Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases
Abstract
:1. Introduction
2. Results
2.1. Th1 and Th17 Inflammation: Rheumatoid Arthritis, Psoriasis, and IBDs
2.1.1. Rheumatoid Arthritis (RA)
2.1.2. Psoriasis
2.1.3. Inflammatory Bowel Diseases (IBDs)
2.2. Th2 Inflammation: Asthma, Atopic Dermatitis
2.2.1. Atopic Dermatitis (AD)
2.2.2. Asthma and Allergic Rhinitis
3. Discussion
4. Materials and Methods
- Class 1: “tannin”, “hydrolyzable tannin”, “gallotannin”, “ellagitannin”, “gallic acid”, “ellagic acid”, “urolithin”.
- Class 2: “inflammation”, “Th1”, “Th2”, “Th17”, “arthritis”, “dermatitis”, “psoriasis”, “Crohn”, “asthma”, “ulcerative colitis”, “rheumatoid”, “IBD”, “multiple sclerosis”, “lupus”, “celiac diseases”.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Barnes, R.C.; Krenek, K.A.; Meibohm, B.; Mertens-Talcott, S.U.; Talcott, S.T. Urinary metabolites from mango (Mangifera indica L. cv. Keitt) galloyl derivatives and in vitro hydrolysis of gallotannins in physiological conditions. Mol. Nutr. Food Res. 2016, 60, 542–550. [Google Scholar] [CrossRef]
- Kawabata, K.; Yoshioka, Y.; Terao, J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules 2019, 24, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taib, M.; Rezzak, Y.; Bouyazza, L.; Lyoussi, B. Medicinal Uses, Phytochemistry, and Pharmacological Activities of Quercus Species. Evid. Based Complement. Altern. Med. 2020, 2020, 1920683. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Duo, L.; Wang, J.; Zhula, G.; Yang, J.; Li, Z.; Tu, Y. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status. J. Ethnopharmacol. 2021, 271, 113877. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, A.; Zhang, Y.; Han, T.; Guan, L.; Fan, D.; Liu, J.; Xu, Y. A comprehensive review on ethnobotanical, phytochemical and pharmacological aspects of Rhus chinensis Mill. J. Ethnopharmacol. 2022, 293, 115288. [Google Scholar] [CrossRef] [PubMed]
- Kiss, A.K.; Piwowarski, J.P. Ellagitannins, Gallotannins and their Metabolites—The Contribution to the Anti-Inflammatory Effect of Food Products and Medicinal Plants. Curr. Med. Chem. 2018, 25, 4946–4967. [Google Scholar] [CrossRef] [PubMed]
- Piazza, S.; Fumagalli, M.; Khalilpour, S.; Martinelli, G.; Magnavacca, A.; Dell’Agli, M.; Sangiovanni, E. A Review of the Potential Benefits of Plants Producing Berries in Skin Disorders. Antioxidants 2020, 9, 542. [Google Scholar] [CrossRef]
- Colombo, E.; Sangiovanni, E.; Dell’agli, M. A review on the anti-inflammatory activity of pomegranate in the gastrointestinal tract. Evid. Based Complement. Altern. Med. 2013, 2013, 247145. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, G.; Angarano, M.; Piazza, S.; Fumagalli, M.; Magnavacca, A.; Pozzoli, C.; Khalilpour, S.; Dell’Agli, M.; Sangiovanni, E. The Nutraceutical Properties of Sumac (Rhus coriaria L.) against Gastritis: Antibacterial and Anti-Inflammatory Activities in Gastric Epithelial Cells Infected with H. pylori. Nutrients 2022, 14, 1757. [Google Scholar] [CrossRef]
- Fumagalli, M.; Sangiovanni, E.; Vrhovsek, U.; Piazza, S.; Colombo, E.; Gasperotti, M.; Mattivi, F.; De Fabiani, E.; Dell’Agli, M. Strawberry tannins inhibit IL-8 secretion in a cell model of gastric inflammation. Pharm. Res. 2016, 111, 703–712. [Google Scholar] [CrossRef]
- Hirahara, K.; Nakayama, T. CD4+ T-cell subsets in inflammatory diseases: Beyond the Th1/Th2 paradigm. Int. Immunol. 2016, 28, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol. 2020, 80, 106210. [Google Scholar] [CrossRef] [PubMed]
- Bialonska, D.; Ramnani, P.; Kasimsetty, S.G.; Muntha, K.R.; Gibson, G.R.; Ferreira, D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int. J. Food Microbiol. 2010, 140, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Lees, C.W.; Barrett, J.C.; Parkes, M.; Satsangi, J. New IBD genetics: Common pathways with other diseases. Gut 2011, 60, 1739–1753. [Google Scholar] [CrossRef]
- Giannini, D.; Antonucci, M.; Petrelli, F.; Bilia, S.; Alunno, A.; Puxeddu, I. One year in review 2020: Pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 2020, 38, 387–397. [Google Scholar]
- Ferro, F.; Elefante, E.; Luciano, N.; Talarico, R.; Todoerti, M. One year in review 2017: Novelties in the treatment of rheumatoid arthritis. Clin. Exp. Rheumatol. 2017, 35, 721–734. [Google Scholar] [PubMed]
- Malek Mahdavi, A.; Seyedsadjadi, N.; Javadivala, Z. Potential effects of pomegranate (Punica granatum) on rheumatoid arthritis: A systematic review. Int. J. Clin. Pract. 2021, 75, e13999. [Google Scholar] [CrossRef] [PubMed]
- Karwasra, R.; Singh, S.; Sharma, D.; Sharma, S.; Sharma, N.; Khanna, K. Pomegranate supplementation attenuates inflammation, joint dysfunction via inhibition of NF-kappaB signaling pathway in experimental models of rheumatoid arthritis. J. Food Biochem. 2019, 43, e12959. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.K.; Sharma, S.; Sharma, K.; Gupta, G. Evaluation of Antiarthritic Activity of Butanol Fraction of Punica granatum Linn. Rind Extract Against Freund’s Complete Adjuvant-Induced Arthritis in Rats. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 53–62. [Google Scholar] [CrossRef]
- Shukla, M.; Gupta, K.; Rasheed, Z.; Khan, K.A.; Haqqi, T.M. Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition 2008, 24, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Mo, J.; Panichayupakaranant, P.; Kaewnopparat, N.; Nitiruangjaras, A.; Reanmongkol, W. Topical anti-inflammatory and analgesic activities of standardized pomegranate rind extract in comparison with its marker compound ellagic acid in vivo. J. Ethnopharmacol. 2013, 148, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Ge, G.; Bai, J.; Wang, Q.; Liang, X.; Tao, H.; Chen, H.; Wei, M.; Niu, J.; Yang, H.; Xu, Y.; et al. Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-kappaB signaling pathway. Sci. China Life Sci. 2022, 65, 588–603. [Google Scholar] [CrossRef] [PubMed]
