diversity of structures within the coumarin group enables them to exhibit many biological activities, including anti-Leishmania activity. It represents a promising natural compound that can act on two fronts: as a treatment for leishmaniasis (able to induce mitochondrial membrane damage and changes in ultrastructure [74] and as a tool to control Leishmania vectors (might block the transmission of leishmaniasis since they decrease parasite loads [27].
  • Many alkaloids have been described as having biological activities against trypanosomatids, such as Leishmania spp. For example, heterocyclic steroids (solamargine and solasonine) induced different immunochemical pathways in macrophages and dendritic cells. Additionally, they were capable of enhancing the expression levels of transcription factors, such as NFκB/AP-1 [43]. In addition, isoquinoline alkaloid (berberine) has leishmanicidal activity through a reduction in the viability of promastigotes and the generation of ROS in these cells. It also increased the levels of mitochondrial superoxide and induced the depolarization of mitochondrial transmembrane potential [53].

3. Methods

3.1. Study Design and Setting

In order to perform this review, the following aspects were addressed: identification and selection of the theme of the research question, establishment of criteria for selection of the sampling, the definition of information to be extracted from selected studies, assessment of the studies included in the integrative review, and final explanation of the results.

3.2. Search Strategies

The databases used for this article were PubMed, Google Scholar, Web of Science, Research Gate, SCOPUS, and Scientific Electronic Library Online (SciELO) using the keywords: neglected tropical disease, Leishmania species, anti-Leishmania activity, natural product, medicinal plants, and promastigote form. We used the search terms separately and in combination with the Boolean operators “OR” or “AND”.

3.3. Inclusion and Exclusion Criteria

The initial total articles (1374) were adjusted for the restriction in the year of publication (from 1 January 2015 to 31 December 2021) (806), duplicates (273), articles that were not available in full (67) and articles in other languages (4). After a review of their titles and abstracts, some articles were discarded, since the anti-leishmanial activity (IC50) values were higher than 100 µg/mL (134), and they tested extract/natural compounds obtained through other natural sources (algae, fungi, etc.) (11). The full texts of the remaining articles were reviewed in detail. However, further articles were discarded after the full text had been reviewed (18) since they did not address much of the required information. Finally, 61 articles were evaluated as valuable to reach the goals of this review. The methodological validity of all 61 studies was proven prior to inclusion in the review by undertaking a critical appraisal using a standardized instrument [75].

3.4. Data Extraction and Analysis

The data extraction protocol included the scientific and family names, parts of the plant used, most active extract/ essential oil employed in the experiment, name of natural compound, Leishmania species and form, IC50 values, potential groups/compounds responsible for activity, clinical form of leishmaniasis, route, the dose of administration and scheme of treatment, the efficacy of the treatments in the experiment, cytotoxic activity, selectivity index, the authors, and year of publication. In the results analysis, an active extract/compound was considered if the IC50 value was less than or equal to 10 µg/mL against the promastigote or amastigote forms. Moderate activity was defined if the IC50 was greater than 10 and less than 50 µg/mL and weakly active if the IC50 value was greater than 50 µg/mL and less than 100 µg/mL.

4. Conclusions and Perspectives

Leishmaniasis threatens about 350 million people around the world and continues to represent a menace on a global scale. Without a doubt, it requires utmost attention due to the lack of vaccines for the prevention and reported resistance against available chemical drugs for treatment. The intolerably high incidence of millions of new cases of leishmaniasis per year worldwide and deficiencies in current treatment point to an urgent need for new medications.
As a means to facilitate the accessibility of information, this review updates and summarizes recent results on medicinal plants and natural compounds against different Leishmania species. The plants presented here have demonstrated a diverse range of activities against different forms of leishmaniasis with some showing high activities that could be reasonable starting points for the further development of effective and affordable novel drugs.
However, it was also evident that the majority of experiments were performed with the promastigote form. We believe that these studies are undoubtedly important because promastigotes are infectious to man and other animals. However, it is urgent that future studies should be conducted to find compounds with anti-amastigote activity too, since the morbimortality associated with Leishmania is caused by this form.
It Is pleasing that more and more investigations report on the anti-Leishmania activity in vivo and more studies are needed in this respect, increasing the number of potential candidate compounds for further drug development. In vitro studies are valuable for the screening of extracts and isolated compounds as well as for investigations of the cellular and molecular modes of action. Since many natural compounds are rapidly metabolized in the human body by liver enzymes and gastrointestinal microflora, animal experiments are indispensable to identify candidates with sufficient half-life times in vivo and anti-Leishmania activities in concentration ranges that are reachable in the human blood. However, in the literature inspected by us, only four plants and two natural compounds have been investigated both in vitro and in vivo, i.e., Prosopis juliflora [34], Ziziphus spina-christi [37], Piper pseudoarboreum [33], and Croton caudatus [76] as well as epigallocatechin 3-O-gallate [58] and apigenin [65], respectively. More investigations are required to allow a direct comparison of in vitro and in vivo data.
Further down this line of argumentation, standardized extracts and/or isolated phytochemicals need to be tested in randomized clinical trials. Without convincing clinical evidence on safety and efficacy, preparations from traditional medicine will hardly reach considerable recognition in the medical world.

Author Contributions

A.H.A.: wrote the manuscript draft; H.E.K.: manuscript editing, supervision of A.A.H.; A.H.A., M.M.M., W.J.O.: literature collection, manuscript editing; T.E.: supervised whole project and wrote, edited, and corrected the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare that there is no conflict of interest.

