First Evidence of a Combination of Terpinen-4-ol and α-Terpineol as a Promising Tool against ESKAPE Pathogens
Abstract
:1. Introduction
2. Results
2.1. Antibacterial Activity of α-Terpineol and Terpinen-4-ol, Alone
2.2. Synergstic Antibacterial Activity between α-Terpineol and Terpinen-4-ol
2.3. Comparison of the Bacteriostactic Activities of the α-Terpineol and Terpinen-4-ol Mixture and Tea Tree Oil
2.4. Antibacterial Activity of α-Terpineol and Terpinen-4-ol on ESKAPE Pathogens
2.5. Bactericidal Activity of Synterpicine™
2.6. Time Kill Assays
2.7. Bactericidal Activity of Synterpicine™ on Dormant Bacteria
2.8. Cytotoxicity of Synterpicine™
2.9. In Silico Study of Pharmacokinetic Parameters
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.1.1. Active Compounds
4.1.2. Samples Preparation
4.2. Antimicrobial Activities
4.2.1. Bacteria
4.2.2. Growth Conditions and Inoculum Preparation
4.2.3. The Minimum Inhibitory Concentration (MIC) and the Minimum Bactericidal Concentration (MBC) Determination
4.2.4. Latent Bacteria (Dormant, Persister Cells)
4.2.5. Synergy
4.2.6. Time Kill
4.3. In Vitro Cytotoxicity
4.4. Statistical Analysis
4.5. In Silico Pharmacokinetic Parameters
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Duval, R.E.; Grare, M.; Demoré, B. Fight against Antimicrobial Resistance: We Always Need New Antibacterials but for Right Bacteria. Molecules 2019, 24, 3152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca Alternifolia (Tea Tree) Oil: A Review of Antimicrobial and Other Medicinal Properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi-Rad, J.; Salehi, B.; Varoni, E.M.; Sharopov, F.; Yousaf, Z.; Ayatollahi, S.A.; Kobarfard, F.; Sharifi-Rad, M.; Afdjei, M.H.; Sharifi-Rad, M.; et al. Plants of the Melaleuca Genus as Antimicrobial Agents: From Farm to Pharmacy. Phytother. Res. 2017, 31, 1475–1494. [Google Scholar] [CrossRef] [PubMed]
- Yasin, M.; Younis, A.; Javed, T.; Akram, A.; Ahsan, M.; Shabbir, R.; Ali, M.M.; Tahir, A.; El-Ballat, E.M.; Sheteiwy, M.S.; et al. River Tea Tree Oil: Composition, Antimicrobial and Antioxidant Activities, and Potential Applications in Agriculture. Plants 2021, 10, 2105. [Google Scholar] [CrossRef]
- Johansen, B.; Duval, R.E.; Sergere, J.C. Antimicrobial Spectrum of TitroleaneTM: A New Potent Anti-Infective Agent. Antibiotics 2020, 9, 391. [Google Scholar] [CrossRef]
- Dong, L.; Liu, C.; Cun, D.; Fang, L. The Effect of Rheological Behavior and Microstructure of the Emulgels on the Release and Permeation Profiles of Terpinen-4-Ol. Eur. J. Pharm. Sci. 2015, 78, 140–150. [Google Scholar] [CrossRef]
- Griffin, S.G.; Wyllie, S.G.; Markham, J.L.; Leach, D.N. The Role of Structure and Molecular Properties of Terpenoids in Determining Their Antimicrobial Activity. Flavour. Fragr. J. 1999, 14, 322332. [Google Scholar] [CrossRef]
- Carson, C.F.; Riley, T.V. Antimicrobial Activity of the Major Components of the Essential Oil of Melaleuca alternifolia. J. Appl. Bacteriol. 1995, 78, 264–269. [Google Scholar] [CrossRef]
- Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial Activity of Essential Oils and Their Major Constituents against Respiratory Tract Pathogens by Gaseous Contact. J. Antimicrob. Chemother. 2001, 47, 565–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrini, A.M.; Mannoni, V.; Aureli, P.; Salvatore, G.; Piccirillp, E.; Ceddia, T.; Pontieri, E.; Sessa, R.; Oliva, B. Melaleuca alternifolia Essential Oil Possesses Potent Anti-Staphylococcal Activity Extended to Strains Resistant to Antibiotics. Int. J. Immunopathol. Pharmacol. 2006, 19, 539–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Feng, R.; Li, L.; Zhou, X.; Li, Z.; Jia, R.; Song, X.; Zou, Y.; Yin, L.; He, C.; et al. The Antibacterial Mechanism of Terpinen-4-Ol against Streptococcus Agalactiae. Curr. Microbiol. 2018, 75, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Maquera-Huacho, P.M.; Tonon, C.C.; Correia, M.F.; Francisconi, R.S.; Bordini, E.A.F.; Marcantonio, É.; Spolidorio, D.M.P. In Vitro Antibacterial and Cytotoxic Activities of Carvacrol and Terpinen-4-Ol against Biofilm Formation on Titanium Implant Surfaces. Biofouling 2018, 34, 699–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulos, C.J. Susceptibility of Pseudomonads to Melaleuca alternifolia (Tea Tree) Oil and Components. J. Antimicrob. Chemother. 2006, 58, 449–451. [Google Scholar] [CrossRef]
- Loughlin, R.; Gilmore, B.F.; McCarron, P.A.; Tunney, M.M. Comparison of the Cidal Activity of Tea Tree Oil and Terpinen-4-Ol against Clinical Bacterial Skin Isolates and Human Fibroblast Cells. Lett. Appl. Microbiol. 2008, 46, 428–433. [Google Scholar] [CrossRef]
- Vasireddy, L.; Bingle, L.E.H.; Davies, M.S. Antimicrobial Activity of Essential Oils against Multidrug-Resistant Clinical Isolates of the Burkholderia Cepacia Complex. PLoS ONE 2018, 13, e0201835. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Medeiros, D.; Nóbrega, J.; Silva, D.; Martins, E.; Barbosa-Filho, J.; et al. Terpinen-4-Ol as an Antibacterial and Antibiofilm Agent against Staphylococcus aureus. Int. J. Mol. Sci. 2020, 21, 4531. [Google Scholar] [CrossRef]
- Huang, J.; Yang, L.; Zou, Y.; Luo, S.; Wang, X.; Liang, Y.; Du, Y.; Feng, R.; Wei, Q. Antibacterial Activity and Mechanism of Three Isomeric Terpineols of Cinnamomum Longepaniculatum Leaf Oil. Folia Microbiol. (Praha) 2021, 66, 59–67. [Google Scholar] [CrossRef]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of Action of Melaleuca Alternifolia (Tea Tree) Oil on Staphylococcus Aureus Determined by Time-Kill, Lysis, Leakage, and Salt Tolerance Assays and Electron Microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef]
- Papadopoulos, C.J.; Carson, C.F.; Chang, B.J.; Riley, T.V. Role of the MexAB-OprM Efflux Pump of Pseudomonas Aeruginosa in Tolerance to Tea Tree ( Melaleuca alternifolia ) Oil and Its Monoterpene Components Terpinen-4-Ol, 1,8-Cineole, and α-Terpineol. Appl. Environ. Microbiol. 2008, 74, 1932–1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerekes, E.B.; Vidács, A.; Takó, M.; Petkovits, T.; Vágvölgyi, C.; Horváth, G.; Balázs, V.L.; Krisch, J. Anti-Biofilm Effect of Selected Essential Oils and Main Components on Mono- and Polymicrobic Bacterial Cultures. Microorganisms 2019, 7, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordini, E.A.F.; Tonon, C.C.; Francisconi, R.S.; Magalhães, F.A.C.; Huacho, P.M.M.; Bedran, T.L.; Pratavieira, S.; Spolidorio, L.C.; Spolidorio, D.P. Antimicrobial Effects of Terpinen-4-Ol against Oral Pathogens and Its Capacity for the Modulation of Gene Expression. Biofouling 2018, 34, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.K.; Chauhan, M.; Dhingra, N.; Chhibber, S.; Harjai, K. Terpinen-4-Ol Attenuates Quorum Sensing Regulated Virulence Factors and Biofilm Formation in Pseudomonas Aeruginosa. Future Microbiol. 2020, 15, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Duan, F.; Gong, M.; Tian, X.; Guo, Y.; Jia, L.; Deng, S. (+)-Terpinen-4-Ol Inhibits Bacillus Cereus Biofilm Formation by Upregulating the Interspecies Quorum Sensing Signals Diketopiperazines and Diffusing Signaling Factors. J. Agric. Food Chem. 2021, 69, 3496–3510. [Google Scholar] [CrossRef]
