Carbon-Encased Mixed-Metal Selenide Rooted with Carbon Nanotubes for High-Performance Hybrid Supercapacitors
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Materials
3.2. Preparation of Ni-Co-BTC MOFs
3.3. Preparation of Ni-Co@C-CNT Structures by Chemical Vapor Deposition
3.4. Preparation of Ni-Co-Se@C-CNT
3.5. Materials Characterization
3.6. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Song, D.Q.; Guo, H.Z.; Huang, K.; Zhang, H.Y.; Chen, J.; Wang, L.; Lian, C.; Wang, Y. Carboxylated carbon quantum dot-induced binary metal–organic framework nanosheet synthesis to boost the electrocatalytic performance. Mater. Today 2022, 54, 42–51. [Google Scholar] [CrossRef]
- Zhang, W.C.; Lu, J.; Guo, Z.P. Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Mater. Today 2021, 50, 400–417. [Google Scholar] [CrossRef]
- Zhang, F.L.; Zhang, W.C.; Wexler, D.; Guo, Z.P. Recent Progress and Future Advances on Aqueous Monovalent-Ion Batteries towards Safe and High-Power Energy Storage. Adv. Mater. 2022, 34, 2107965. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.C.; Pang, W.K.; Sencadas, V.; Guo, Z.P. Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries. Joule 2018, 2, 1534–1547. [Google Scholar] [CrossRef] [Green Version]
- An, W.D.; Liu, L.; Gao, Y.F.; Liu, Y.; Liu, J.R. Ni0.9Co1.92Se4 nanostructures: Binder-free electrode of coral-like bimetallic selenide for supercapacitors. RSC Adv. 2016, 6, 75251–75257. [Google Scholar] [CrossRef]
- Qu, G.M.; Zhang, X.X.; Xiang, G.T.; Wei, Y.R.; Yin, J.M.; Wang, Z.H.; Zhang, X.L.; Xu, X.J. ZIF-67 derived hollow Ni-Co-Se nano-polyhedrons for flexible hybrid supercapacitors with remarkable electrochemical performances. Chin. Chem. Lett. 2020, 31, 2007–2012. [Google Scholar] [CrossRef]
- Shi, X.; Wang, H.; Ji, S.; Linkov, V.; Liu, F.S.; Wang, R.F. CoNiSe2 nanorods directly grown on Ni foam as advanced cathodes for asymmetric supercapacitors. Chem. Eng. J. 2019, 364, 320–327. [Google Scholar] [CrossRef]
- Li, B.Q.; Liu, Y.; Jin, X.; Jiao, S.H.; Wang, G.R.; Peng, B.; Zeng, S.Y.; Shi, L.; Li, J.M.; Zhang, G.Q. Designed formation of hybrid nanobox composed of carbon sheathed CoSe2 anchored on nitrogen-doped carbon skeleton as ultrastable anode for sodium-ion batteries. Small 2019, 15, 1902881. [Google Scholar] [CrossRef]
- Sakthive, M.; Sukanya, R.; Chen, S.-M.; Pandi, K.; Ho, K.-C. Synthesis and characterization of bimetallic nickel-cobalt chalcogenides (NiCoSe2, NiCo2S4, and NiCo2O4) for non-enzymatic hydrogen peroxide sensor and energy storage: Electrochemical properties dependence on the metal-to-chalcogen composition. Renew. Energ. 2019, 138, 139–151. [Google Scholar] [CrossRef]
- Subhadarshini, S.; Pavitra, E.; Seeta Rama Raju, G.; Chodankar, N.R.; Goswami, D.K.; Han, Y.-K.; Huh, Y.S.; Das, N.C. One-dimensional NiSe-Se hollow nanotubular architecture as a binder-free cathode with enhanced redox reactions for high-performance hybrid supercapacitors. ACS Appl. Mater. Inter. 2020, 12, 29302–29315. [Google Scholar] [CrossRef]
- Hu, X.J.; Liu, X.J.; Chen, K.; Wang, G.; Wang, H. Core–shell MOF-derived N-doped yolk–shell carbon nanocages homogenously filled with ZnSe and CoSe2 nanodots as excellent anode materials for lithium- and sodium-ion batteries. J. Mater. Chem. A 2019, 7, 11016–11037. [Google Scholar] [CrossRef]
- Lei, H.K.; Zhou, J.Z.; Zhao, R.; Peng, H.; Xu, Y.P.; Wang, F.Q.; Hamouda, H.A.; Zhang, W.X.; Ma, G.F. Design and assembly of a novel asymmetric supercapacitor based on all-metal selenides electrodes. Electrochim. Acta 2020, 363, 137206. [Google Scholar] [CrossRef]