References

  1. World Health Organization. Leishmaniasis Fact-Sheets; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 23 September 2022).
  2. Center for Food Security and Public Health. Leishmaniasis (Cutaneous and Visceral); Iowa State of University, College of Veterinary Medicine: Ames, IA, USA, 2009. [Google Scholar]
  3. Bereket, A.; Mihiretu, A. Leishmaniasis: A review on parasite, vector and reservoir host. Health Sci. J. 2017, 11, 519. [Google Scholar]
  4. Roberts, L.; Janovy, J.; Schmidt, G. Foundations of Parasitology, 8th ed.; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
  5. Gagandeep, K.; Bhawana, R. Comparative analysis of the omics technologies used to study antimonial, amphotericin B, and pentamidine resistance in Leishmania. J. Parasitol. Res. 2014, 2014, 726328. [Google Scholar]
  6. Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: Drug or vaccine therapy? Drug Des. Develop. Ther. 2018, 12, 25–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  7. Jawed, J.; Majumdar, S. Recent trends in Leishmania research: A therapeutic perspective. J. Infect. Epidemiol. 2018, 1, 1–4. [Google Scholar] [CrossRef]
  8. Haldar, A.; Sen, P.; Roy, S. Use of antimony in the treatment of leishmaniasis: Current status and future directions. Mol. Biol. Int. 2011, 2011, 571242. [Google Scholar] [CrossRef] [Green Version]
  9. Murugan, N.; Natarajan, D. Bionanomedicine for antimicrobial therapy—A case study from Glycosmis pentaphylla plant-mediated silver nanoparticles for control of multidrug-resistant bacteria. Lett. Appl. NanoBioSci. 2018, 8, 523–540. [Google Scholar]
  10. Et-Touys, A.; Bouyahyal, A.; Fellah, H.; Mniouil, M.; El Bouryl, H.; Dakka, N.; Bakri, Y. Antileishmanial activity of medicinal plants from Africa: A review. Asian Pac. J. Trop. Dis. 2017, 7, 826–840. [Google Scholar] [CrossRef]
  11. Santos, D.; Coutinho, C.; Madeira, M.; Bottino, C.; Vieira, R.; Nascimento, S.; Rodrigues, C. Leishmaniasis treatment a challenge that remains: A review. Parasitol. Res. 2008, 103, 1–10. [Google Scholar] [CrossRef]
  12. Arévalo-Lopéz, D.; Nelida, N.; Ticona, J.C.; Limachi, I.; Salamanca, E.; Udaeta, E.; Paredes, C.; Espinoza, B.; Serato, A.; Garnica, D.; et al. Leishmanicidal and cytotoxic activity from plants used in Tacana traditional medicine (Bolivia). J. Ethnopharmacol. 2018, 216, 120–133. [Google Scholar] [CrossRef]
  13. Ohashi, M.; Amoa-Bosompem, M.; Kwofie, K.; Agyapong, J.; Adegle, R.; Sakyiamah, M.; Ayertey, F.; Owusu, K.; Tuffour, I.; Atcholog, P.; et al. In vitro antiprotozoan activity and mechanisms of action of selected Ghanaian medicinal plants against Trypanosoma, Leishmania, and Plasmodium parasites. Phytother. Res. 2018, 32, 1617–1630. [Google Scholar] [CrossRef]
  14. Costa, L.; Alves, M.; Brito, L.; Abi-Chacra, E.; Barbosa-Filho, J.; Gutierrez, S.; Barreto, H.; Carvalho, F. In vitro antileishmanial and immunomodulatory activities of the synthetic analogue riparin E. Chem. Biol. Interact. 2021, 336, 109389. [Google Scholar] [CrossRef]
  15. Bouyahya, A.; Et-Touys, A.; Dakka, N.; Fellah, H.; Abrini, J.; Bakri, Y. Antileishmanial potential of medicinal plant extracts from the North-West of Morocco. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 50–54. [Google Scholar] [CrossRef]
  16. Sultana, S. In vitro antileishmanial activity of three medicinal plants: Argemone mexicana Murraya Koenig and Cinnamomum tamala against miltefosine resistant promastigotes of Leishmania donovani parasites. Int. J. Pharm. Pharmaceut. Sci. 2021, 13, 27–33. [Google Scholar] [CrossRef]
  17. Mathlouthi, A.; Belkessan, M.; Sdiri, M.; Fethi-Diouani, M.; Souli, A.; El-Bok, S.; Ben-Attia, M. Chemical composition and anti-leishmania major activity of essential oils from Artemesia spp. grown in central Tunisia. J. Essent. Oil Bear. Plants 2018, 21, 1186–1198. [Google Scholar] [CrossRef]
  18. Eddaikra, N.; Boudjelal, A.; Sbabdji, M.A.; Eddaikra, A.; Boudrissa, A.; Bouhenna, M.M.; Smain, C.; Zoubir, H. Leishmanicidal and cytotoxic activity of Algerian medicinal plants on Leishmania major and Leishmania infantum. J. Med. Microbiol. Infect. Dis. 2019, 7, 66–71. [Google Scholar] [CrossRef] [Green Version]
  19. Cesa, S.; Sisto, F.; Zengin, G.; Scaccabarozzi, D.; Kokolakis, A.; Scaltrito, M.; Grande, R.; Locatelli, M.; Cacciagrano, F.; Angiolella, L.; et al. Phytochemical analyses and pharmacological screening of neem oil. S. Afr. J. Bot. 2019, 120, 331–337. [Google Scholar] [CrossRef]
  20. Greve, H.; Kaiser, M.; Mäser, P.; Schmidt, T. Boswellic acids show in vitro activity against Leishmania donovani. Molecules 2021, 26, 3651. [Google Scholar] [CrossRef]
  21. Mohammad, R.; Sareh, J.; Katrin, E.; Massumeh, N.; Maryam, S.; Mehrdad, K.; Sam, K. Cytotoxic and antileishmanial effect of various extracts of Cappris spinose L. Turk. J. Pharm. Sci. 2020, 18, 146–150. [Google Scholar]
  22. Shah, N.A.; Khan, M.R.; Nigussie, D. Phytochemical, antioxidant and anti-Leishmania activity of selected Pakistani plants. J. Pharmacol. Clin. Res. 2016, 1, 53461276. [Google Scholar]
  23. Bouyahya, A.; Bakri, Y.; Belmehdi, O.; Et-Touys, A.; Abrini, J.; Dakka, N. Phenolic extracts of Centaurium erythraea with novel antiradical, antibacterial and antileishmanial activities. Asian Pac. J. Trop. Dis. 2019, 7, 433–439. [Google Scholar] [CrossRef]
  24. Ahmet, Y.; Tulay, A.; Sahra, C.; Husniye, K.; Eda, T.; Cuneyt, B. Assessment of in vitro activity of Cynara scolymus extracts against leishmania tropica. Kafkas Univ. Vet. Fak. Derg. 2021, 27, 381–387. [Google Scholar]
  25. Beatriz, M.; Adriana, B.; Sonia, A.; Eliana, R.; Eric, U.; João, H.; Márcia, D.; Susan, P.; Luiz, F. Ethnopharmacology study of plants from Atlantic forest with leishmanicidal activity. Evid. Based Complement. Alternat. Med. 2019, 2019, 8780914. [Google Scholar]
  26. Nigatu, H.; Belay, A.; Ayalew, H.; Abebe, B.; Tadesse, A.; Tewabe, Y.; Degu, A. In vitro antileishmanial activity of some Ethiopian medicinal plants. J. Exp. Pharmacol. 2021, 13, 15–22. [Google Scholar] [CrossRef] [PubMed]
  27. Ferreira, C.; Passos, C.; Soares, D.; Costa, K.; Rezende, M.; Lobao, A.; Pinto, A.; Hamerski, L.; Saraiva, E. Leishmanicidal activity of alkaloids-rich fraction from Guatteria latifolia. Exp. Parasitol. 2017, 172, 51–60. [Google Scholar] [CrossRef] [PubMed]
  28. Ronna, D.; Lianet, M.; Abel, P.; Heike, V.; Fausto, R.; Cesar, I.; Alejandra, R. In vitro antileishmanial activity of Mexican medicinal plants. Heliyon 2017, 3, e00394. [Google Scholar]
  29. Wilson, C.; Sara, R.; Fernando, A.; Andres, F.; Cristian, H.; Ivan, D.; Juan, C.; Isabel, V. Antileishmanial and cytotoxic activities of four Andean plant extracts from Colombia. Vet. World 2020, 13, 2178–2182. [Google Scholar]
  30. Bouyahya, A.; Et-Touys, A.; Bakri, Y.; Talbaui, A.; Fellah, H.; Abrini, J.; Dakka, N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathog. 2017, 111, 41–49. [Google Scholar] [CrossRef]
  31. Rodrigues, L.; Barbosa-Filho, J.; de Oliveira, M.; do Nascimento, N.; Borges, F.; Mioso, R. Synthesis and antileishmanial activity of natural dehydrodieugenol and its mono- and dimethyl ethers. Chem. Biodivers. 2016, 13, 870–874. [Google Scholar] [CrossRef]
  32. Albakhit, S.; Khademvatan, S.; Doudi, M.; Forutan-Rad, M. Antileishmanial activity of date (Phoenix dactylifera L.) fruit pit extract in vitro. Evid. Based Complement. Altern. Med. 2016, 21, NP98–NP102. [Google Scholar] [CrossRef]
  33. Ticona, J.; Bilbao-Ramos, P.; Flores, N.; Dea-Ayuela, M.; Bolás-Fernández, F.; Jiménez, I.; Bazzocchi, I. (E)-Piplartine isolated from Piper pseudoarboreum, a lead compound against leishmaniasis. Foods 2020, 9, 1250. [Google Scholar] [CrossRef]
  34. Mutile, M.; Muli, M.; Muita, G. Safety and efficacy of Prosopis juliflora leaf extract as a potential treatment against visceral leishmaniasis. Iran. J. Parasitol. 2021, 16, 652–662. [Google Scholar] [CrossRef]
  35. Nargis, S.; Naveeda, A.; Attiya, I.; Asma, A.; Huma, F. Evaluation of safety, antileishmanial and chemistry of ethanolic leaves extracts of seven medicinal plants: An in-vitro study. Open Chem. J. 2020, 7, 27. [Google Scholar]
  36. Et-Touys, A.; Fellah, H.; Sebti, F.; Mniouil, M.; Elboury, H.; Talbaoui, A.; Bakri, Y. In vitro antileishmanial activity of extracts from endemic Moroccan medicinal plant Salvia verbenaca (L.) Briq. ssp verbenaca Maire (S. clandestina Batt. non L.). Eur. J. Med. Plants 2016, 16, 1–8. [Google Scholar] [CrossRef]