- Jean-Gilles, D.; Li, L.; Vaidyanathan, V.G.; King, R.; Cho, B.; Worthen, D.R.; Chichester, C.O., 3rd; Seeram, N.P. Inhibitory effects of polyphenol punicalagin on type-II collagen degradation in vitro and inflammation in vivo. Chem. Biol. Interact. 2013, 205, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wu, K.; Zeng, S.; Liu, W.; Cui, T.; Chen, Z.; Lin, L.; Chen, D.; Ouyang, H. Punicalagin Inhibited Inflammation and Migration of Fibroblast-Like Synoviocytes Through NF-kappaB Pathway in the Experimental Study of Rheumatoid Arthritis. J. Inflamm. Res. 2021, 14, 1901–1913. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Liu, J.; Ma, P.; Bai, J.; Ding, Y.; Yang, H.; Fan, Y.; Lin, M.; Li, S.; Hou, Q. Tamarixinin A Alleviates Joint Destruction of Rheumatoid Arthritis by Blockade of MAPK and NF-kappaB Activation. Front. Pharm. 2017, 8, 538. [Google Scholar] [CrossRef] [Green Version]
- Schmid, D.; Gruber, M.; Piskaty, C.; Woehs, F.; Renner, A.; Nagy, Z.; Kaltenboeck, A.; Wasserscheid, T.; Bazylko, A.; Kiss, A.K.; et al. Inhibition of NF-kappaB-dependent cytokine and inducible nitric oxide synthesis by the macrocyclic ellagitannin oenothein B in TLR-stimulated RAW 264.7 macrophages. J. Nat. Prod. 2012, 75, 870–875. [Google Scholar] [CrossRef]
- Franco, A.M.; Tocci, N.; Guella, G.; Dell’Agli, M.; Sangiovanni, E.; Perenzoni, D.; Vrhovsek, U.; Mattivi, F.; Manca, G. Myrtle Seeds (Myrtus communis L.) as a Rich Source of the Bioactive Ellagitannins Oenothein B and Eugeniflorin D2. ACS Omega 2019, 4, 15966–15974. [Google Scholar] [CrossRef] [Green Version]
- Javed, K.; Rakha, A.; Butt, M.S.; Faisal, M.N. Probing the antioxidant potential of Juglans regia (walnut) against arthritis-induced oxidative stress in Sprague Dawley rats. J. Food Biochem. 2022, 46, e14082. [Google Scholar] [CrossRef]
- Zhao, M.; Yuan, X.; Pei, Y.H.; Ye, H.Y.; Peng, A.H.; Tang, M.H.; Guo, D.L.; Deng, Y.; Chen, L.J. Anti-inflammatory Ellagitannins from Cleidion brevipetiolatum for the Treatment of Rheumatoid Arthritis. J. Nat. Prod. 2019, 82, 2409–2418. [Google Scholar] [CrossRef]
- Ekambaram, S.P.; Perumal, S.S.; Erusappan, T.; Srinivasan, A. Hydrolysable tannin-rich fraction from Terminalia chebula Retz. fruits ameliorates collagen-induced arthritis in BALB/c mice. Inflammopharmacology 2020, 28, 275–287. [Google Scholar] [CrossRef]
- Lu, K.; Iwenofu, O.H.; Mitra, R.; Mo, X.; Dasgupta, P.S.; Basu, S. Chebulinic acid is a safe and effective antiangiogenic agent in collagen-induced arthritis in mice. Arthritis Res. Ther. 2020, 22, 273. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Teng, L.; Qu, Y.; Liu, J.; Zhu, X.; Chen, S.; Yang, L.; Huang, Y.; Song, Q.; Fu, Q. Anti-proliferation and anti-inflammation effects of corilagin in rheumatoid arthritis by downregulating NF-kappaB and MAPK signaling pathways. J. Ethnopharmacol. 2022, 284, 114791. [Google Scholar] [CrossRef] [PubMed]
- Arab, H.H.; Gad, A.M.; Fikry, E.M.; Eid, A.H. Ellagic acid attenuates testicular disruption in rheumatoid arthritis via targeting inflammatory signals, oxidative perturbations and apoptosis. Life Sci. 2019, 239, 117012. [Google Scholar] [CrossRef]
- Fikry, E.M.; Gad, A.M.; Eid, A.H.; Arab, H.H. Caffeic acid and ellagic acid ameliorate adjuvant-induced arthritis in rats via targeting inflammatory signals, chitinase-3-like protein-1 and angiogenesis. Biomed. Pharm. 2019, 110, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Wu, H.; Dong, J.; Huang, S.; Ye, J.; Liu, R. Ellagic Acid Alleviates Rheumatoid Arthritis in Rats through Inhibiting MTA1/HDAC1-Mediated Nur77 Deacetylation. Mediat. Inflamm. 2021, 2021, 6359652. [Google Scholar] [CrossRef] [PubMed]
- Allam, G.; Mahdi, E.A.; Alzahrani, A.M.; Abuelsaad, A.S. Ellagic acid alleviates adjuvant induced arthritis by modulation of pro- and anti-inflammatory cytokines. Cent. Eur. J. Immunol. 2016, 41, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Manan, M.; Saleem, U.; Akash, M.S.H.; Qasim, M.; Hayat, M.; Raza, Z.; Ahmad, B. Antiarthritic Potential of Comprehensively Standardized Extract of Alternanthera bettzickiana: In Vitro and In Vivo Studies. ACS Omega 2020, 5, 19478–19496. [Google Scholar] [CrossRef]
- Farrukh, M.; Saleem, U.; Qasim, M.; Manan, M.; Shah, M.A. Sarcococca saligna extract attenuates formaldehyde-induced arthritis in Wistar rats via modulation of pro-inflammatory and inflammatory biomarkers. Inflammopharmacology 2022. [Google Scholar] [CrossRef]
- Trevisan, G.; Rossato, M.F.; Tonello, R.; Hoffmeister, C.; Klafke, J.Z.; Rosa, F.; Pinheiro, K.V.; Pinheiro, F.V.; Boligon, A.A.; Athayde, M.L.; et al. Gallic acid functions as a TRPA1 antagonist with relevant antinociceptive and antiedematogenic effects in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2014, 387, 679–689. [Google Scholar] [CrossRef]
- Brum, E.D.S.; Becker, G.; Fialho, M.F.P.; Casoti, R.; Trevisan, G.; Oliveira, S.M. TRPA1 involvement in analgesia induced by Tabernaemontana catharinensis ethyl acetate fraction in mice. Phytomedicine 2019, 54, 248–258. [Google Scholar] [CrossRef]