- Zhang, C.; Li, M.; Zhao, G.-R.; Lu, W. Alpha-Terpineol Production from an Engineered Saccharomyces Cerevisiae Cell Factory. Microb. Cell Fact. 2019, 18, 160. [Google Scholar] [CrossRef]
- Schweitzer, B.; Balázs, V.L.; Molnár, S.; Szögi-Tatár, B.; Böszörményi, A.; Palkovics, T.; Horváth, G.; Schneider, G. Antibacterial Effect of Lemongrass (Cymbopogon Citratus) against the Aetiological Agents of Pitted Keratolyis. Molecules 2022, 27, 1423. [Google Scholar] [CrossRef]
- Held, S.; Schieberle, P.; Somoza, V. Characterization of α-Terpineol as an Anti-Inflammatory Component of Orange Juice by in Vitro Studies Using Oral Buccal Cells. J. Agric. Food Chem. 2007, 55, 8040–8046. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.-W.; Yin, Z.-Q.; Wei, Q.; Jia, R.-Y.; Zhou, L.-J.; Xu, J.; Song, X.; Zhou, Y.; Du, Y.-H.; et al. Antibacterial Activity of Leaf Essential Oil and Its Constituents from Cinnamomum Longepaniculatum. Int. J. Clin. Exp. Med. 2014, 7, 1721–1727. [Google Scholar]
- Badawy, M.E.I.; Marei, G.I.K.; Rabea, E.I.; Taktak, N.E.M. Antimicrobial and Antioxidant Activities of Hydrocarbon and Oxygenated Monoterpenes against Some Foodborne Pathogens through in Vitro and in Silico Studies. Pestic. Biochem. Physiol. 2019, 158, 185–200. [Google Scholar] [CrossRef]
- Sales, A.; Felipe, L.D.O.; Bicas, J.L. Production, Properties, and Applications of α-Terpineol. Food Bioproc. Tech. 2020, 13, 1261–1279. [Google Scholar] [CrossRef]
- Miyamoto, T.; Okimoto, T.; Kuwano, M. Chemical Composition of the Essential Oil of Mastic Gum and Their Antibacterial Activity against Drug-Resistant Helicobacter Pylori. Nat. Prod. Bioprospect. 2014, 4, 227–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olszewska, M.A.; Gędas, A.; Simões, M. The Effects of Eugenol, Trans-Cinnamaldehyde, Citronellol, and Terpineol on Escherichia Coli Biofilm Control as Assessed by Culture-Dependent and -Independent Methods. Molecules 2020, 25, 2641. [Google Scholar] [CrossRef]
- Li, L.; Shi, C.; Yin, Z.; Jia, R.; Peng, L.; Kang, S.; Li, Z. Antibacterial Activity of α-Terpineol May Induce Morphostructural Alterations in Escherichia coli. Braz. J. Microbiol. 2014, 45, 1409–1413. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zengin, H.; Baysal, A. Antibacterial and Antioxidant Activity of Essential Oil Terpenes against Pathogenic and Spoilage-Forming Bacteria and Cell Structure-Activity Relationships Evaluated by SEM Microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef] [Green Version]
- Altun, M.; Yapici, B.M. Determination of Chemical Compositions and Antibacterial Effects of Selected Essential Oils against Human Pathogenic Strains. An. Acad. Bras. Cienc. 2022, 94. [Google Scholar] [CrossRef]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The Antimicrobial Efficacy of Plant Essential Oil Combinations and Interactions with Food Ingredients. Int. J. Food Microbiol. 2008, 124, 91–97. [Google Scholar] [CrossRef] [Green Version]
- ISO 4730; Essential Oil of Melaleuca, Terpinen-4-Ol Type (Tea Tree Oil). International Organization for Standardization: Geneva, Switzerland, 2017.