  37. Albalawi, A. Antileishmanial activity of Ziziphus spina-christi leaves extract and its possible cellular mechanisms. Microorganism 2021, 9, 2113. [Google Scholar] [CrossRef]
  38. Afrin, F.; Chouhan, G.; Islamuddin, M.; Want, M.; Ozbak, H.; Hemeg, H. Cinnamomum cassia exhibits antileishmanial activity against Leishmania donovani infection in vitro and in vivo. PLoS Negl. Trop. Dis. 2019, 13, e0007227. [Google Scholar] [CrossRef] [Green Version]
  39. Araújo, I.; de Paula, R.; Alves, C.; Faria, K.; Oliveira, M.; Mendes, G.; Dias, E.; Ribeiro, R.; Oliveira, A.; Silva, S. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Exp. Parasitol. 2019, 199, 67–73. [Google Scholar] [CrossRef]
  40. Khalifa, E.; Adil, A.; Banaz, M.; Zinah, A.; Wasnaa, S. Topical 40% Loranthus europaeus ointment as an alternative medicine in the treatment of acute cutaneous leishmaniasis versus topical 25% podophyllin solution. J. Cosmetics Dermatol. Sci. Appl. 2017, 7, 148–163. [Google Scholar]
  41. Gupta, G.; Peine, K.; Abdelhamid, D.; Snider, H.; Shelton, A.; Rao, L.; Kotha, S.; Huntsman, A.; Varikuti, S.; Oghumu, S.; et al. A novel sterol isolated from a plant used by Mayan traditional healers is effective in treatment of visceral leishmaniasis caused by Leishmania donovani. ACS Infect. Dis. 2015, 1, 497–506. [Google Scholar] [CrossRef] [Green Version]
  42. Paul, C.; Janssens, J.; Abel, P.; Osmany, C.; Arianna, Y.; Alexis, D.; Wagner, V.; Lianet, M. Efficacy of four Solanum spp. extracts in an animal model of cutaneous leishmaniasis. Medicines 2018, 5, 49. [Google Scholar]
  43. Lezama-Dávila, M.; McChesney, D.; Bastos, K.; Miranda, A.; Tiossi, F.; da Costa, J.; Bentley, D.; Gaitan-Puch, M.; Marquez, I. A new antileishmanial preparation of combined solamargine and solasonine heals cutaneous leishmaniasis through different immunochemical pathways. Antimicrob. Agents Chemother. 2016, 60, 2732–2738. [Google Scholar] [CrossRef] [Green Version]
  44. Badirzadeh, A.; Heidari-Kharaji, M.; Fallah-Omrani, V.; Dabiri, H.; Araghi, A.; Salimi Chirani, A. Antileishmanial activity of Urtica dioica extract against zoonotic cutaneous leishmaniasis. PLoS Negl. Trop. Dis. 2020, 14, e0007843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. De Castro, O.; Brito, L.; de Moraes, A.; Amorim, L.; Sobrinho-Júnior, E.; de Carvalho, C.; Rodrigues, K.; Arcanjo, D.; Cito, A.; Carvalh, F. In vitro effects of the neolignan 2,3-dihydrobenzofuran against Leishmania amazonensis. Basic Clin. Pharmacol. Toxicol. 2017, 120, 52–58. [Google Scholar] [CrossRef] [PubMed]
  46. Brito, J.; Passero, L.; Bezerra-Souza, A.; Laurenti, M.; Romoff, P.; Barbosa, H.; Ferreira, E.; Lago, J. Antileishmanial activity and ultrastructural changes of related tetrahydrofuran dineolignans isolated from Saururus cernuus L. (Saururaceae). J. Pharm. Pharmacol. 2019, 71, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
  47. Maia, M.; Silva, J.; Nunes, T.; Sousa, J.; Rodrigues, G.; Monteiro, A.; Tavares, J.; Rodriqes, K.; Junior, F.; Scotti, L.; et al. Virtual screening and the in vitro assessment of the antileishmanial activity of lignans. Molecules 2020, 25, 2281. [Google Scholar] [CrossRef] [PubMed]
  48. Silva, L.; Gomes, K.; Costa-Silva, T.; Romanelli, M.; Tempone, A.; Sartorelli, P.; Lago, J. Calanolides E1 and E2, two related coumarins from Calophyllum brasiliense Cambess. (Clusiaceae), displayed in vitro activity against amastigote forms of Trypanosoma cruzi and Leishmania infantum. Nat. Prod. Res. 2020, 35, 5373–5377. [Google Scholar] [CrossRef]
  49. Bortoleti, B.; Tomiotto-Pellissiera, F.; Gonçalves, M.; Miranda-Sapla, M.; Assolini, J.; Carloto, A.; Lima, D.M.; Silveira, G.F.; Almeida, R.S.; Costa, I.N.; et al. Caffeic acid has antipromastigote activity by apoptosis-like process; and anti-amastigote by TNF-α/ROS/NO production and decreased of iron availability. Phytomedicine 2019, 57, 262–270. [Google Scholar] [CrossRef]
  50. Garcia, A.; Oliveira, D.; Amaral, A.; Jesus, J.; Rennó Sodero, A.; Souza, A.; Supuran, C.; Vermelho, A.; Rodrigues, I.; Pinheiro, A. Leishmania infantum arginase: Biochemical characterization and inhibition by naturally occurring phenolic substances. J. Enzyme Inhib. Med. Chem. 2019, 34, 1100–1109. [Google Scholar] [CrossRef] [Green Version]
  51. Vieira-Araújo, F.; Macedo Rondon, F.; Pinto Vieira, Í.; Pereira Mendes, F.; Carneiro de Freitas, J.; Maia de Morais, S. Synergism between alkaloids piperine and capsaicin with meglumine antimoniate against Leishmania infantum. Exp. Parasitol. 2018, 188, 79–82. [Google Scholar] [CrossRef]
  52. Lacerda, R.; Freitas, T.; Martins, M.; Teixeira, T.; da Silva, C.; Candido, P.; Oliveira, R.; Junior, C.; Bolzani, V.; Danuello, A.; et al. Isolation, leishmanicidal evaluation and molecular docking simulations of piperidine alkaloids from Senna spectabilis. Bioorg. Med. Chem. 2018, 26, 5816–5823. [Google Scholar] [CrossRef]
  53. De Sarkar, S.; Sarkar, D.; Sarkar, A.; Dighal, A.; Staniek, K.; Gille, L.; Chatterjee, M. Berberine chloride mediates its antileishmanial activity by inhibiting Leishmania mitochondria. Parasitol. Res. 2018, 118, 335–345. [Google Scholar] [CrossRef]
  54. Azadbakht, M.; Davoodi, A.; Hosseinimehr, S.; Keighobadi, M.; Fakhar, M.; Valadan, R.; Farindnia, R.; Emami, S.; Azadbakht, M.; Bakhtiyari, A. Tropolone alkaloids from Colchicum kurdicum (Bornm.) Stef. (Colchicaceae) as the potent novel antileishmanial compounds, purification, structure elucidation, antileishmanial activities, and molecular docking studies. Exp. Parasitol. 2020, 213, 107902. [Google Scholar] [CrossRef]
  55. Corpas-López, V.; Merino-Espinosa, G.; Díaz-Sáez, V.; Morillas-Márquez, F.; Navarro-Moll, M.; Martín-Sánchez, J. The sesquiterpene (–)-α-bisabolol is active against the causative agents of Old World cutaneous leishmaniasis through the induction of mitochondrial-dependent apoptosis. Apoptosis 2016, 21, 1071–1081. [Google Scholar] [CrossRef]
  56. Cartuche, L.; Sifaoui, I.; López-Arencibia, A.; Bethencourt-Estrella, C.; San Nicolás-Hernández, D.; Lorenzo-Morales, J.; Pinero, J.; Marrero, A.; Fernandez, J. Antikinetoplastid activity of indolocarbazoles from Streptomyces sanyensis. Biomolecules 2020, 10, 657. [Google Scholar] [CrossRef]
  57. Dimmer, J.; Cabral, F.; Sabino, C.; Silva, C.; Núñez-Montoya, S.; Cabrera, J.; Ribeiro, M. Natural anthraquinones as novel photosensitizers for antiparasitic photodynamic inactivation. Phytomedicine 2019, 61, 152894. [Google Scholar] [CrossRef]
  58. Inacio, J.; Fonseca, M.; Almeida-Amaral, E. (−) -Epigallocatechin 3-O-gallate as a new approach for the treatment of visceral leishmaniasis. J. Nat. Prod. 2019, 82, 2664–2667. [Google Scholar] [CrossRef]
  59. Sen, R.; Chatterijee, M. Plant-derived therapeutics for the treatment of leishmaniasis. Phytomedicine 2011, 18, 1056–1069. [Google Scholar] [CrossRef]
  60. Gervazoni, L.; Gonçalves-Ozório, G.; Almeida-Amaral, E. 2′-Hydroxyflavanone activity in vitro and in vivo against wild-type and antimony-resistant Leishmania amazonensis. PLoS Negl. Trop. Dis. 2018, 12, e0006930. [Google Scholar] [CrossRef]
  61. Pereira, I.; Mendona, D.; Tavares, G.; Lage, D.; Ramos, F.; Oliveirada-Silva, J.; Antinarelli, L.; Machado, A.; Caravalh, A.; Salustiano, I.; et al. Parasitological and immunological evaluation of a novel chemotherapeutic agent against visceral leishmaniasis. Parasite Immunol. 2020, 42, e12784. [Google Scholar] [CrossRef]
  62. Rocha, V.; Quintino, C.; Ferreira Queiroz, E.; Marcourt, L.; Vilegas, W.; Grimaldi, G.; Furrer, P.; Allemann, E.; Wolfender, J.; Soares, M. Antileishmanial activity of dimeric flavonoids isolated from Arrabidaea brachypoda. Molecules 2018, 24, 1. [Google Scholar] [CrossRef] [Green Version]
  63. Das, S.; Ghosh, S.; De, A.; Bera, T. Oral delivery of ursolic acid-loaded nanostructured lipid carrier coated with chitosan oligosaccharides: Development, characterization, in vitro and in vivo assessment for the therapy of leishmaniasis. Int. J. Biol. Macromol. 2017, 102, 996–1008. [Google Scholar] [CrossRef]
  64. Shilling, A.; Witowski, C.; Maschek, J.; Azhari, A.; Vesely, B.; Kyle, D.; Amsler, C.; McClintock, J.; Baker, B. Spongian diterpenoids derived from the antarctic sponge Dendrilla antarctica are potent inhibitors of the leishmania parasite. J. Nat. Prod. 2020, 83, 1553–1562. [Google Scholar] [CrossRef] [PubMed]