- Correa, L.B.; Padua, T.A.; Alabarse, P.V.G.; Saraiva, E.M.; Garcia, E.B.; Amendoeira, F.C.; Ferraris, F.K.; Fukada, S.Y.; Rosas, E.C.; Henriques, M.G. Protective effect of methyl gallate on murine antigen-induced arthritis by inhibiting inflammatory process and bone erosion. Inflammopharmacology 2022, 30, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Yoon, C.H.; Chung, S.J.; Lee, S.W.; Park, Y.B.; Lee, S.K.; Park, M.C. Gallic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes. Jt. Bone Spine 2013, 80, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.C.; Li, L.F.; Hu, S.Q.; Wat, E.; Wong, E.C.; Zhang, V.X.; Lau, C.B.; Wong, C.K.; Hon, K.L.; Hui, P.C.; et al. Gallic Acid Is the Major Active Component of Cortex Moutan in Inhibiting Immune Maturation of Human Monocyte-Derived Dendritic Cells. Molecules 2015, 20, 16388–16403. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Akiyama, H.; Kondo, K.; Sakata, K.; Matsuoka, H.; Amakura, Y.; Teshima, R.; Yoshida, T. Immunological effects of Oenothein B, an ellagitannin dimer, on dendritic cells. Int J. Mol. Sci. 2012, 14, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Gong, L.F.; Wu, Y.F.; Lin, Z.; Jiang, B.J.; Wu, L.; Yu, K.H. Urolithin A targets the PI3K/Akt/NF-kappaB pathways and prevents IL-1beta-induced inflammatory response in human osteoarthritis: In vitro and in vivo studies. Food Funct. 2019, 10, 6135–6146. [Google Scholar] [CrossRef]
- Dell’agli, M.; Galli, G.V.; Bulgari, M.; Basilico, N.; Romeo, S.; Bhattacharya, D.; Taramelli, D.; Bosisio, E. Ellagitannins of the fruit rind of pomegranate (Punica granatum) antagonize in vitro the host inflammatory response mechanisms involved in the onset of malaria. Malar. J. 2010, 9, 208. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.X.; Li, X.; Deng, S.Y.; Zhao, L.; Zhang, Y.Y.; Deng, X.; Han, B.; Yu, J.; Li, Y.; Wang, Z.Z.; et al. Urolithin A ameliorates experimental autoimmune encephalomyelitis by targeting aryl hydrocarbon receptor. EBioMedicine 2021, 64, 103227. [Google Scholar] [CrossRef]
- De Simone, C.; Caldarola, G.; Maiorino, A.; Tassone, F.; Campana, I.; Sollena, P.; Peris, K. Clinical predictors of nonresponse to anti-TNF-alpha agents in psoriatic patients: A retrospective study. Dermatol Ther. 2016, 29, 372–376. [Google Scholar] [CrossRef]
- Girolomoni, G.; Strohal, R.; Puig, L.; Bachelez, H.; Barker, J.; Boehncke, W.H.; Prinz, J.C. The role of IL-23 and the IL-23/TH 17 immune axis in the pathogenesis and treatment of psoriasis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Senobari, Z.; Karimi, G.; Jamialahmadi, K. Ellagitannins, promising pharmacological agents for the treatment of cancer stem cells. Phytother. Res. 2022, 36, 231–242. [Google Scholar] [CrossRef]
- Khalilpour, S.; Sangiovanni, E.; Piazza, S.; Fumagalli, M.; Beretta, G.; Dell′Agli, M. In vitro evidences of the traditional use of Rhus coriaria L. fruits against skin inflammatory conditions. J. Ethnopharmacol. 2019, 238, 111829. [Google Scholar] [CrossRef] [PubMed]
- Piazza, S.; Martinelli, G.; Vrhovsek, U.; Masuero, D.; Fumagalli, M.; Magnavacca, A.; Pozzoli, C.; Canilli, L.; Terno, M.; Angarano, M.; et al. Anti-Inflammatory and Anti-Acne Effects of Hamamelis virginiana Bark in Human Keratinocytes. Antioxidants (Basel) 2022, 11, 1119. [Google Scholar] [CrossRef] [PubMed]
- Raghuwanshi, N.; Yadav, T.C.; Srivastava, A.K.; Raj, U.; Varadwaj, P.; Pruthi, V. Structure-based drug designing and identification of Woodfordia fruticosa inhibitors targeted against heat shock protein (HSP70-1) as suppressor for Imiquimod-induced psoriasis like skin inflammation in mice model. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 95, 57–71. [Google Scholar] [CrossRef]
- Tang, L.; Li, T.; Zhang, B.; Zhang, Z.; Sun, X.; Zhu, Y.; Feng, B.; Su, Z.; Yang, L.; Li, H.; et al. Punicalagin Alleviates Psoriasis by Inhibiting NF-kappaB-Mediated IL-1beta Transcription and Caspase-1-Regulated IL-1beta Secretion. Front. Pharm. 2022, 13, 817526. [Google Scholar] [CrossRef]
- Hrenn, A.; Steinbrecher, T.; Labahn, A.; Schwager, J.; Schempp, C.M.; Merfort, I. Plant phenolics inhibit neutrophil elastase. Planta Med. 2006, 72, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.M.J.; Robins, B.; Bugert, J.J.; Denyer, S.P.; Heard, C.M. In vitro permeation and biological activity of punicalagin and zinc (II) across skin and mucous membranes prone to Herpes simplex virus infection. Eur. J. Pharm. Sci. 2017, 96, 99–106. [Google Scholar] [CrossRef]
- Garcia, S.A.S.; da Rocha, P.B.R.; Souza, B.D.S.; Paz, A.T.S.; Negris, A.L.C.; Marreto, R.N.; da Conceicao, E.C.; Bara, M.T.F.; Taveira, S.F. Enhanced Skin Permeation of Punicalagin after Topical Application of Pluronic Micelles or Vesicles Loaded with Lafoensia pacari Extract. Planta Med. 2022, 88, 479–488. [Google Scholar] [CrossRef]
- Ramos, G.P.; Papadakis, K.A. Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clin. Proc. 2019, 94, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Rowan, C.R.; Boland, K.; Harewood, G.C. Ustekinumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Eng. J. Med. 2020, 382, 91. [Google Scholar]
- Fradkov, E.; Sheehan, J.; Cushing, K.; Higgins, P.D.R. Efficacy of Ustekinumab in Crohn’s Disease With and Without Concurrent Autoimmune Skin Disease. Inflamm. Bowel Dis. 2021. [Google Scholar]