- CLSI. Methods of Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline M26-A; CLSI: Wayne, PA, USA, 1999. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Wildman, S.A.; Crippen, G.M. Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. CLSI Document M07-A8, 8th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2009. [Google Scholar]
- Budzynska, A.; Wieckowska-Szakiel, M.; Sadowska, B.; Kalemba, D.; Rozalska, B. Antibiofilm Activity of Selected Plant Essential Oils and Their Major Components. Pol. J. Microbiol. 2011, 60, 35–41. [Google Scholar] [CrossRef]
- Kurekci, C.; Padmanabha, J.; Bishop-Hurley, S.L.; Hassan, E.; al Jassim, R.A.M.; McSweeney, C.S. Antimicrobial Activity of Essential Oils and Five Terpenoid Compounds against Campylobacter Jejuni in Pure and Mixed Culture Experiments. Int. J. Food Microbiol. 2013, 166, 450–457. [Google Scholar] [CrossRef]
- Leigh-de Rapper, S.; Viljoen, A.; van Vuuren, S. Essential Oil Blends: The Potential of Combined Use for Respiratory Tract Infections. Antibiotics 2021, 10, 1517. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [Green Version]
- van Zyl, R.L.; Seatlholo, S.T.; van Vuuren, S.F.; Viljoen, A. Pharmacological Interactions of Essential Oil Constituents on the Viability of Microorganisms. Nat. Prod. Commun. 2010, 5, 1934578X1000500. [Google Scholar] [CrossRef] [Green Version]
- Ahmed Khan, R.; Vuuren, S.F. Essential Oil Combinations against Clostridium Perfringens and Clostridium Septicum—The Causative Agents of Gas Gangrene. J. Appl. Microbiol. 2021, 131, 1177–1192. [Google Scholar] [CrossRef]
- Nikolić, M.M.; Jovanović, K.K.; Marković, T.L.; Marković, D.L.; Gligorijević, N.N.; Radulović, S.S.; Kostić, M.; Glamočlija, J.M.; Soković, M.D. Antimicrobial Synergism and Cytotoxic Properties of Citrus limon L., Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel Essential Oils. J. Pharm. Pharmacol. 2017, 69, 1606–1614. [Google Scholar] [CrossRef]
- Yang, T.-S.; Chao, L.K.-P.; Liu, T.-T. Antimicrobial Activity of the Essential Oil of Glossogyne tenuifolia against Selected Pathogens. J. Sci. Food Agric. 2014, 94, 2965–2971. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L. Interactions between Components of the Essential Oil of Melaleuca Alternifolia. J. Appl. Microbiol. 2001, 91, 492–497. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Ribeiro, M.; Malheiro, J.; Grenho, L.; Fernandes, M.H.; Simões, M. Cytotoxicity and Antimicrobial Action of Selected Phytochemicals against Planktonic and Sessile Streptococcus mutans. PeerJ 2018, 6, e4872. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Mo, Y.; Chen, K.; Shang, X.; Yang, Z.; Hao, B.; Shang, R.; Liang, J.; Liu, Y. Integration of Metabolomics and Transcriptomics Indicates Changes in MRSA Exposed to Terpinen-4-Ol. BMC Microbiol. 2021, 21, 305. [Google Scholar] [CrossRef]
- Kim, J.; Chowdhury, N.; Yamasaki, R.; Wood, T.K. Viable but Non-culturable and Persistence Describe the Same Bacterial Stress State. Environ. Microbiol. 2018, 20, 2038–2048. [Google Scholar] [CrossRef]
- Hong, S.H.; Wang, X.; O’Connor, H.F.; Benedik, M.J.; Wood, T.K. Bacterial Persistence Increases as Environmental Fitness Decreases. Microb. Biotechnol. 2012, 5, 509–522. [Google Scholar] [CrossRef]
- Song, S.; Wood, T.K. Combatting Persister Cells with Substituted Indoles. Front. Microbiol. 2020, 11, 1565. [Google Scholar] [CrossRef]