  65. Fonseca-Silva, F.; Canto-Cavalheiro, M.; Menna-Barreto, R.; Almeida-Amaral, E. Effect of apigenin on Leishmania amazonensis is associated with reactive oxygen species production followed by mitochondrial dysfunction. J. Nat. Prod. 2015, 78, 880–884. [Google Scholar] [CrossRef] [PubMed]
  66. Thomas, S.; von Salm, J.; Clark, S.; Ferlit, S.; Nemani, P.; Azhari, A.; Rice, C.; Wilson, N.; Kyle, D.; Baker, B. Keikipukalides, furanocembrane diterpenes from the antarctic deep sea octocoral Plumarella delicatissima. J. Nat. Prod. 2018, 81, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  67. Colares, A.; Almeida-Souza, F.; Taniwaki, N.; Souza, S.; da Costa, J.; Calabrese, K.; Abreu-Silva, A. In vitro antileishmanial activity of essential oil of Vanillosmopsis arborea (Asteraceae) Baker. Evid. Based Complement. Alternat. Med. 2013, 2013, 727042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  68. Gervazoni, L.; Barcellos, G.; Ferreira-Paes, T.; Almeida-Amaral, E. Use of natural products in leishmaniasis chemotherapy: An overview. Front. Chem. 2020, 8, 579891. [Google Scholar] [CrossRef] [PubMed]
  69. Machado, M.; Dinis, A.; Santos-Rosa, M.; Alves, V.; Salgueiro, L.; Cavaleiro, C.; Sousa, M. Activity of Thymus capitellatus volatile extract, 1, 8-cineole and borneol against Leishmania species. Vet. Parasitol. 2014, 200, 39–49. [Google Scholar] [CrossRef] [Green Version]
  70. Yamamoto, E.; Campos, B.; Jesus, J.; Laurenti, M.; Ribeiro, S.; Kallas, E.; Fernandes, M.; Gomes, G.; Silva, M.; Seessa, D.; et al. The effect of ursolic acid on Leishmania (Leishmania) amazonensis is related to programed cell death and present therapeutic potential in experimental cutaneous leishmaniasis. PLoS ONE 2015, 10, e0144946. [Google Scholar] [CrossRef] [Green Version]
  71. Sen, R.; Bandyopadhyay, S.; Dutta, A.; Mandal, G.; Ganguly, S.; Saha, P.; Chatterjee, M. Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. J. Med. Microbiol. 2007, 56, 1213–1218. [Google Scholar] [CrossRef] [Green Version]
  72. Sen, R.; Ganguly, S.; Saha, P.; Chatterjee, M. Efficacy of artemisinin in experimental visceral leishmaniasis. Int. J. Antimicrob. Agents 2010, 36, 43–49. [Google Scholar] [CrossRef]
  73. Hajaji, S.; Sifaoui, I.; Arencibia, A.; Batlle, M.; Jimenez, I.; Bazzocchi, I.; Valladares, B.; Akkari, H.; Morales, J.; Pinero, J. Leishmanicidal activity of α-bisabolol from Tunisian chamomile essential oil. Parasitol. Res. 2018, 117, 2055–2867. [Google Scholar] [CrossRef]
  74. Brenzan, M.; Santos, A.; Nakamura, C.; Filho, B.; Ueda Nakamura, T.; Young, M.; Correa, A.; Junior, J.; Diaz, J.; Cortez, D. Effects of (−) mammea A/BB isolated from Calophyllum brasiliense leaves and derivatives on mitochondrial membrane of Leishmania amazonensis. Phytomedicine 2012, 19, 223–230. [Google Scholar] [CrossRef]
  75. Guyatt, G.; Sackett, D.; Cook, D. Users’ guides to the medical literature II: How to use an article about therapy or prevention. J. Am. Med. Assoc. 1994, 1, 59–63. [Google Scholar] [CrossRef]
  76. Dey, S.; Mukherjee, D.; Chakraborty, S.; Mallick, S.; Dutta, A.; Ghosh, J.; Swapana, N.; Maiti, S.; Ghorai, N.; Singh, C.B.; et al. Protective effect of Croton caudatus Geisel leaf extract against experimental visceral leishmaniasis induces proinflammatory cytokines in vitro and in vivo. Exp. Parasitol. 2015, 1512, 84–95. [Google Scholar] [CrossRef]
Figure 1. Fraction of plant parts used in anti-Leishmania studies.
Figure 1. Fraction of plant parts used in anti-Leishmania studies.
Molecules 27 07579 g001
Table 1. Drugs used for the treatment of leishmaniasis.
Table 1. Drugs used for the treatment of leishmaniasis.
Name of the
Drug
Mode of ActionMode of
Administration
Adverse Effects
Pentavalent
antimonials
Inhibition of glycolysis and β-oxidation of fatty acids of parasiteIntralesional for CL, ParenteralAbdominal pain, erythema, nausea, toxicity (hepatic, pancreas, renal, muscular, and skeletal
cardiothrombocytopenia or leukopenia)
Amphotericin BBinding to parasite’s membrane sterols and changing its permeability selective to K+ and Mg2+Liposomal
formulations,
Deoxycholate
formulations
Fever, nausea, hypokalemia, anorexia, leukopenia, kidney failure, and heart problems
PentamidineInterferes with DNA synthesis and modifies the morphology of kinetoplastParenteral,
Intramuscular
administration
Pain, nausea, vomiting, dizziness, myalgia, hypertension, headache, hypoglycemia, and transient hyperglycemia
MiltefosineAssociated with phospholipid biosynthesis and alkyl-lipid metabolism in leishmaniaOral for VLNausea, vomiting, diarrhea, and raised creatinine
ParomomycinInhibition of protein biosynthesis in sensitive organismTopical for CL
Parenteral for VL
Erythema, pain, edema, and ototoxicity (damage to the internal ear)
Table 2. Botanical characteristics of the medicinal herbs in the present study.
Table 2. Botanical characteristics of the medicinal herbs in the present study.
No Family NameScientific NamePart Used
1.AnacardiaceaePistacia lentiscusLeaves
Schinus terebinthifoliaFruits
Schinus molleLeaves
Spondias mombinLeaves
2.AnnonaceaeAnnona senegalensisStem bark
Bocageopsis multifloraLeaves
Guatteria latifoliaBranch
Cleistopholis patensStem bark
3.ApiaceaeFerula communisWhole plant
4.ApocynaceaeTabernaemontana divaricataVoacamine
Mondia whiteiRoots
Pentalinon andrieuxiiPentalinon sterol
5.AraliaceaeOreopanax floribundusLeaves
6.Arecaceae Phoenix dactyliferaKernel and date fruit
7.AsteraceaeAcanthospermum hispidumWhole plant
Tessaria integrifoliaLeaves
Abuta grandifoliaLeaves
Cynara scolymusLeaves
Artemisia absinthiumLeaves
Artemisia campestrisLeaves
Artemisia herba-albaAerial parts, Leaves
Bidens pilosaWhole plant
Tessaria integrifoliaWhole plant
8.BalanophoraceaThonningia sanguineaWhole plant
9.Bignoniaceae Handroanthus serratifoliusLapachol
Jacaranda glabraBark
10.BurseraceaeBoswellia serrataResin
11.CannabaceaeCeltis australisLeaves
12.CapparaceaeCapparis spinosaFruits
13.CistaceaeCitrus sinensisLeaves
14.Combretaceae Terminalia ivorensisLeaves
15.CupressaceaeJuniperus excelsaLeaves, fruits
16.EricaceaeArbutus unedoLeaves
Erica arboreaFlower
17.EuphorbiaceaeBridelia ferrugineaLeaves
Ejije biduLeaves
Croton caudatusLeaves
18.Fabaceae Afzelia africanaStem bark
Baphia nitidaStem bark
Cassia alataLeaves
Cassia glocaLeaves
Cassia sieberianaRoots, leaves
Prosopis laevigataLeaves
Parkia clappertonianaStem bark, leaves
Tamarindus indicaLeaves
Prosopis julifloraLeaves
19.GentianaceaeAnthocleista nobilisLeaves, stem bark, root
Centaurium erythraeaFlowering, stems
20.LamiaceaeMarrubium vulgareLeaves
Mentha pulegiumLeaves
Otostegia integrifoliaWhole plant
Rosmarinus officinalisLeaves
Salvia clandestinaAerial parts
Vitex fosteriStem bark, leaves
21.Lauraceae Aniba ripariaFruits
Persea ferrugineaLeaves
Cinnamomum cassiaBark
22.LoranthaceaeLoranthus europaeusAerial part
23.MalvaceaeCeiba pentandraStem bark
Cola acuminataStem bark
Cola cordifoliaStem bark, leaves
Glyphaea brevisLeaves
24.MarantaceaeThalia geniculataRoots
Iresine diffusaFlower
25.Meliaceae Khaya grandifoliolaStem bark
Cedrela sppBark
Azadirachta indicaLeaves
26.Moraceae Treculia africanaStem bark
Ficus capensisStem bark, leaves
27.MyrtaceaeEugenia unifloraLeaves, seed
28.Ochnaceae Lophira lanceolataStem bark, roots
29.Olacaceae Ximenia americanaStem and twigs
30.PapaveraceaeArgemone mexicanaAerial parts
31.PiperaceaePiper pseudoarboreumLeaves
32.Rhamnaceae Ziziphus spina-christiWhole plant
33.RosaceaePyrus communisLeaves
Pyrus pashiaLeaves
Prunus armeniacaLeaves
Eryobotrya japonicaLeaves
34.Rubiaceae Mitragyna inermisStem bark, leaves
Psychotria buhiteniiLeaves
35.RutaceaeZanthoxylum zanthoxyloidesRoots, stem bark
Murraya koenigiiStem bark
Clausena anisataRoots
36.ScrophulariaceaeScoparia dulcisAerial part
Licania salicifoliaLeaves
37.SolanaceaeSolanum havanenseLeaves
Solanum lycocarpumLeaves
Solanum myriacanthumLeaves
Solanum nudumLeaves
Physalis angulataFlowers
Solanum seaforthianumLeaves
38.UrticaceaeUrtica dioicaLeaves
39.VerbenaceaeLantana camaraLeaves
Table 3. Anti-Leishmania activity of medicinal plants in vitro.
Table 3. Anti-Leishmania activity of medicinal plants in vitro.
No.Scientific NameOrganismStagePart UsedMost Active Extract/
Essential Oil
IC50 (µg/mL)Bioactive