- Kim, H.; Banerjee, N.; Barnes, R.C.; Pfent, C.M.; Talcott, S.T.; Dashwood, R.H.; Mertens-Talcott, S.U. Mango polyphenolics reduce inflammation in intestinal colitis-involvement of the miR-126/PI3K/AKT/mTOR axis in vitro and in vivo. Mol. Carcinog. 2017, 56, 197–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Banerjee, N.; Ivanov, I.; Pfent, C.M.; Prudhomme, K.R.; Bisson, W.H.; Dashwood, R.H.; Talcott, S.T.; Mertens-Talcott, S.U. Comparison of anti-inflammatory mechanisms of mango (Mangifera Indica L.) and pomegranate (Punica Granatum L.) in a preclinical model of colitis. Mol. Nutr. Food Res. 2016, 60, 1912–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisio, C.; Lucarini, E.; Micheli, L.; Toti, A.; Khatib, M.; Mulinacci, N.; Calosi, L.; Bani, D.; Di Cesare Mannelli, L.; Ghelardini, C. Pomegranate Mesocarp against Colitis-Induced Visceral Pain in Rats: Effects of a Decoction and Its Fractions. Int. J. Mol. Sci. 2020, 21, 4304. [Google Scholar] [CrossRef] [PubMed]
- Larrosa, M.; Gonzalez-Sarrias, A.; Yanez-Gascon, M.J.; Selma, M.V.; Azorin-Ortuno, M.; Toti, S.; Tomas-Barberan, F.; Dolara, P.; Espin, J.C. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J. Nutr. Biochem. 2010, 21, 717–725. [Google Scholar] [CrossRef]
- Rosillo, M.A.; Sanchez-Hidalgo, M.; Cardeno, A.; de la Lastra, C.A. Protective effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn’s disease. Biochem. Pharm. 2011, 82, 737–745. [Google Scholar] [CrossRef] [Green Version]
- Rosillo, M.A.; Sanchez-Hidalgo, M.; Cardeno, A.; Aparicio-Soto, M.; Sanchez-Fidalgo, S.; Villegas, I.; de la Lastra, C.A. Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharm. Res. 2012, 66, 235–242. [Google Scholar] [CrossRef]
- Nakanishi, M.; Matz, A.; Klemashevich, C.; Rosenberg, D.W. Dietary Walnut Supplementation Alters Mucosal Metabolite Profiles During DSS-Induced Colonic Ulceration. Nutrients 2019, 11, 1118. [Google Scholar] [CrossRef] [Green Version]
- Koh, S.J.; Choi, Y.I.; Kim, Y.; Kim, Y.S.; Choi, S.W.; Kim, J.W.; Kim, B.G.; Lee, K.L. Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice. Eur. J. Nutr. 2019, 58, 1603–1613. [Google Scholar] [CrossRef]
- Chen, T.F.; Hsu, J.T.; Wu, K.C.; Hsiao, C.F.; Lin, J.A.; Cheng, Y.H.; Liu, Y.H.; Lee, D.Y.; Chang, H.H.; Cho, D.Y.; et al. A systematic identification of anti-inflammatory active components derived from Mu Dan Pi and their applications in inflammatory bowel disease. Sci. Rep. 2020, 10, 17238. [Google Scholar] [CrossRef]
- Xiao, H.T.; Lin, C.Y.; Ho, D.H.; Peng, J.; Chen, Y.; Tsang, S.W.; Wong, M.; Zhang, X.J.; Zhang, M.; Bian, Z.X. Inhibitory effect of the gallotannin corilagin on dextran sulfate sodium-induced murine ulcerative colitis. J. Nat. Prod. 2013, 76, 2120–2125. [Google Scholar] [CrossRef]
- Pandurangan, A.K.; Mohebali, N.; Esa, N.M.; Looi, C.Y.; Ismail, S.; Saadatdoust, Z. Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: Possible mechanisms. Int. Immunopharmacol. 2015, 28, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Gu, P.; Shen, H. Gallic acid improved inflammation via NF-kappaB pathway in TNBS-induced ulcerative colitis. Int. Immunopharmacol. 2019, 67, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Mortz, C.G.; Lauritsen, J.M.; Bindslev-Jensen, C.; Andersen, K.E. Prevalence of atopic dermatitis, asthma, allergic rhinitis, and hand and contact dermatitis in adolescents. The Odense Adolescence Cohort Study on Atopic Diseases and Dermatitis. Br. J. Derm. 2001, 144, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Menzies-Gow, A.; Steenkamp, J.; Singh, S.; Erhardt, W.; Rowell, J.; Rane, P.; Martin, N.; Llanos Ackert, J.P.; Quinton, A. Tezepelumab compared with other biologics for the treatment of severe asthma: A systematic review and indirect treatment comparison. J. Med. Econ. 2022, 25, 679–690. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Bissonnette, R.; Ungar, B.; Suarez-Farinas, M.; Ardeleanu, M.; Esaki, H.; Suprun, M.; Estrada, Y.; Xu, H.; Peng, X.; et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 143, 155–172. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E.; Kim, J.S.; Cho, D.H.; Park, H.J. Molecular Mechanisms of Cutaneous Inflammatory Disorder: Atopic Dermatitis. Int. J. Mol. Sci. 2016, 17, 1234. [Google Scholar] [CrossRef] [Green Version]
- Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet 2018, 391, 783–800. [Google Scholar] [CrossRef]
- Folster-Holst, R.; Latussek, E. Synthetic tannins in dermatology—A therapeutic option in a variety of pediatric dermatoses. Pediatr. Derm. 2007, 24, 296–301. [Google Scholar] [CrossRef]
- Lee, S.; Jegal, H.; Bong, S.K.; Yoon, K.N.; Park, N.J.; Shin, M.S.; Yang, M.H.; Kim, Y.K.; Kim, S.N. Anti-Atopic Effect of Acorn Shell Extract on Atopic Dermatitis-Like Lesions in Mice and Its Active Phytochemicals. Biomolecules 2019, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, P.; Heinrich, M.; Garcia-Kaufer, M.; Grunewald, F.; Messerschmidt, S.; Herrick, A.; Gruber, K.; Beckmann, C.; Knoedler, M.; Huber, R.; et al. Constituents from oak bark (Quercus robur L.) inhibit degranulation and allergic mediator release from basophils and mast cells in vitro. J. Ethnopharmacol. 2016, 194, 642–650. [Google Scholar] [CrossRef]
- Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Pitchaimani, V.; Sreedhar, R.; Afrin, R.; Harima, M.; Suzuki, H.; Nomoto, M.; Miyashita, S.; et al. Tannic acid modulates NFkappaB signaling pathway and skin inflammation in NC/Nga mice through PPARgamma expression. Cytokine 2015, 76, 206–213. [Google Scholar] [CrossRef] [PubMed]
- HMPC. European Medicines Agency Committeeon Herbal Medicinal Products. Assessment re-port on Hamamelis virginiana L., cortex; Hamamelis virginiana L., folium; Hamamelis virginiana L., folium et cortex aut ramunculus destillatum, EMA/HMPC/114585/2008. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_HMPC_assessment_report/2010/04/WC500089242.pdf (accessed on 11 July 2022).