- Lv, L.-P.; Zhi, C.W.; Gao, Y.; Yin, X.J.; Hu, Y.Y.; Crespy, D.; Wang, Y. Hierarchical “tube-on-fiber” carbon/mixed-metal selenide nanostructures for high-performance hybrid supercapacitors. Nanoscale 2019, 11, 13996–14009. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.X.; Wang, H.; Fan, J.; Lv, L.-P.; Sun, W.W.; Wang, Y. CNT boosted two-dimensional flaky metal-organic nanosheets for superior lithium and potassium storage. Chem. Eng. J. 2022, 430, 133023. [Google Scholar] [CrossRef]
- Sun, W.W.; Tao, X.C.; Du, P.P.; Wang, Y. Carbon-coated mixed-metal sulfide hierarchical structure: MOF-derived synthesis and lithium-storage performances. Chem. Eng. J. 2019, 366, 622–630. [Google Scholar] [CrossRef]
- Sun, W.W.; Zhang, Y.F.; Wang, Y. Nitrogen-Doped Carbon-Coated Bimetal Selenides for High-Performance Lithium-Ion Storage through the Self-Accommodation of Volume Change. ChemElectroChem 2019, 6, 3736–3741. [Google Scholar] [CrossRef]
- Tang, X.X.; Liang, M.; Zhang, Y.F.; Sun, W.W.; Wang, Y. Ultrafine ternary metal oxide particles with carbon nanotubes: A metal–organic-framework-based approach and superior lithium-storage. Dalton Trans. 2019, 48, 4413–4419. [Google Scholar] [CrossRef]
- Su, Y.; Ao, D.; Liu, H.; Wang, Y. MOF-derived yolk–shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. J. Mater. Chem. A 2017, 5, 8680–8689. [Google Scholar] [CrossRef]
- Miao, C.X.; Xiao, X.H.; Gong, Y.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J.; Cao, D.X.; Wang, G.L.; Xu, P.P. Facile Synthesis of Metal–Organic Framework-Derived CoSe2 Nanoparticles Embedded in the N-Doped Carbon Nanosheet Array and Application for Supercapacitors. ACS Appl. Mater. Inter. 2020, 12, 9365–9375. [Google Scholar] [CrossRef]
- Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2017, 5, 12653–12672. [Google Scholar] [CrossRef]
- Dasgupta, K.; Venugopalan, R.; Dey, G.K.; Sathiyamoorthy, D. Novel catalytic route to bulk production of high purity carbon nanotube. J. Nanopart. Res. 2008, 10, 69–76. [Google Scholar] [CrossRef]
- Esconjauregui, S.; Whelan, C.M.; Maex, K. The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 2009, 47, 659–669. [Google Scholar] [CrossRef]
- Mohammadinezhad, A.; Akhlaghinia, B. Engineered Superparamagnetic Core–Shell Metal–Organic Frame-Work (Fe3O4@Ni–Co-BTC NPs) with Enhanced Photocatalytic Activity for Selective Aerobic Oxidation of Alcohols Under Solar Light Irradiation. Catal. Lett. 2021, 15, 107–123. [Google Scholar] [CrossRef]
- Yin, X.J.; Chen, X.D.; Sun, W.W.; Lv, L.-P.; Wang, Y. Revealing the effect of cobalt-doping on Ni/Mn-based coordination polymers towards boosted Li-Storage performances. Energy Storage Mater. 2020, 25, 846–857. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.Z.; Wen, J.; Gui, P.B.; Guo, Y.X.; Guan, C.; Liu, J.P.; Fang, G.J. Rational Construction of Hollow Core-Branch CoSe2 Nanoarrays for High-Performance Asymmetric Supercapacitor and Efffcient Oxygen Evolution. Small 2018, 14, 1700979. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.S.; Zhou, Y.; Liu, Z.M.; Wang, H.H.; He, Y. NiCo-Se nanoparticles encapsulated N-doped CNTs derived from prussian blue analogues for high performance supercapacitors. Electrochim. Acta 2022, 411, 140064. [Google Scholar] [CrossRef]
- Ibrahim, I.; Zheng, S.; Foo, C.Y.; Huang, N.M.; Lim, H.N. Hierarchical nickel-based metal-organic framework/graphene oxide incorporated graphene nanoplatelet electrode with exceptional cycling stability for coin cell and pouch cell supercapacitors. J. Energy Storage 2021, 43, 103304. [Google Scholar] [CrossRef]