- van den Bergh, B.; Fauvart, M.; Michiels, J. Formation, Physiology, Ecology, Evolution and Clinical Importance of Bacterial Persisters. FEMS Microbiol. Rev. 2017, 41, 219–251. [Google Scholar] [CrossRef]
- Lewis, K. Persister Cells. Annu. Rev. Microbiol. 2010, 64, 357–372. [Google Scholar] [CrossRef]
- Shapira, S.; Pleban, S.; Kazanov, D.; Tirosh, P.; Arber, N. Terpinen-4-Ol: A Novel and Promising Therapeutic Agent for Human Gastrointestinal Cancers. PLoS ONE 2016, 11, e0156540. [Google Scholar] [CrossRef] [Green Version]
- Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a Natural Monoterpene: A Review of Its Biological Properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
- Kulig, M.; Galanty, A.; Grabowska, K.; Podolak, I. Assessment of Safety and Health-Benefits of Citrus Hystrix DC. Peel Essential Oil, with Regard to Its Bioactive Constituents in an in Vitro Model of Physiological and Pathological Skin Conditions. Biomed. Pharmacother. 2022, 151, 113151. [Google Scholar] [CrossRef]
- Greay, S.J.; Ireland, D.J.; Kissick, H.T.; Levy, A.; Beilharz, M.W.; Riley, T.V.; Carson, C.F. Induction of Necrosis and Cell Cycle Arrest in Murine Cancer Cell Lines by Melaleuca Alternifolia (Tea Tree) Oil and Terpinen-4-Ol. Cancer Chemother. Pharmacol. 2010, 65, 877–888. [Google Scholar] [CrossRef]
- di Martile, M.; Garzoli, S.; Sabatino, M.; Valentini, E.; D’Aguanno, S.; Ragno, R.; del Bufalo, D. Antitumor Effect of Melaleuca Alternifolia Essential Oil and Its Main Component Terpinen-4-Ol in Combination with Target Therapy in Melanoma Models. Cell Death Discov. 2021, 7, 127. [Google Scholar] [CrossRef]
- Kłos, P.; Chlubek, D. Plant-Derived Terpenoids: A Promising Tool in the Fight against Melanoma. Cancers 2022, 14, 502. [Google Scholar] [CrossRef]
- Negreiros, H.A.; de Moura, K.G.; Barreto do Nascimento, M.L.L.; do Nascimento Rodrigues, D.C.; Ferreir, P.M.P.; Braz, D.C.; de Farias, M.G.; de Sousa Corrêia, L.; Pereira, A.R.S.; Santos, L.K.B.; et al. Alpha-Terpineol as Antitumor Candidate in Pre-Clinical Studies. Anticancer Agents Med. Chem. 2021, 21, 2023–2031. [Google Scholar] [CrossRef]
- Fukushima, S.; Cohen, S.M.; Eisenbrand, G.; Gooderham, N.J.; Guengerich, F.P.; Hecht, S.S.; Rietjens, I.M.C.M.; Rosol, T.J.; Davidsen, J.M.; Harman, C.L.; et al. FEMA GRAS Assessment of Natural Flavor Complexes: Lavender, Guaiac Coriander-Derived and Related Flavoring Ingredients. Food Chem. Toxicol. 2020, 145, 111584. [Google Scholar] [CrossRef]
- Gali-Muhtasib, H.U. SAGE Components Enhance Cell Death through Nuclear Factor Kappa-B Signaling. Front. Biosci. 2011, E3, 256. [Google Scholar] [CrossRef]
- Belley, A.; Neesham-Grenon, E.; McKay, G.; Arhin, F.F.; Harris, R.; Beveridge, T.; Parr, T.R.; Moeck, G. Oritavancin Kills Stationary-Phase and Biofilm Staphylococcus Aureus Cells In Vitro. Antimicrob. Agents Chemother. 2009, 53, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, M.; Oogai, Y.; Kato, F.; Sugai, M.; Komatsuzawa, H. Growth-Phase Dependence of Susceptibility to Antimicrobial Peptides in Staphylococcus aureus. Microbiology 2011, 157, 1786–1797. [Google Scholar] [CrossRef] [Green Version]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Terminology Relating to Methods for the Determination of Susceptibility of Bacteria to Antimicrobial Agents. Clin. Microbiol. Infect. 2000, 6, 503–508. [Google Scholar] [CrossRef] [Green Version]