- Choi, J.; Yang, D.; Moon, M.Y.; Han, G.Y.; Chang, M.S.; Cha, J. The Protective Effect of Hamamelis virginiana Stem and Leaf Extract on Fine Dust-Induced Damage on Human Keratinocytes. Cosmetics 2021, 8, 119. [Google Scholar] [CrossRef]
- Piazza, S.; Martinelli, G.; Magnavacca, A.; Fumagalli, M.; Pozzoli, C.; Terno, M.; Canilli, L.; Angarano, M.; Maranta, N.; Dell’Agli, M.; et al. Unveiling the Ability of Witch Hazel (Hamamelis virginiana L.) Bark Extract to Impair Keratinocyte Inflammatory Cascade Typical of Atopic Eczema. Int. J. Mol. Sci. 2022, 23, 9279. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Jun, C.D.; Suk, K.; Choi, B.J.; Lim, H.; Park, S.; Lee, S.H.; Shin, H.Y.; Kim, D.K.; Shin, T.Y. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol. Sci. 2006, 91, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, G.; Zhou, X. Gallic Acid Ameliorates Atopic Dermatitis-Like Skin Inflammation Through Immune Regulation in a Mouse Model. Clin. Cosmet. Investig. Derm. 2021, 14, 1675–1683. [Google Scholar] [CrossRef]
- Kwon, D.J.; Bae, Y.S.; Ju, S.M.; Goh, A.R.; Youn, G.S.; Choi, S.Y.; Park, J. Casuarinin suppresses TARC/CCL17 and MDC/CCL22 production via blockade of NF-kappaB and STAT1 activation in HaCaT cells. Biochem. Biophys. Res. Commun. 2012, 417, 1254–1259. [Google Scholar] [CrossRef]
- Choi, Y.H.; Yan, G.H. Ellagic Acid attenuates immunoglobulin E-mediated allergic response in mast cells. Biol. Pharm. Bull. 2009, 32, 1118–1121. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Kim, W. Alleviation effects of Rubus coreanus Miquel root extract on skin symptoms and inflammation in chronic atopic dermatitis. Food Funct. 2022, 13, 2823–2831. [Google Scholar] [CrossRef]
- El-Ghitany, E.M.; Abd El-Salam, M.M. Environmental intervention for house dust mite control in childhood bronchial asthma. Env. Health Prev. Med. 2012, 17, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Rajasekar, N.; Sivanantham, A.; Kar, A.; Mukhopadhyay, S.; Mahapatra, S.K.; Paramasivam, S.G.; Rajasekaran, S. Anti-asthmatic effects of tannic acid from Chinese natural gall nuts in a mouse model of allergic asthma. Int. Immunopharmacol. 2021, 98, 107847. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, J.; Jeong, H.J.; Kim, H.M. Potential anti-inflammatory effect of Madi-Ryuk and its active ingredient tannic acid on allergic rhinitis. Mol. Immunol. 2019, 114, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Yoshimoto, M.; Nakayama, K.; Tanino, S.; Fujimura, Y.; Yamada, K.; Tachibana, H. Tannic acid, a higher galloylated pentagalloylglucose, suppresses antigen-specific IgE production by inhibiting varepsilon germline transcription induced by STAT6 activation. FEBS Open Bio. 2013, 3, 341–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.; Yang, X.; Yamashita, S.; Kumazoe, M.; Huang, Y.; Nakahara, K.; Won, Y.S.; Murata, M.; Lin, I.C.; Tachibana, H. 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose increases a population of T regulatory cells and inhibits IgE production in ovalbumin-sensitized mice. Int. Immunopharmacol. 2015, 26, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Park, H.H.; Kim, J.E.; Kim, J.A.; Kim, Y.H.; Jun, C.D.; Kim, S.H. Allose gallates suppress expression of pro-inflammatory cytokines through attenuation of NF-kappaB in human mast cells. Planta Med. 2007, 73, 769–773. [Google Scholar] [CrossRef]
- Fan, Y.; Piao, C.H.; Hyeon, E.; Jung, S.Y.; Eom, J.E.; Shin, H.S.; Song, C.H.; Chai, O.H. Gallic acid alleviates nasal inflammation via activation of Th1 and inhibition of Th2 and Th17 in a mouse model of allergic rhinitis. Int. Immunopharmacol. 2019, 70, 512–519. [Google Scholar] [CrossRef]
- Liu, K.Y.; Hu, S.; Chan, B.C.; Wat, E.C.; Lau, C.B.; Hon, K.L.; Fung, K.P.; Leung, P.C.; Hui, P.C.; Lam, C.W.; et al. Anti-inflammatory and anti-allergic activities of Pentaherb formula, Moutan Cortex (Danpi) and gallic acid. Molecules 2013, 18, 2483–2500. [Google Scholar] [CrossRef]
- de Oliveira, J.F.; Garreto, D.V.; da Silva, M.C.; Fortes, T.S.; de Oliveira, R.B.; Nascimento, F.R.; Da Costa, F.B.; Grisotto, M.A.; Nicolete, R. Therapeutic potential of biodegradable microparticles containing Punica granatum L. (pomegranate) in murine model of asthma. Inflamm. Res. 2013, 62, 971–980. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Sun, Y.; Wang, L.; Zhang, J.; Li, F.; Mao, W. Corilagin Attenuates Allergy and Anaphylactic Reaction by Inhibiting Degranulation of Mast Cells. Med. Sci. Monit. 2018, 24, 891–896. [Google Scholar] [CrossRef] [Green Version]
- Abd Rani, N.Z.; Lam, K.W.; Jalil, J.; Mohamad, H.F.; Mat Ali, M.S.; Husain, K. Mechanistic Studies of the Antiallergic Activity of Phyllanthus amarus Schum. & Thonn. and Its Compounds. Molecules 2021, 26, 695. [Google Scholar]
- Kim, H.H.; Park, S.B.; Lee, S.; Kwon, T.K.; Shin, T.Y.; Park, P.H.; Lee, S.H.; Kim, S.H. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation. Toxicol. Appl. Pharm. 2014, 274, 455–461. [Google Scholar] [CrossRef]