Compounds
Data Analysis
(Activity)
Reference
1.Abuta
grandifolia
L. amazonensisPromastigotesLeavesEthanol38.1Alkaloids, triterpenes, saponinsModerate[12]
L. braziliensis31.1Moderate
2.Acanthospermum hispidumL. donovaniPromastigotesWhole plant50% aqueous ethanol32.10Essential oil, alkaloidsModerate[13]
3.Afzelia africanaL. donovaniPromastigotesStem bark50% aqueous ethanol77.10Alkaloids, tannins,
flavonoids, saponins
Weak[13]
4.Aniba ripariaL. amazonensis
AmastigotesFruits50% aqueous ethanol1.30Riparin EHigh[14]
Promastigotes4.70High
5.Annona
senegalensis
L. donovaniPromastigotesLeaves50% aqueous ethanol10.80Alkaloids, tannins,
flavonoids, saponins, terpenoids, glycosides
Moderate[13]
Stem bark27.80Moderate
6.Anthocleista
nobilis
L. donovaniPromastigotesLeaves50% aqueous ethanol41.50Glycosides, saponins, steroidsModerate[13]
Root79.0AnthocleistolWeak
7.Arbutus unedoL. infantumPromastigotesLeavesn-Hexane64.05Phenolics, flavonoidsWeak[15]
L. tropica79.57Weak
8.Argemone
mexicana
L. donovaniPromastigotesAerial partPetroleum ether50.0-Moderate[16]
9.Artemisia
absinthium
L. majorPromastigotesLeaves Hydrodistillation 1.49Essential oil High[17]
10.Artemisia
campestris
L. majorPromastigotesLeaves Hydrodistillation2.20Essential oil High[17]
11.Artemisia herba-albaL. majorPromastigotesLeaves Hydrodistillation1.20Essential oil High[17]
12.Artemisia herba-albaL. infantum.AmastigoteAerial partMethanol extract68.25-