- May, J.; Chan, C.H.; King, A.; Williams, L.; French, G.L. Time-Kill Studies of Tea Tree Oils on Clinical Isolates. J. Antimicrob. Chemother. 2000, 45, 639. [Google Scholar] [CrossRef] [PubMed]
- Petersen, P.J.; Jones, C.H.; Bradford, P.A. In Vitro Antibacterial Activities of Tigecycline and Comparative Agents by Time-Kill Kinetic Studies in Fresh Mueller-Hinton Broth. Diagn Microbiol. Infect. Dis. 2007, 59, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Söderberg, T.A.; Johansson, A.; Gref, R. Toxic Effects of Some Conifer Resin Acids and Tea Tree Oil on Human Epithelial and Fibroblast Cells. Toxicology 1996, 107, 99–109. [Google Scholar] [CrossRef]
- Brackman, G.; Forier, K.; al Quntar, A.A.A.; de Canck, E.; Enk, C.D.; Srebnik, M.; Braeckmans, K.; Coenye, T. Thiazolidinedione Derivatives as Novel Agents against Propionibacterium acnes Biofilms. J. Appl. Microbiol. 2014, 116, 492–501. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of Octanol–Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
- Moriguchi, I.; Hirono, S.; Nakagome, I.; Hirano, H. Comparison of Reliability of Log P Values for Drugs Calculated by Several Methods. Chem. Pharm. Bull. 1994, 42, 976–978. [Google Scholar] [CrossRef] [Green Version]
- Moriguchi, I.; Hirono, S.; Liu, Q.; Nakagome, I.; Matsushita, Y. Simple Method of Calculating Octanol/Water Partition Coefficient. Chem. Pharm. Bull. (Tokyo) 1992, 40, 127–130. [Google Scholar] [CrossRef]
- Delaney, J.S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the General Solubility Equation: In Silico Prediction of Aqueous Solubility Incorporating the Effect of Topographical Polar Surface Area. J. Chem. Inf. Model. 2012, 52, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Potts, R.O.; Guy, R.H. Predicting Skin Permeability. Pharm. Res. 1992, 09, 663–669. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Martin, Y.C. A Bioavailability Score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef]
Species/Strains | Terpinen-4-ol | α-Terpineol | Antibiotic | ||||
---|---|---|---|---|---|---|---|
% (v:v) | mM | mg/mL | % (v:v) | mM | mg/mL | (µg/mL) | |
Staphylococcus aureus | 1.25–2.50 | 74.6–149 | 11.5–23.0 | 0.62–2.50 | 37.3–149 | 5.76–23.0 | 0.039–0.078 |
MRSA | 1.25 | 74.6 | 11.5 | 1.25 | 74.6 | 11.5 | 1.25–>2.50 |
Escherichia coli | 0.31–2.50 | 18.6–149 | 2.88–23.0 | 0.15–1.25 | 9.33–74.6 | 1.44–11.5 | 1.56–6.50 |
Pseudomonas aeruginosa | 2.50 | 149 | 23.0 | 1.25–>2.50 | 74.6–>149 | 11.5–>23.0 | 0.19–0.39 |
Species/Strains | FIC Terpinen-4-ol | FIC α-Terpineol | FICI | Effect | Antibiotic (µg/mL) |
---|---|---|---|---|---|
Staphylococcus aureus | 0.062 | 0.125 | 0.312 | Synergy | 5.00–10.00 |
0.125 | 0.25 | 0.25 | Synergy | ||
0.25 | 0.25 | 0.5 | Synergy | ||
MRSA | 0.125 | 0.062 | 0.312 | Synergy | 1.25 |
0.25 | 0.25 | 0.375 | Synergy | ||
0.25 | 0.25 | 0.5 | Synergy | ||
Escherichia coli | 0.062 | 0.031 | 0.093 | Synergy | 3.12–12.50 |
0.25 | 0.125 | 0.375 | Synergy | ||
0.25 | 0.25 | 0.5 | Synergy | ||
Pseudomonas aeruginosa | 0.125 | 0.125 | 0.25 | Synergy | 0.19–4.56 |
0.125 | 0.125 | 0.25 | Synergy | ||
0.5 | 0.125 | 0.625 | Additive |
Order | Species/Strains | MIC | |
---|---|---|---|
TTO | Synterp. | ||
Bacillales | Staphylococcus aureus | 1.25 | 1.25–2.50 |
MRSA | 1.25–2.50 | 1.25–>2.50 | |