- Rogerio, A.P.; Fontanari, C.; Borducchi, E.; Keller, A.C.; Russo, M.; Soares, E.G.; Albuquerque, D.A.; Faccioli, L.H. Anti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma. Eur. J. Pharm. 2008, 580, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Julio de Souza, A.L.; Beatriz Mahler Pereira, A.; Robison de Oliveira, J.; Santos Ramalho, L.; Ismarsi de Souza, H.; Lacerda Nascimento, A.; Uddin, M.; Sergio Pereira, P.; Nascimento Silva Teixeira, D.; Roberto da Silva, P.; et al. Dermatophagoides pteronyssinus-induced pro-inflammatory responses mediated via STAT3 and NF-kappaB signaling pathways in human bronchial epithelial cells—Inhibitory effects of Lafoensia pacari and ellagic acid. J. Pharm. Sci. 2020, 142, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Zhou, E.; Fu, Y.; Wei, Z.; Yang, Z. Inhibition of allergic airway inflammation through the blockage of NF-kappaB activation by ellagic acid in an ovalbumin-Induc. mouse asthma model. Food Funct. 2014, 5, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Al-Maghout, T.; Cao, H.; Pelzl, L.; Salker, M.S.; Veldhoen, M.; Cheng, A.; Lang, F.; Singh, Y. Gut Bacterial Metabolite Urolithin A (UA) Mitigates Ca(2+) Entry in T Cells by Regulating miR-10a-5p. Front. Immunol. 2019, 10, 1737. [Google Scholar] [CrossRef] [PubMed]
- Buzzini, P.; Arapitsas, P.; Goretti, M.; Branda, E.; Turchetti, B.; Pinelli, P.; Ieri, F.; Romani, A. Antimicrobial and antiviral activity of hydrolysable tannins. Mini Rev. Med. Chem. 2008, 8, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
Natural Product | Concentration/Dose | Pre-Clinical Model | Effect ↓↑ | Reference |
---|---|---|---|---|
Alternanthera bettzickiana (GA) | 250, 500, 1000 mg/kg/day/4 week p.o. | Rat, FCA-induced arthritis | ↓ edema ↓ TNF-α, IL-6, IL-17 ↓ COX-2 ↓ NF-κB ↑ IL-10, IL-4 | [37] |
Brevipetin E from Cleidion brevipetiolatum | 50 mg/kg, acute, p.o. | Mouse, CIA and FCA-induced arthritis | ↓ arthritis score | [29] |
Brevipetin E from Cleidion brevipetiolatum | 5–50 μM | Mouse macrophages (RAW 264.7) | ↓ COX-2, iNOS ↓ NF-κB | [29] |
Chebulinic acid | 50 mg/kg/day/2 weeks, p.o. | Mouse, CIA | ↓ Arthritis score ↓ VEGFR pathway | [31] |
Corilagin | 20–40 mg/kg/day/3 weeks, p.o. | Rat, FCA-induced arthritis | ↓ Arthritis score ↓ TNF-α, IL-6, IL-1β, IL-17 | [32] |
Corilagin | 6.25, 12.5 μM | Human synoviocytes (FLS cells, ex vivo) | ↓ COX-2, iNOS, MMPs ↓ NF-κB | [32] |
EA | 0.13–0.65% w/w, of the diet, topical | Rat, CA-induced arthritis | ↓ edema and pain | [21] |
EA | 50 mg/kg/day/20 days, p.o | Rat, FCA-induced arthritis (testis damage) | ↓ COX-2, iNOS, MPO ↓ LPO ↑ GSH ↓ NF-κB | [33] |
EA | 50 mg/kg/day/20 days, p.o | Rat, FCA-induced arthritis | ↓ Arthritis score ↓ VEGF, MMP-9 ↓ iNOS, LPO ↑ GSH ↓ NF-κB | [34] |
EA | 25, 50, 100 mg/kg/3 weeks, p.o | Rat, CIA | ↓ Arthritis score | [35] |
EA | 10–100 μM | Human synoviocytes (FLS cells, ex vivo) | ↓ IL-6, IL-1β, MDA ↓ HDAC-1/Nur77 deacetylation | [35] |
EA | 175 mg/kg/week/4 weeks, i.p. | Mouse, FCA-induced arthritis | ↓ edema ↓ TNF-α, IL-1β, IL-17 ↑ IL-10 | [36] |
GA | 3–100 mg/kg, acute, p.o. | Mouse, Cinnamaldehyde (TRPA1)-mediated edema, allodynic and neuropathic pain | ↓ edema and pain | [39] |
GA | 10 μM | Mouse spinal cord (ex vivo), Cinnamaldehyde (TRPA1)-induced | ↓ Ca2+ influx | [39] |
GA | 0.1–1 μM | Human synoviocytes (FLS cells, ex vivo) | ↓ proliferation ↑ apoptosis ↓ IL-1β, IL-6, MCP-1, MMP-9, COX-2 | [42] |
GA-rich fraction from Tabernaemontana catharinensis | 0,01–100 mg/kg, acute, p.o. | Mouse, Cinnamaldehyde (TRPA1)-mediated edema, FCA-induced arthritis | ↓ edema and pain ↓ Ca2+ influx via TRPA1, but not TRPV1 | [40] |
HTs fraction from Terminalia chebula fruit pericarp | 100, 200, 400 mg/kg/day/4 weeks, p.o. | Mouse, CIA | ↓ Arthritis score ↓ TNF-α, IL-6, IL-1β | [30] |
Juglans regia extract (Ets) | 900 mg/kg (=10% of the diet)/5 weeks, p.o. | Rat, FCA-induced arthritis | ↑ TAC, SOD, CAT ↓ hepatic damage | [28] |
Juglans regia kernel (Ets) | 10% w/w of the diet/5 weeks | Rat, FCA-induced arthritis | ↑ TAC, SOD, CAT ↓ hepatic damage | [28] |
Oenothein B | 1–60 μg/mL | Mouse macrophages (RAW 264.7) | ↓ TNF-α, IL-6, IL-1β, iNOS ↓ TRL-2, TLR-4 pathway, but not IFN-γ-induced iNOS ↓ NF-κB (p65, p50) | [26] |
Punica granatum peel extract (ETs) | 1–5% w/w, topical | Rat, FCA-induced arthritis | ↓ edema and pain ↓ leucocyte infiltration ↓ TNF-α, IL-1β | [21] |
Punicalagin | 10–50 mg/kg/day/4 weeks, i.p. | Rat, CIA | ↓ edema ↓ M1 phenotype ↑ M2 phenotype ↑ Arg-1, IL-10 ↓ TNF-α, IL-1β, iNOS ↓ NF-κB | [22] |
Punicalagin | 10–50 mg/kg/2 weeks, i.p. | Rat, FCA-induced arthritis | ↓ edema | [23] |
Punicalagin | 50 mg/kg/2 weeks, i.p. | Rat, FCA-induced arthritis | ↓ edema ↓ TNF-α, IL-6 | [24] |
Punicalagin | 0–50 μM | Human synoviocytes (FLS cells, ex vivo) | ↓ IL-1β, IL-6, IL-8, IL-17 ↓ NF-κB | [24] |