Weak[18]
L. major37.87Moderate
L. infantumPromastigotes77.97Weak
L. major55.21Weak
13.Azadirachta
indica
L. infantumAmastigotesLeavesOil15.3Phenolics,
flavonoids
Moderate[19]
L. tropica17.6Moderate
14.Baphia nitidaL. donovaniPromastigotesStem-bark50% aqueous ethanol34.40Tannins, flavonoids, saponins, glycosidesModerate[13]
15.Bidens pilosaL. donovaniPromastigotesWhole plant50% aqueous ethanol28.90Essential oil, flavonoids, alkaloids, saponins, triterpenesModerate[13]
16.Bocageopsis multifloraL. amazonensisPromastigotes
LeavesEthanol37.9Essential oil, alkaloidsModerate[12]
L. braziliensis19.1Moderate
17.Boswellia
serrata
L. donovaniAmastigotesResinPolar fractions of
dichloromethane
0.88Boswellic acidsHigh[20]
18.Bridelia
ferruginea
L. donovaniPromastigotesLeaves50% aqueous ethanol16.50Flavonoids, tannins, triterpenoidsModerate[13]
19.Capparis
spinosa
L. tropicaPromastigotesFruitsMethanol44.6Tannins, alkaloids,
saponins, terpenoids, glycosides
Moderate[21]
Aqueous28.5Moderate
20.Cassia alataL. donovaniPromastigotesLeaves50% aqueous ethanol10.10Flavonoids, glycosidesModerate[22]
21.Cassia glocaL. tropicaPromastigotesLeavesMethanol9.62FlavonoidsHigh[22]
22.Cassia
sieberiana
L. donovaniPromastigotesLeaves50% aqueous ethanol62.90Flavonoids, alkaloidsWeak[23]
23.Cedrela spp.L. amazonensisPromastigotesBarkEthanol36.8Sesquiterpenes,
triterpenes
Moderate[22]
L. braziliensis18.2Moderate
24.Ceiba pentandraL. donovaniPromastigotesStem bark50% aqueous ethanol31.10Isoflavones,
sesquiterpenoids
Moderate[13]
25.Centaurium
erythraea
L. tropicaPromastigotesFlowering stemsn-Hexane37.20Phenolics, flavonoidsModerate[23]
L. major64.52Weak
26.Celtis australisL. tropicaPromastigotesLeavesMethanol69.13FlavonoidsWeak[22]
27.Cistus crispusL. majorPromastigotesLeavesMethanol84.29Phenolics, flavonoidsWeak[15]
L. infantumn-Hexane82.39Weak
L. tropica96.82Weak
L. major47.29Moderate
28.Citrus sinensisL. tropicaPromastigotesLeavesMethanol12.27FlavonoidsModerate[22]
29.Cola acuminataL. donovaniPromastigotesStem bark50% aqueous ethanol47.80Purine alkaloids,
catechins, (tannins)
Moderate[13]
30.Cola cordifoliaL. donovaniPromastigotesStem bark50% aqueous ethanol25.10Tannins, phenolicsModerate[13]
Leaves18.20Moderate
31.Clausena
anisata
L. donovaniPromastigotesRoots50% aqueous ethanol12.10Essential oil, indole
alkaloids, coumarins
Moderate[13]
32.Cleistopholis patensL. donovaniPromastigotesStem bark50% aqueous ethanol60.20Flavonoids, saponins, alkaloidsWeak[13]
33.Croton
caudatus
L. donovaniPromastigotesLeavesEthyl acetate –hexane (9:1) 10.0TerpenoidsHigh[23]
Amastigote2.5High
34.Cynara
scolymus
L. tropicaPromastigotesStem leafEthanol80.0-Weak[24]
35.Ejije biduL. amazonensisPromastigotesLeavesEthanol17.8-Moderate[12]
L. braziliensis13.3Moderate
36.Erica arboreaL. majorPromastigotesFlowerMethanol43.98-Moderate[18]
L. infantum.61.27Weak
L. majorAmastigotes36Moderate
L. infantum.53.93Weak
37.Eryobotrya
japonica
L. tropicaPromastigotesLeavesMethanol10.59FlavonoidsModerate[22]
38.Eugenia
uniflora
L. amazonensisAmastigotesLeavesn-Hexane9.20Sesquiterpenes,
flavonoids
High[25]
L. donovaniPromastigotesSeeds50% aqueous ethanol26.60Essential oil, flavonoids, tanninsModerate[13]
39.Ferula
communis
L. aethiopicaPromastigotesWhole parts80% methanol11.38Phenolics, flavonoidsModerate[26]
L. donovani23.41Moderate
L. aethiopicaAmastigotes14.32Moderate
L. donovani31.12Moderate
40.Ficus capensisL. donovaniPromastigotesStem bark50% aqueous ethanol37.0Alkaloids, phenolics, flavonoidsModerate[13]
Leaves88.90Weak
41.Glyphaea brevisL. donovaniPromastigotesLeaves50% aqueous ethanol43.40Tannins, alkaloids,
flavonoids
Moderate[13]
42.Guatteria
Latifolia
L. amazonensisPromastigoteBranchn-hexane fraction of ethanol51.7AlkaloidsWeak[27]
43.Iresine diffusaL. amazonensisPromastigotes
FlowerEthanol30.5Sesquiterpenes,
triterpenes
Moderate[12]
L. braziliensis11.1Moderate
44.Jacaranda
Glabra
L. amazonensisPromastigotesBarkEthanol29.8-Moderate[12]
L. braziliensis17.4Moderate
45.Khaya
grandifolia
L. donovaniPromastigotesStem bark50% aqueous ethanol43.20Alkaloids, saponins, tanninsModerate[13]
46.Lantana camaraL. amazonensisAmastigotesLeavesDichloromethane21.8TerpenoidsModerate[28]
47.Licania
Salicifolia
L. panamensisAmastigotesLeavesEthyl acetate9.8Triterpenes, flavonoidsHigh[29]
48.Lophira
lanceolata
L. donovaniPromastigotesStem bark50% aqueous ethanol68.60Flavonoids, saponins, alkaloidsWeak[13]
Roots66.0AlkaloidsWeak
49.Marrubium vulgareL. infantumAmastigotesLeavesMethanol18.64-Moderate[18]
L. major32.15Moderate
L. infantumPromastigotes35.63Moderate
L. major45.84Moderate
50.Mentha pulegiumL. infantumPromastigotesLeavesEssential oil2.0Menthone, pulegoneHigh[30]
L. tropica2.2High
L. major1.30High
51.Mitragyna
Inermis
L. donovaniPromastigotesLeaves50% aqueous ethanol21.90Indole alkaloids, triterpenoidsModerate[13]
Stem bark28.0Moderate
52.Mondia whiteiL. donovaniPromastigotesRoots50% aqueous ethanol31.0GlycosidesModerate[13]
53.Murraya
koenigii
L. donovaniPromastigotesStemPetroleum ether98.0-Weak[16]
54.Oreopanax
floribundus
L. panamensisAmastigotesLeavesDichloromethane24.6TriterpenesModerate[29]
Ethyl acetate23.7Triterpenes, flavonoidsModerate
55.Otostegia
integrifolia
L. aethiopicaPromastigotes
Amastigotes
Whole parts80% methanol13.03Phenolics, flavonoidsModerate[31]
L. donovani17.24Moderate
L. aethiopica16.84Moderate
L. donovani14.55Moderate
56.Parkia
clappertoniana
L. donovaniPromastigotesLeaves50% aqueous ethanol17.0Saponins, flavonoids, TanninsModerate[13]
Stem bark17.60Saponins, steroids, triterpenesModerate
57.Persea ferrugineaL. panamensisAmastigotesLeavesEthyl acetate25.5Triterpenes, leucoanthocyanidins, coumarinsModerate[29]
58.Phoenix
dactylifera
L. majorPromastigoteskernelMethanol23.0Gallic acidModerate[32]
59.Physalis
angulata
L. amazonensisPromastigotesFlowerEthanol17.6Terpenes, phenolic
acids, flavonoids
Moderate[12]
L. braziliensis43.5Moderate
60.Piper
pseudoarboreum
L. amazonensisPromastigotes
LeavesEthanol31.4AlkamidesModerate[33]
L. braziliensis21.3Moderate
L. guyanesis41.3Moderate
L. infantum32.3Moderate
61.Pistacia
lentiscus
L. infantumPromastigotesLeavesEssential oil11.28Myrcene, α-pineneModerate[23]
L. tropica23.50Moderate
L. major17.52Moderate
L. infantumFruitsEssential oil8.0Limonene
α-pinene
High
L. tropica26.20Moderate
L. major21.42Moderate
62.Rosmarinus
officinalis
L. infantumPromastigotesLeavesEssential oil1.20α-Pinene, 1,8-cineole, borneolHigh[23]
L. tropica3.50High
L. major2.60High
63.Prosopis
juliflora
L. donovaniPromastigotesLeavesMethanol3.12Saponins, tannins,
flavonoids, alkaloids
High[34]
64.Prosopis
laevigata
L. amazonensisAmastigotesLeavesAqueous35.2Alkaloids,
anthraquinones
Moderate[28]
65.Prunus
armeniaca
L. tropicaPromastigotesLeavesEthanol16.18Alkaloids, phenolics, tannins, flavonoids,
terpenoids, coumarins
Moderate[35]
66.Psychotria buhiteniiL. panamensisAmastigotesLeavesDichloromethane21.5Triterpenes, flavonoidsModerate[29]
Ethyl acetate14.1Triterpenes, saponins, Coumarins, anthocyaninsModerate
Ethanol29.4Saponins, phenolics, tannins, coumarins,
anthocyanins
Moderate
67.Pyrus
communis
L. tropicaPromastigotesLeavesEthanol56.68Alkaloids, phenolics, tannins, flavonoids,
terpenoids, quinones, saponins
Weak[35]
68.Pyrus pashiaL. tropicaPromastigotesLeavesEthanol60.95Alkaloids, phenolics, tannins, flavonoids,
terpenoids, quinones, saponins
Weak[35]
69.Salvia
clandestina
L. infantumPromastigotesAerial partn-Hexane14.11-Moderate[36]
L. infantumDichloromethane31.57Moderate
L. tropica33.77Moderate
L. major24.56Moderate
70.Schinus molleL. amazonensisAmastigotesLeavesDichloromethane25.9TerpenoidsModerate[28]
Dichloromethane: Methanol (1:1)21.8Terpenoids, phenolicsModerate
71.Schinus
terebinthifolia
L. amazonensisPromastigotesFruitsn-Hexane13.90TriterpenesModerate[29]
72.Scoparia dulcisL. amazonensisPromastigotesAerial partEthanol23.9Diterpenes, triterpenes, flavonoidsModerate[12]
L. braziliensis25.1Moderate
73.Spondias mombinL. donovaniPromastigotesLeaves50% aqueous ethanol81.50-Weak[13]
74.Tamarindus
indica
L. donovaniPromastigotesLeaves50% aqueous ethanol58.12Phenolics, flavonoidsWeak[13]