- Shen, C.-H.; Chuang, C.-H.; Gu, Y.-J.; Ho, W.H.; Song, Y.-D.; Chen, Y.-C.; Wang, Y.-C.; Kung, C.-W. Cerium-Based Metal−Organic Framework Nanocrystals Interconnected by Carbon Nanotubes for Boosting Electrochemical Capacitor Performance. ACS Appl. Mater. Interfaces 2021, 13, 16418–16426. [Google Scholar] [CrossRef]
- Lu, M.X.; Wang, G.; Yang, X.P.; Hou, B. In situ growth CNT@MOFs core-shell structures enabling high specific supercapacitances in neutral aqueous electrolyte. Nano Res. 2022, 15, 6112–6120. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Zhang, H.; Hu, B.; Wang, M.H.; Zhang, S.; Jia, Q.J.; He, L.J.; Zhang, Z.H. The intergrated nanostructure of bimetallic CoNi-based zeolitic imidazolate framework and carbon nanotubes as high-performance electrochemical supercapacitors. J. Colloid Interface Sci. 2022, 608, 1257–1267. [Google Scholar] [CrossRef]
- Zardkhoshoui, A.M.; Davarani, S.S.H. Boosting the energy density of supercapacitors by encapsulating a multi-shelled zinc–cobaltselenide hollow nanosphere cathode and a yolk–double shell cobalt–iron-selenide hollow nanosphere anode in a graphene network. Nanoscale 2020, 12, 12476–12489. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.L.; Yan, D.; Xu, H.Y.; Liu, S.; Yang, J.; Qian, Y.T. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: A high-capacity and long-life anode material for advanced lithium ion batteries. Nanoscale 2015, 7, 3520–3525. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.H.; Zhong, S.Y.; Zhang, H.; Zhang, X.J.; Zhu, C.; Duan, J.F.; Li, L.J.; Chen, Z.Y.; Liu, P.; Zhang, G.H.; et al. In situ construction of interconnected SnO2/nitrogen-doped Carbon@TiO2 networks for lithium-ion half/full cells. Electrochim. Acta 2018, 290, 312–321. [Google Scholar] [CrossRef]
- Li, G.R.; Lei, W.; Luo, D.; Deng, Y.P.; Deng, Z.P.; Wang, D.L.; Yu, A.P.; Chen, Z.W. Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. Energy Environ. Sci. 2018, 11, 2372–2381. [Google Scholar] [CrossRef]
- Xie, S.L.; Gou, J.X.; Liu, B.; Liu, C.G. Nickel-cobalt selenide as high-performance and long-life electrode material for supercapacitor. J. Colloid Interface Sci. 2019, 540, 306–314. [Google Scholar] [CrossRef]
- Rajesh, J.A.; Lee, Y.-H.; Yun, Y.-H.; Quy, V.H.V.; Kang, S.-H.; Kim, H.; Ahn, K.-S. Bifunctional NiCo2Se4 and CoNi2Se4 nanostructures: Efficient electrodes for battery-type supercapacitors and electrocatalysts for the oxygen evolution reaction. J. Ind. Eng. Chem. 2019, 79, 370–382. [Google Scholar] [CrossRef]
- Wu, S.; Xue, Y.; Yang, Q.L.; Hu, Q.Z.; Cui, T.; Su, Q. Conductive carbon spheres-supported nickel-cobalt selenide nanoparticles as a high-performance and long-life electrode for supercapacitors. Diam. Relat. Mater. 2021, 111, 108187. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.Y.; Wang, J.S. Optimal surface/diffusion-controlled kinetics of bimetallic selenide nanotubes for hybrid supercapacitors. J. Colloid Interface Sci. 2022, 617, 304–314. [Google Scholar] [CrossRef]
- Zhou, S.X.; Fan, H.L.; He, F.; Fu, Z.B.; Gao, G.M.; Zhang, S.; Hu, X. Role of selenium on the pseudocapacitance of nickel-cobalt selenide. J. Energy Storage 2022, 52, 104832. [Google Scholar] [CrossRef]
- Li, S.; Ruan, Y.J.; Xie, Q. Morphological modulation of NiCo2Se4 nanotubes through hydrothermal selenization for asymmetric supercapacitor. Electrochim. Acta 2020, 356, 136837. [Google Scholar] [CrossRef]
- Tavakoli, F.; Rezaei, B.; Jahromi, A.T.; Ensafi, A.A. Facile Synthesis of Yolk-Shelled CuCo2Se4 Microspheres as a Novel Electrode Material for Supercapacitor Application. ACS Appl. Mater. Interfaces 2020, 12, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Gong, J.X.; Wang, J.H.; Hu, C.H.; Xie, M.Z.; Jin, X.L.; Wang, S.; Dai, Y.T. Facile fabrication of MXene supported nickel-cobalt selenide ternary composite via one-step hydrothermal for high-performance asymmetric supercapacitors. J. Alloys Compd. 2022, 899, 163354. [Google Scholar] [CrossRef]