Sarcococca saligna (GA) | 250, 500, 1000 mg/kg/day/4 weeks, p.o. | Rat, formaldehyde-induced arthritis | ↓ edema ↓ TNF-α, IL-6, IL-17 | [38] |
Tamarixinin A | 12.5, 50 mg/kg/day/2 weeks, sq.i. | Rat, CIA and FCA-induced arthritis | ↓ arthritis score | [25] |
Tamarixinin A | 5–20 μM | Rat peritoneal macrophages (ex vivo) | ↓ TNF-α, IL-6, iNOS ↓ NF-κB, p38 MAPK | [25] |
Natural Product | Concentration | Pre-Clinical Model | Effect | Reference |
---|---|---|---|---|
Agrimoniin | 3.4 μM | Human keratinocytes (HaCaT) cells | ↓ proliferation | [55] |
Agrimoniin and pedunculagin | <3 μM | Human neutrophil ex vivo | ↓ Elastase | [55] |
Punicalagin | 25 mg/kg/day/7 days, topical | Mice, IMQ-induced psoriasis | ↓ Severity score ↓ CXCL1, CCL20, IL-1β | [54] |
Punicalagin | 2.5–20 μM | Human keratinocytes (HaCaT) cells | ↓ IL-1β, caspase-1 ↓ NF-κB | [54] |
Rhus coriaria L. (GTs) | 1–50 μg/mL | Human keratinocytes | ↓ MMP-9, ICAM-1, IL-8 ↓ NF-κB | [51] |
Woodfordia fruticosa L. (EA) | 500–2000 μg/kg/day/11 days; topical | Mice, IMQ-induced psoriasis | ↓ Severity score ↓ TNF-α, IL-23 | [53] |
Natural Product | Concentration | Pre-Clinical Model | Effect | Reference |
---|---|---|---|---|
Corilagin | 7.5–30 mg/kg/day/1 week, i.p. | Mice, DSS-induced colitis | ↓ Shortening of colon ↓ TNF-α, IL-1β, IL-6 ↓ MPO | [70] |
Ellagic acid | 10–20 mg/kg/day/2 weeks, p.o. | Rat, TNBS-induced colitis | ↓ Neutrophil infiltration; ↓ Intestinal injury; ↓ iNOS and COX-2 expression | [65,66] |
GA | 10 mg/kg/day/1 week, p.o. | Mice, DSS-induced colitis | ↓ Shortening of colon ↓ Tissue inflammation ↓ Cytokines, MPO | [71] |
GA | 100–200 µg/mL | Mouse macrophages (RAW 264.7 cells) | ↓ p65, iNOS, COX-2 ↓ STAT3 | [71] |
GA | 20–60 mg/kg/day/1 week, i. g. | Mice, TNBS-induced colitis | ↑ Ulceration score | [72] |
GA | 20–60 µg/mL | Intestinal epithelial cells (HIEC-6) | ↓ IL-6, IL-12, IL-17, IL-23, TGF-β, TNF-α ↓ Apoptosis | [72] |
GA, EA | 4 μg/mL | Colon fibroblast (CCD-18Co) | ↑ IGF-1R and EGFR | [62] |
Juglans regia extract (ETs, GTs) | 10–20 mg/kg/day/2 weeks, p.o. | Mice, DSS-induced colitis | ↓ Acute or chronic damage | [68] |
Juglans regia extract (ETs, GTs) | 10–20 μg/mL | Colon epithelial cells (COLO 205) | ↓ NF-κB activity and IL-8 expression | [68] |
Juglans regia kernel (ETs, GTs) | Walnut kernel 7–14% of the diet/2 weeks, p.o. | Mice, DSS-induced colitis | Partial protection against mucosal damage | [67] |
Mangifera indica Juice (GTs) | 89.74 mg/kg/day/3 weeks of gallic acid eq., p.o. | Mice, DSS-induced colitis | ↓ Colon inflammation; ↓ TNF-α, IL-1β, IL-6 | [61] |
Mangifera indica extract (GTs) | 10 μg/mL | Colon fibroblast (CCD-18Co), colon epithelial cells (HT-29) | ↓ iNOS, mTOR | [61] |
Mangifera indica juice (GTs) | 90 mL/day/3 weeks of 475.90 mg/L gallic acid eq., p.o. | Mice, DSS-induced colitis | ↓ Ulceration score; ↓ TNF-α, IL-1β, IL-6 ↓ MAPKs | [62] |
Mangifera indica or Punica granatum extracts | 10 μg/mL | Colon fibroblast (CCD-18Co) | ↑ IGF-1R and EGFR | [62] |
Paeonia × suffruticosa root bark (GTs) | 5 % of aqueous extract/5 days, p.o. | Mice, DSS-induced colitis | ↓ Ulceration score; ↓ Macrophage infiltration | [69] |
PGG | 5–10 µM | Human macrophages (THP-1 cells) | ↓ NF-κB, IRF | [69] |
Punica granatum Juice (ETs) | 290 mL/day/3 weeks of 504.74 mg/L gallic acid eq., p.o. | Mice, DSS-induced colitis | ↓ Ulceration score; ↓ TNF-α, IL-1β, IL-6, and MAPKs | [62] |
Punica granatum peel decoction (ETs) | 300 mg/kg/day/2 weeks, p.o. | Rat, DNBS-induced colitis | ↓ Visceral sensitivity ↓ Infiltration of mast cells ↓ Density of collagen fibers | [63] |
Punica granatum ETs-enriched fraction | 45 mg/kg/day/2 weeks, p.o. | Rat, DNBS-induced colitis | ↓ Infiltration of mast cells ↓ Density of collagen fibers | [63] |
Punica granatum extract (ETs) | 250 mg/kg/day/25 days, p.o. | Rat, DNBS-induced colitis | ↓ Colon inflammation (slight) ↓ NO, PGE2 | [64] |
Punica granatum extract (ETs) | 250–500 mg/kg/day/30 days, p.o. | Rat, TNBS-induced colitis | ↓ Neutrophil infiltration; ↓ Ulceration score; ↓ iNOS, COX-2 | [65,66] |
Urolithin A | 15 mg/kg/day/25 days, p.o. | Rat, DNBS-induced colitis | ↓ Colon inflammation ↓ NO, PGE2 | [64] |
Natural Product | Concentration/Dose | Pre-Clinical Model | Effect | Reference |
---|---|---|---|---|
Casuarinin (from Hippophae rhamonoides) | 5–20 μM | Human keratinocyte (HaCaT cells) | ↓ CCL17, CCL22 ↓ NF-κB, STAT-1 | [87] |
EA | 1–50 mg/kg, acute, p.o. | Rat, IgE-induced PCA | ↓ mortality | [88] |
EA | 50–100–200 μM | Rat mast cells (RPMC cells) | ↓ TNF-α, IL-6, histamine ↓ NF-κB, Ca2+ influx | [88] |
EA, GA | 10–30 μg/mL (<10 μM) | Rat basophil (RBL-2H3 cells) | ↓ IL-4, degranulation | [79] |
GA | 0.01–10 μM | Rat mast cells (RPMC cells) | ↓ Ca2+ influx, histamine ↑ cAMP ↓ NF-κB, MAPK | [85] |
GA | 0.01–10 μM | Human mast cells (HMC-1 cells) | ↓ TNF-α, IL-6 | [85] |
GA | 1–100 mg/kg, acute, i.p. | Mouse, 48/80- or IgE-induced PCA | ↓ mortality, serum histamine | [85] |