75.Terminalia ivorensisL. donovaniPromastigotesLeaves50% aqueous ethanol24.90Terminolic acid,
quercetin, β-glycyrrhetinic acid
Moderate[13]
76.Tessaria
integrifolia
L. amazonensisPromastigotesLeavesEthanol54.20Sesquiterpenes,
flavonoids
Weak[12]
L. braziliensis31.60Moderate
77.Thalia
geniculata
L. amazonensisPromastigotesRootsEthanol29.8PhytosterolsModerate[12]
L. braziliensis17.4Moderate
78.Thonningia sanguineaL. donovaniPromastigotesWhole plant50% aqueous ethanol18.60Alkaloids, tannins,
flavonoids
Moderate[13]
79.Treculia
africana
L. donovaniPromastigotesStem bark50% aqueous ethanol44.80Catechin, cyanidin
glycosides
Moderate[13]
80.Vitex fosteriL. donovaniPromastigotesLeaves50% aqueous ethanol72.40Essential oil, flavonoidsWeak[13]
Stem bark49.80Moderate
81.Ximenia
americana
L. donovaniPromastigotesStem and twigs50% aqueous ethanol36.10Tannins, flavonoids,
alkaloids
Moderate[13]
82.Zanthoxylum zanthoxyloidesL. donovaniPromastigotesRoots50% aqueous ethanol13.50Alkaloids, tannins,
flavonoids, essential oil
Moderate[13]
Stem bark45.20Moderate
83.Ziziphus
spina-christi
L. majorAmastigotesLeavesMethanol54.6Tannins, flavonoids, Glycosides, alkaloids, terpenoidsModerate[37]
Table 4. Anti-Leishmania activity of medicinal plants in vivo.
Table 4. Anti-Leishmania activity of medicinal plants in vivo.
No. Plant Species Leishmania Species Route, Dose, and Scheme of Treatment Efficacy Bioactive Compounds Reference
1.Cinnamomum cassiaVisceral leishmaniasis (L. donovani)Oral: 100 mg/kg/d for 10 daysReduction of hepatic parasitism by 80.9% and splenic parasitism by 82.9%Cinnamaldehyde and its derivatives[38]
2.Croton caudatusVisceral leishmaniasis (L. donovani)Oral: 5 mg/kg/d five
consecutive days
Reduction of hepatic parasitism by 65% and splenic parasitism by 69.1%Terpenoids[23]
3.Handroanthus serratifoliusCutaneous leishmaniasis
(L. amazonensis)
Oral: 25 mg/kg/d for 10 days24.5-fold reduction of parasite numberLapachol[39]
Visceral leishmaniasis (L. infantum)Reduction parasite number in spleen (4.6-fold) and liver (5.3-fold)
4.Loranthus
europaeus
Cutaneous leishmaniasis (unspecific)Topical: ointment (40%) once daily at bedtime for 6 h under occlusion for maximal 6 weeks79.0% cure rate without side effectsFlavonoids, alkaloids, glycosides, triterpenes, phenolic acids[40]
5.Pentalinon
andrieuxii
Visceral leishmaniasis (L. donovani)2.5 mg/kg i.v.Reduction of 64, 83, and 57% of parasites in the liver, spleen, and bone marrow.Pentalinonsterol[41]
6.Piper
pseudoarboreum
Cutaneous leishmaniasis
(L. amazonensis)
Intralesional: 25 mg/kg/d for 4 daysReduction of skin lesions by 40% and visceralization by 55%.(E)-Piplartine[33]
7.Prosopis
juliflora
Visceral leishmaniasis (L. donovani)Oral: 100 mg/kg/d for 21 days85.1% reduction of parasite number in spleenSaponins, tannins,
flavonoids, alkaloids
[34]
8.Solanum havanenseCutaneous leishmaniasis
(L. amazonensis)
Intralesional: 30 mg/kg every 4 days, 5 doses93.6% reduction of parasite numberSteroidal alkaloids,
saponins, phenolics, triterpenes, coumarins
[42]
9.Solanum
lycocarpum
Cutaneous leishmaniasis
(L. mexicana)
Topical: 10 μg/d for 6 weeks71.4% reduction of parasite number
Alkaloids (solamargine, solasonine)[43]
10.Solanum
myriacanthum
Cutaneous leishmaniasis
(L. amazonensis).
Intralesional: 30 mg/kg every 4 days, 5 doses56.8% reduction of parasite number Steroidal alkaloids,
saponins, phenolics, triterpenes, coumarins
[42]
11.Solanum
nudum
Cutaneous leishmaniasis
(L. amazonensis)
Intralesional: 30 mg/kg every 4 days, 5 doses80% reduction of parasite numberSteroidal alkaloids,
saponins, phenolics, triterpenes, coumarins
[42]
12.Solanum seaforthianumCutaneous leishmaniasis
(L. amazonensis)
Intralesional: 30 mg/kg every 4 days, 5 doses49.9% reduction of parasites in treated animalsSteroidal alkaloids,
saponins, phenolics, triterpenes, coumarins
[42]
13.Tabernaemontana divaricataVisceral leishmaniasis (L. donovani)Intraperitoneal: 5 mg/kg twice a week for 3 weeksDecreased the hepatic parasitism by ≈30 times and splenic parasitism by ≈15 timesVoacamine[35]
14.Urtica dioicaCutaneous leishmaniasis
(L. major)
Intramuscular and intralesional: 250 mg/kg for 10 weeksIntralesional treatment reduced lesions more than amphotericin B (control)-[44]
15.Ziziphus spina-christiCutaneous leishmaniasis (L. major)Topical: 100 and 200 mg/kg/d for 4 weeksReduction of lesion size by 6.4- and 8.6-foldTannins, flavonoids, glycosides, alkaloids, terpenoids[37]
Table 5. Cytotoxic activity and selectivity index of medicinal plants in the present study (p = promastigote; a = amastigote).
Table 5. Cytotoxic activity and selectivity index of medicinal plants in the present study (p = promastigote; a = amastigote).
No.Plant Species Leishmania
Species
Part UsedBioactive Extract/
Compounds
Cytotoxicity
(CC50 µg/mL)
Selectivity
Index
(CC50/IC50)
Reference
1.Abuta grandifoliaL. amazonensis pLeavesEthanol15.20.4[12]
L. braziliensis p15.60.5
2.Acanthospermum hispidumL. donovani pWhole plant50% aqueous
ethanol
55.51.73[13]
3.Afzelia africanaL. donovani pStem bark50% aqueous
ethanol
232.83.02[13]
4.Aniba ripariaL. amazonensis aFruits50% aqueous
ethanol
50.638.9[14]
5.Annona
senegalensis
L. donovani pLeaves50% aqueous
ethanol
273.525.32[13]
Stem bark127.94.60
6.Anthocleista
nobilis
L. donovani pLeaves50% aqueous
ethanol
245.75.92[13]
Root716.59.07
7.Argemone
mexicana
L. donovani pAerial partPetroleum ether52.10.95[16]
8.Artemisia
absinthium
L. major pLeavesEssential oils11.227.5[17]
9.Artemisia
campestris
L. major pLeavesEssential oils21.129.6[17]
10.Artemisia
herba-alba
L. major pLeavesEssential oils11.249.4[17]
11.Artemisia
herba-alba
L. major pAerial partMethanol131.52.38[18]
L. infantum p131.51.86
12.Azadirachta
indica
L. infantum aLeavesOil703.846[19]
L. tropica a721.641
13.Baphia nitidaL. donovani pStem bark50% aqueous
ethanol
990.728.8[13]
14.Bidens pilosaL. donovani pWhole plant50% aqueous
ethanol
192.86.67[13]
15.Bridelia
ferruginea
L. donovani pLeaves50% aqueous
ethanol
392.923.81[13]
16.Bocageopsis
multifolia
L. amazonensis pLeavesEthanol26.50.7[12]
L. braziliensis p26.71.4
17.Boswellia serrataL. donovani aResinPolar fractions of dichloromethane3338[20]
18.Capparis spinosaL. tropica pFruitsMethanol44.69.1[21]
Aqueous28.58.4
19.Cassia glocaL. tropica pLeavesMethanol1030-[22]
20.Cassia alataL. donovani pLeaves50% aqueous
ethanol
371.536.78[13]
21.Cassia sieberianaL. donovani pLeaves50% aqueous
ethanol
62.900.77[13]
22.Cedrela spp.L. amazonensis pBarkEthanol66.31.8[12]
L. braziliensis p67.43.7
23.Ceiba pentandraL. donovani PStem bark50% aqueous
ethanol
160.73.32[13]
24.Celtis australisL. tropica pLeavesMethanol1209-[22]
25.Cinnamomum cassiaL. donovani aBarksDichloromethane fractionNo cytotoxicity at 500 µg/mL-[38]
26.Citrus sinensisL. tropica pLeavesMethanol1755-[22]
27.Clausena anisataL. donovani pRoots50% aqueous
ethanol
29.224.23[13]
28.Cleistopholis
patens
L. donovani pStem bark50% aqueous
ethanol
214.93.57[13]
29.Cola cordifoliaL. donovani pStem bark50% aqueous
ethanol
465.618.55[13]
Leaves465.625.58
30.Cola acuminataL. donovani pStem bark50% aqueous
ethanol
156.83.28[13]
31.Cynara scolymusL. tropica pStem leavesEthanol40.04.96[24]
32.Ejije biduL. amazonensis pLeavesEthanol133.57.5[12]
L. braziliensis p133.010
33.Erica arboreaL. major pFlowerMethanol89.62.04[18]
L. infantum p89.61.46
34.Eryobotrya
japonica
L. tropica pLeavesMethanol1903-[22]
35.Eugenia unifloraL. amazonensis aLeavesn-Hexane50.53.6[25]
36.Eugenia unifloraL. donovani pSeed50% aqueous
ethanol
94.43.55[13]
37.Ferula communisL. aethiopica a,Aerial part80% methanol175.22-[26]
L. donovani a,
38.Ficus capensisL. donovani pStem bark50% aqueous
ethanol
56.61.53[13]
Leaves257.82.90
39.Glyphaea brevisL. donovani pLeaves50% aqueous
ethanol
962.222.17[13]
40.Handroanthus serratifoliusL. amazonensis pLapacholLapachol3405.842.6[39]
L. infantum p33.0
41.Iresine diffusaL. amazonensis pFlowerEthanol39.71.3[12]
L. braziliensis p11.11.7
42.Jacaranda glabraL. amazonensis pBarkEthanol18.96.4[12]
L. braziliensis p191.411
43.Khaya
grandifolia
L. donovani pStem bark50% aqueous
ethanol
50.11.16[13]