- Liu, X.; Ding, S.S.; Ye, L.; Du, Y.Q.; Zhao, L.J.; Zhu, Y.F. Optimizing the supercapacitive performance via encasing MOF-derived hollow (Ni,Co)Se2 nanocubes into reduced graphene oxide. Chem. Eng. J. 2020, 399, 125789. [Google Scholar] [CrossRef]
- Qu, Z.H.; Li, J.C.; Guo, M.Y.; Zhao, L.J.; Duan, L.F.; Ding, S.S. Design tremella-like Ni-Co selenide with wonderful electrochemical performances as supercapacitor cathode material. Electrochim. Acta 2021, 393, 139049. [Google Scholar] [CrossRef]
- Du, W.; Zong, Q.; Zhan, J.H.; Yang, H.; Zhang, Q.L. Tailoring Mo-Doped NiCoP Grown on (Ni,Co)Se2 Nanoarrays for Asymmetric Supercapacitor with Enhanced Electrochemical Performance. ACS Appl. Energy Mater. 2021, 4, 6667–6677. [Google Scholar] [CrossRef]
- Yang, Q.J.; Liu, Y.; Deng, C.Y.; Sun, L.; Shi, W.D. In-situ construction of heterostructure (Ni, Co)Se2 nanoarrays derived from cone-like ZIF-L for high-performance hybrid supercapacitors. J. Colloid Interface Sci. 2022, 608, 3049–3058. [Google Scholar] [CrossRef]
- Chebrolu, V.T.; Balakrishnan, B.; Raman, V.; Cho, I.; Bak, J.-S.; Prabakar, K.; Kim, H.-J. Co-electrodeposition of NiCu(OH)2@Ni-Cu-Se hierarchical nanoparticle structure for supercapacitor application with enhanced performance. Appl. Surf. Sci. 2020, 506, 145015. [Google Scholar] [CrossRef]
- Du, M.; Xia, W.M.; Jiao, Z.C.; Chen, Y.Q.; Wang, Z.J.; Deng, Y.F.; Wang, T.; Zhong, W.; Gu, M.M.; Zhang, X.X.; et al. Three-dimensional tree-like (Ni,Co)Se2/Ni(OH)2 hybrid electrode for flexible supercapacitors. J. Alloys Compd. 2022, 911, 165111. [Google Scholar] [CrossRef]
- Sun, P.H.; Zhang, J.; Huang, J.J.; Wang, L.; Wang, P.J.; Cai, C.; Lu, M.X.; Yao, Z.J.; Yang, Y.F. Bimetallic MOF-derived (CuCo)Se nanoparticles embedded in nitrogen-doped carbon framework with boosted electrochemical performance for hybrid supercapacitor. Mater. Res. Bull. 2021, 137, 111196. [Google Scholar] [CrossRef]
- Miao, C.X.; Zhou, C.L.; Wang, H.-E.; Zhu, K.; Ye, K.; Wang, Q.; Yan, J.; Cao, D.X.; Li, N.; Wang, G.L. Hollow Co–Mo–Se nanosheet arrays derived from metal-organic framework for high-performance supercapacitors. J. Power Sources 2021, 490, 229532. [Google Scholar] [CrossRef]
- Chebrolu, V.T.; Balakrishnan, B.; Chinnadurai, D.; Kim, H.-J. Selective Growth of Zn–Co–Se Nanostructures on Various Conductive Substrates for Asymmetric Flexible Hybrid Supercapacitor with Enhanced Performance. Adv. Mater. Technol. 2020, 5, 1900873. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Cui, P.; Liu, J.; Ding, W.; Wang, Y.; Lv, L. Carbon-Encased Mixed-Metal Selenide Rooted with Carbon Nanotubes for High-Performance Hybrid Supercapacitors. Molecules 2022, 27, 7507. https://doi.org/10.3390/molecules27217507
Yuan Y, Cui P, Liu J, Ding W, Wang Y, Lv L. Carbon-Encased Mixed-Metal Selenide Rooted with Carbon Nanotubes for High-Performance Hybrid Supercapacitors. Molecules. 2022; 27(21):7507. https://doi.org/10.3390/molecules27217507
Chicago/Turabian StyleYuan, Yu, Panpan Cui, Jie Liu, Wei Ding, Yong Wang, and Liping Lv. 2022. "Carbon-Encased Mixed-Metal Selenide Rooted with Carbon Nanotubes for High-Performance Hybrid Supercapacitors" Molecules 27, no. 21: 7507. https://doi.org/10.3390/molecules27217507
APA StyleYuan, Y., Cui, P., Liu, J., Ding, W., Wang, Y., & Lv, L. (2022). Carbon-Encased Mixed-Metal Selenide Rooted with Carbon Nanotubes for High-Performance Hybrid Supercapacitors. Molecules, 27(21), 7507. https://doi.org/10.3390/molecules27217507