GA | 20–40–80 mg/kg, 5 weeks, p.o. | Mouse, DNCB-induced dermatitis | ↓ dermatitis score ↓ Serum TNF-α, IgE ↓ TNF-α, IFN-γ, IL-4, IL-17, IL-23 ↑ TGF-β, IL-10 ↑ SOCS3, ↓ ROR-γt | [86] |
Hamamelis virginiana bark and twigs glyceric extract | 0.5–125 μg/mL | Human keratinocyte (HaCaT cells) | ↓ TSLP, IL-6, CCL26 ↑ CK-10, INV ↓ proliferation ↓ NF-κB | [84] |
Hamamelis virginiana stems and leaves ethanol extract | 2% | Human keratinocyte (HaCaT cells) | ↓ Ca2+ influx ↓ PPAR-2, ↓ NF-κB ↑ occludin | [83] |
HGG | 100 μg/mL | Human keratinocyte (HaCaT cells) | ↓ Ca2+ influx | [83] |
HT | 1–10 μM | Human keratinocyte (HaCaT cells) | ↓ TSLP, CCL-26 ↑ CK-10, INV ↓ proliferation | [84] |
Quercus mongolica acorn shell, ethanol extract | 1%/4 weeks, topical | Mouse, oxazolone- and DNCB-induced dermatitis | ↓ TNF-α, IL-1β, IL-33, IL-4, ↓ Serum IgE | [79] |
Quercus robur bark, tannin fraction | 58–580 μg/mL | Rat basophil (RBL-2H3 cells) Human mast cells (HMC-1 cells) | ↓ IL-8, IL-6, TNF-α, degranulation | [80] |
Rubus coreanus root extract (EA) | 100 mg/kg/4 weeks, topical | Mouse, DNCB-induced dermatitis | ↓ dermatitis score ↓ IL-4, IL-5, IL-12, IFN-γ, TNF-α, TARC, ↓ IgE | [89] |
Rubus coreanus root extract (EA) | 10 μg/mL | Human mast cells (HMC-1 cells) | ↓ β-Hexosaminidase, histamine | [89] |
TA | 80 mg/kg/day/2 weeks, p.o. | Mouse, DfE-cream-induced AD | ↓ Dermatitis score ↓ TNF-α, IFN-γ, IL-1β ↓ Serum IL-4, IFN-γ ↑ PPARγ, ↓ NF-κB | [81] |
Natural Product | Concentration/Dose | Pre-Clinical Model | Effect | Reference |
---|---|---|---|---|
8 GTs isolated from Euphorbia spp. | 0.1, 1, 10 μg/mL | Human mast cells (HMC-1 cells) | ↓ TNF-α, IL-1β, IL-6 (highly galloylated compounds > others) ↓ NF-κB | [95] |
Corilagin | 10, 20, 40 mg/kg/day/1 week, p.o | Rodent and guinea pig models, 48/80-induced PCA and milk sensitization | ↓ leucocyte and eosinophil counts ↓ mast cell degranulation ↓ PCA reaction, IgE ↓ Ach- and histamine-induced tracheal contraction | [99] |
Corilagin | 1–50 μg/mL | Rat basophil (RBL-2H3 cells) | No effect on histamine release | [100] |
EA | 10 mg/kg/22 days, p.o. | Mouse, OVA-induced asthma | ↓ Th2 cytokines ↓ granulocytes count | [102] |
EA | 100 μM | Human bronchial epithelial cells (HBEpC cells) | ↓ IL-8, IL-6, CCL-2 | [103] |
EA | 10 mg/kg, acute, p.o. | Mouse, OVA-induced asthma | ↓ lung eosinophilia ↓ Th2 cytokines ↓ NF-κB | [104] |
GA | 20–80 mg/kg/day/12 days, p.o. | Mouse, OVA-induced rhinitis | ↓ IL-4, IL-5, IL-13, IL-17 ↓ Serum IgE, IgG1, IgG2a ↑ IL-12, IFN-γ | [96] |
GA | 10, 50, 100 μg/mL | Human basophil (KU812 cells) | ↓ ICAM-1, CCL2, CCL5, CXCL8, IL-6 | [97] |
Lafoensia pacari ethanol extract (ETs) | 200 mg/kg/day/22 days, p.o. | Mouse, OVA-induced asthma | ↓ Th2 cytokines ↓ granulocytes count | [102] |
PGG | 1–25 μM | DND39 cells NIH3T3 cells | ↓ IL4Rα, JAK3, STAT6 | [93] |
PGG | 10 mg/kg/day/28 days, p.o. | Mouse, OVA- sensitization | ↓ Serum IgE ↓ IL-4, IL-13, IFN-γ, IL-6, TNF-α (splenocytes) ↓ TIMP-1, eotaxin ↑ IGFBP-3 ↑ Tregs | [94] |
Putranjivain A | 1–10 μM | Rat basophil (RBL-2H3 cells) Human mast cells (HMC-1 cells) | ↓ TNF-α, IL-4, IL-6 ↓ NF-κB, NFAT | [101] |
Putranjivain A | 10 mg/kg, acute, p.o. | Mouse, IgE-induced PCA and 48/80-induced systemic anaphylaxis | ↓ H1R and histamine ↓ anaphylaxis | [101] |
TA | 25 mg/kg, acute, i.t. | Mouse, OVA-induced asthma | ↓ Th2, Th1 cytokines ↓ adhesion molecules ↓ Serum IgE ↓ Mucus production, Muc5ac, Muc5b expression ↓ NF-κB | [91] |
TA | 40 mg/kg/day/10 days, p.o. | Mouse, OVA-induced rhinitis | ↓ rushes ↓ serum IgE ↓ histamine, TSLP, IL-4, IL-5, IL-13, IL-33 ↓ IL-1β, TNF-α, MCP-2 ↓ ICAM-1 | [92] |
TA | 4 mg/mL/17 days (drinking water), ad libitum | Mouse, OVA sensitization (i.p.) | ↓ Serum IgE ↓ IL-4 induced εGT | [93] |
TA | 1 μg/mL | Human Burkitt lymphoma (DND39 cells) Mouse fibroblast (NIH3T3 cells) | ↓ IL4Rα, JAK3, STAT6 | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piazza, S.; Fumagalli, M.; Martinelli, G.; Pozzoli, C.; Maranta, N.; Angarano, M.; Sangiovanni, E.; Dell’Agli, M. Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules 2022, 27, 7593. https://doi.org/10.3390/molecules27217593
Piazza S, Fumagalli M, Martinelli G, Pozzoli C, Maranta N, Angarano M, Sangiovanni E, Dell’Agli M. Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules. 2022; 27(21):7593. https://doi.org/10.3390/molecules27217593
Chicago/Turabian StylePiazza, Stefano, Marco Fumagalli, Giulia Martinelli, Carola Pozzoli, Nicole Maranta, Marco Angarano, Enrico Sangiovanni, and Mario Dell’Agli. 2022. "Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases" Molecules 27, no. 21: 7593. https://doi.org/10.3390/molecules27217593
APA StylePiazza, S., Fumagalli, M., Martinelli, G., Pozzoli, C., Maranta, N., Angarano, M., Sangiovanni, E., & Dell’Agli, M. (2022). Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules, 27(21), 7593. https://doi.org/10.3390/molecules27217593