44.Lantana camaraL. amazonensis aLeavesAqueous125.9>9[28]
45.Licania salicifoliaL. panamensis aLeaves Ethyl acetate>200>20.4[29]
46.Lophira
lanceolata
L. donovani pStem bark50% aqueous
ethanol
45.9620.67[13]
Roots38.90.59
47.Marrubium
vulgare
L. major pLeavesMethanol107.42.34[18]
L. infantum p107.23.01
48.Mitragyna
inermis
L. donovani pLeaves50% aqueous
ethanol
193.28.82[13]
Stem bark424.515.16
49.Mondia whiteiL. donovani pRoots50% aqueous
ethanol
434.513.97[13]
50.Murraya koenigiiL. donovani pStemPetroleum ether73.91.32[16]
51.Oreopanax
floribundus
L. panamensis aLeavesDichloromethane47.42.0[29]
Ethyl acetate54.12.2
52.Otostegia
integrifolia
L. aethiopica a,Aerial part80% methanol144.55-[26]
L. donovani a,p
53.Parkia
clappertoniana
L. donovani pLeaves50% aqueous
ethanol
112.76.63[13]
Stem bark42.42.41
54.Persea ferrugineaL. panamensis aLeavesEthyl acetate>200>7.8[29]
55.Physalis
angulata
L. amazonensis pFlowerEthanol19.41.1[12]
L. braziliensis p17.40.4
56.Piper
pseudoarboreum
L. amazonensis pLeavesEthanol55.01.8[33]
L. braziliensis p2.6
L. guyanesis p1.3
L. infantum p1.7
57.Prosopis julifloraL. donovani pLeavesMethanol0.850.26[34]
58.Prosopis
laevigata
L. amazonensis aLeavesDichloromethane57.07[28]
59.Prunus
armeniaca
L. tropica pLeavesEthanol1912.31-[44]
60.Psychotria
buhitenii
L. panamensis aLeavesDichloromethane76.83.57[29]
Ethyl acetate109.57.75
Ethanol>200>6.81
61.Pyrus communisL. tropica pLeavesEthanol1411.30-[35]
62.Pyrus pashiaL. tropica pLeavesEthanol1230.66-[35]
63.Schinus molleL. amazonensis aLeavesDichloromethane69.75[28]
Dichloromethane: Methanol (1:1)186.86
64.Schinus
terebinthifolia
L. amazonensis pFruitsn-Hexane52.03.7[25]
65.Scoparia dulcisL. amazonensis pAerial partEthanol71.73.0[12]
L. braziliensis p72.82.9
66.Solanum
lycocarpum
L. mexicana aFruitsSolamargine1515.543.3[43]
Solasonine1397.938.3
67.Spondias mombinL. donovani pLeaves50% aqueous
ethanol
55.420.68[13]
68.Tamarindus indicaL. donovani pLeaves50% aqueous
ethanol
77.91.34[13]
69.Terminalia ivorensisL. donovani pLeaves50% aqueous
ethanol
939.237.72[13]
70.Tessaria integrifoliaL. amazonensis pLeavesEthanol119.22.2[12]
L. braziliensis p120.03.8
71.Thalia geniculataL. amazonensis pRootsEthanol50.71.7[12]
L. braziliensis p50.42.9
72.Thonningia sanguineaL. donovani pWhole plant50% aqueous
ethanol
286.115.38[13]
73.Treculia africanaL. donovani pStem bark50% aqueous
ethanol
172.03.84[13]
74.Urtica dioicaL. major pLeavesAqueous45004.4[44]
75.Vitex fosteriL. donovani pLeaves50% aqueous
ethanol
114.41.58[13]
Stem bark420.38.44
76.Ximenia
americana
L. donovani pStem and twigs50% aqueous
ethanol
42.31.17[13]
77.Zanthoxylum zanthoxyloidesL. donovani pRoots50% aqueous ethanol247.118.30[13]
Stem bark583.512.91
78.Ziziphus
spina-christi
L. major aLeavesMethanol563.310.31[37]
Table 6. Anti-Leishmania activity of isolated natural compounds.
Table 6. Anti-Leishmania activity of isolated natural compounds.
No.Compound NameLeishmania
Species
StageAssayValues
(IC50)
Data Analysis (Activity)Authors
12,3-DihydrobenzofuranL. amazonensisPromastigotesIn vitro1.04 µg/mLHigh[45]
Amastigotes1.4 µg/mLHigh
2DehydrodieuginolL. amazonensisPromastigotesIn vitro42.4 µg/mLModerate[31]
3Erytro-manassatin AL. amazonensisPromastigotesIn vitro35.4 µg/mLModerate[46]
Amastigotes 20.4 µg/mLModerate
4Threo-manassatin AL. amazonensisPromastigotesIn vitro17.6 µg/mLModerate[46]
Amastigotes16.0 µg/mLModerate
5Epipinoresinol-4-O-β-D-glucopyranosideL. majorPromastigotesIn vitro36.5 µg/mLModerate[47]
6Calanolide E1L. majorPromastigotesIn vitro36.5 µg/mLModerate[48]
7Calanolide E2L. majorPromastigotesIn vitro29.1 µg/mLModerate[48]
8Caffeic acidL. infantumPromastigotesIn vitro12.5 µg/mLModerate[49]
Amastigotes21.9 µg/mLModerate[50]
10CapsaicinL. infantumPromastigotesIn vitro5.01 µg/mLHigh[51]
Amastigotes24.2 µg/mLModerate
11CassineL. amazonensisPromastigotesIn vitro25.2 µg/mLModerate[52]
12SpectalineL. amazonensisPromastigotesIn vitro15.8 µg/mLModerate[52]
13BerberineL. donovaniPromastigotesIn vitro4.8 µg/mLHigh[53]
14ColchicosideL. majorPromastigotesIn vitro0.2 µg/mLHigh[54]
Amastigotes4.0 µg/mLHigh
15BisabololL. donovaniVisceral
leishmaniasis
In vivo 39.4 µMModerate[55]
162-Demethyl colchicineL. majorPromastigotesIn vitro0.5 µg/mLHigh[54]
Amastigotes10.2 µg/mLModerate
173-Demethyl colchicineL. majorPromastigotesIn vitro0.4 µg/mLHigh[54]
Amastigotes11.1 µg/mLModerate
18CornigerineL. majorPromastigotesIn vitro0.8 µg/mLHigh[54]
Amastigotes11.9 µg/mLModerate
19PiperineL. infantumPromastigotesIn vitro3.03 µg/mLHigh[51]
20ColchicineL. majorPromastigotesIn vitro0.4 µg/mLHigh[54]
Amastigotes8.7 µg/mLHigh
21N-deacetyl-N-formyl
colchicine
L. majorPromastigotesIn vitro0.5 µg/mLHigh[54]
Amastigotes10.2 µg/mLModerate
22ColchifolineL. majorPromastigotesIn vitro0.7 µg/mLHigh[54]
Amastigotes14.0 µg/mLModerate
23DemecolcineL. majorPromastigotesIn vitro0.7 µg/mLHigh[54]
Amastigotes14.8 µg/mLModerate
24StaurosporineL. amazonensisPromastigotesIn vitro0.08 µMHigh[56]
Amastigotes10.0 µMHigh
L. donovaniPromastigotes2.1 µMHigh
257-OxostaurosporineL. amazonensisPromastigotesIn vitro3.6 µMHigh[56]
Amastigotes0.1 µMHigh
L. donovaniPromastigotes0.6 µMHigh
264′-Demethylamine-4′-
oxostaurosporine
L. amazonensisPromastigotesIn vitro17.1 µMModerate[56]
Amastigotes2.0 µMHigh
27Streptocarbazole BL. amazonensis
PromastigotesIn vitro10.4 µg/mLModerate[56]
Amastigotes2.5 µg/mLHigh
283-O-acetylspectalineL. donovaniPromastigotesIn vitro25.9 µg/mLModerate[53]
293-O-acetylcassineL. donovaniPromastigotesIn vitro30.3 µg/mLModerate[53]
30Soranjidiol L. amazonensisPromastigotesIn vitro16.3 J/cm2Moderate[57]
31Epigallocatechin 3-O-
gallate
L. infantumVisceral
leishmaniasis
In vivoED50 = 12.4 mg/kg/dayModerate[58]
325-ChlorosoranjidiolL. amazonensisPromastigotesIn vitro13.8 J/cm2Moderate[58]
33BisoranjidiolL. amazonensisPromastigotesIn vitro15.2 J/cm2Moderate[58]
34Gallic acidL. majorPromastigotesIn vitro23.0 µg/mLModerate[32]
35Calanolides E1 L. infantum.AmastigotesIn vitro37.1 µMModerate[48]
36Calanolides E2 29.1 µMModerate
37ApigeninL. amazonensisPromastigotesIn vitro23.7 µMModerate[59]
Amastigotes4.3 µMHigh
382′-hydroxyflavanoneL. amazonensisPromastigotesIn vitro20.5 µMModerate[60]
Amastigotes3.09 µMHigh
395,7,3′,4′-tetrahydroxy-
6,8-diprenylisoflavone
L. amazonensisPromastigotesIn vitro2.7 µMHigh[61]
Amastigotes1.1 µMHigh
40Brachydin BL. braziliensisPromastigotesIn vitro7.05 µMHigh[62]
41Brachydin CL. amazonensisPromastigotesIn vitro10.0 µMHigh[62]
Amastigotes6.25 µMHigh
L. braziliensisPromastigotes8.8 µMHigh
42Ursolic acidL. amazonensisPromastigotesIn vitro6.2 µg/mLHigh[63]
L. donovaniAmastigotes1.8 µMHigh
43AplysulphurinL. donovaniAmastigotesIn vitro3.1 µMHigh[64]
44Tetrahydroaplysulphurin-1L. donovaniAmastigotesIn vitro3.5 µMHigh[64]
45MembranolideL. donovaniAmastigotesIn vitro9.7 µMHigh[64]
46Apigenin Cutaneous leishmaniasisCutaneous leishmaniasisIn vivoED50 = 0.73 mg/kgHigh[65]
47DarwinolideL. donovaniAmastigotesIn vitro11.2 µMModerate[63]
48Pukalide aldehydeL. donovaniAmastigotesIn vitro1.9 µMHigh[66]
49Epigallocatechin 3-O-
gallate
L. infantumAmastigotesIn vitro2.6 µMHigh[58]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Hassan, A.A.; Khalid, H.E.; Abdalla, A.H.; Mukhtar, M.M.; Osman, W.J.; Efferth, T. Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021. Molecules 2022, 27, 7579. https://doi.org/10.3390/molecules27217579

AMA Style

Hassan AA, Khalid HE, Abdalla AH, Mukhtar MM, Osman WJ, Efferth T. Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021. Molecules. 2022; 27(21):7579. https://doi.org/10.3390/molecules27217579

Chicago/Turabian Style

Hassan, Abdalla A., Hassan E. Khalid, Abdelwahab H. Abdalla, Maowia M. Mukhtar, Wadah J. Osman, and Thomas Efferth. 2022. "Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021" Molecules 27, no. 21: 7579. https://doi.org/10.3390/molecules27217579

APA Style

Hassan, A. A., Khalid, H. E., Abdalla, A. H., Mukhtar, M. M., Osman, W. J., & Efferth, T. (2022). Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021. Molecules, 27(21), 7579. https://doi.org/10.3390/molecules27217579

Article Metrics

Back to TopTop