Enterobacteriales | Escherichia coli | 0.62–2.50 | 0.31–0.62 |
Pseudomonadales | Pseudomonas aeruginosa | 0.62–2.50 | 1.25–2.50 |
Order | Species/Strains | MIC |
---|---|---|
Synterp. | ||
Bacillales | Staphylococcus aureus | 1.25–2.50 |
MRSA | 1.25–>2.50 | |
Lactobacillales | Enterococcus faecium | 2.50–>2.50 |
Enterobacteriales | Enterobacter cloacae | 0.62–2.50 |
Klebsiella pneumoniae | 0.62 | |
Escherichia coli | 0.31–0.62 | |
Pseudomonadales | Acinetobacter baumannii | 0.62–1.25 |
Pseudomonas aeruginosa | 1.25–2.50 |
Order | Species/Strains | MBC |
---|---|---|
Synterp. | ||
Bacillales | Staphylococcus aureus | >2.50 |
MRSA | 2.50–>2.50 | |
Lactobacillales | Enterococcus faecium | >2.50 |
Enterobacteriales | Escherichia coli | 0.62–2.50 |
Enterobacter cloacae | 1.25–2.50 | |
Klebsiella oxytoca | 0.31–0.62 | |
Klebsiella pneumoniae | 0.62 | |
Pseudomonadales | Acinetobacter baumannii | 1.25–2.50 |
Pseudomonas aeruginosa | 1.25–2.50 |
Exponential | Latency | ||
---|---|---|---|
Bacterial count (Log10 CFU/mL) | T0 | 5.45 ± 0.05 | 5.32 ± 1.37 |
T24 | 8.88 ± 0.005 | 5.45 ± 0.65 | |
MBC | Synterpicine™ (%) | 0.31 | 0.62–1.25 |
DMSO (%) | >2.50 | >2.50 | |
Amoxicillin (µg/mL) | 3.12–12.50 | >25 |
Physicochemical Properties | |
---|---|
Formula | C10H18O |
Molecular weight | 154.25 g/mol |
num. heavy atoms | 11 |
Num. arom. heavy atoms | 0 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 1 |
Num. H-bond donors | 1 |
Molar refractivity | 48.80 |
TPSA | 20.23 Å2 |
Lipophilicity | |
Log Po/w (iLOGP) | 2.51 |
Log Po/w (XLOGP3) | 3.39 |
Log Po/w (WLOGP) | 2.50 |
Log Po/w (MLOGP) | 2.30 |
Log Po/w (SILICOS-IT) | 2.44 |
Consensus Log Po/w | 2.58 |
Water solubility | |
Log S (ESOL) | −2.78 |
Solubility | 2.54 × 10−1 mg/mL; 1.64 × 10−3 mol/L |
Class | Soluble |
Log S (Ali) | −3.36 |
Solubility | 6.75 × 10−2 mg/mL; 4.38 × 10−4 mol/L |
Class | Soluble |
Log S (SILICOS-IT) | −1.91 |
Solubility | 1.92 mg/mL; 1.24 × 10−2 mol/L |
Class (Ali) | Soluble |
Pharmacokinetics | |
GI absorption | High |
BBB permeant | Yes |
P-gp substrate | No |
CYP1A2 inhibitor | No |
CYPC19 inhibitor | No |
CYP2C9 inhibitor | No |
CYP2D6 inhibitor | No |
CYP3A4 inhibitor | No |
Log Kp (skin permeation) | −4.93 cm/s |
Druglikeness | |
Lipinski | Yes; 0 violation |
Ghose | No; violation: MW < 160 |
Veber | Yes |
Egan | Yes |
Bioavailability score | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johansen, B.; Duval, R.E.; Sergere, J.-C. First Evidence of a Combination of Terpinen-4-ol and α-Terpineol as a Promising Tool against ESKAPE Pathogens. Molecules 2022, 27, 7472. https://doi.org/10.3390/molecules27217472
Johansen B, Duval RE, Sergere J-C. First Evidence of a Combination of Terpinen-4-ol and α-Terpineol as a Promising Tool against ESKAPE Pathogens. Molecules. 2022; 27(21):7472. https://doi.org/10.3390/molecules27217472
Chicago/Turabian StyleJohansen, Bianca, Raphaël E. Duval, and Jean-Christophe Sergere. 2022. "First Evidence of a Combination of Terpinen-4-ol and α-Terpineol as a Promising Tool against ESKAPE Pathogens" Molecules 27, no. 21: 7472. https://doi.org/10.3390/molecules27217472
APA StyleJohansen, B., Duval, R. E., & Sergere, J. -C. (2022). First Evidence of a Combination of Terpinen-4-ol and α-Terpineol as a Promising Tool against ESKAPE Pathogens. Molecules, 27(21), 7472. https://doi.org/10.3390/molecules27217472