Advances in Asymmetric Wettable Janus Materials for Oil–Water Separation
Abstract
:1. Introduction
2. Preparation of Asymmetric Wettable Janus Materials
2.1. Layer-by-Layer Assembly Method
2.2. Single-Sided Modification Method
3. Two-Dimensional Asymmetric Wettable Janus Materials
4. Three-Dimensional Asymmetric Wettable Janus Materials
5. Smart Responsive Asymmetric Wettable Janus Materials
5.1. pH-Responsive Asymmetric Wettable Janus Materials
5.2. Thermal-Responsive Asymmetric Wettable Janus Materials
5.3. Light-Responsive Asymmetric Wettable Janus Materials
5.4. Electric-Responsive Asymmetric Wettable Janus Materials
6. Environmentally Friendly Asymmetric Wettable Janus Materials
7. Summary and Outlook
- (1)
- Compared to 2D Janus materials, 3D Janus materials have a more practical application value and broader development prospects. More research on 3D Janus materials are appealed. Degradable raw materials should be selected in the preparation process, such as photodegradable materials and biodegradable materials. Convenient preparation methods need be developed to reduce preparation difficulty, which could facilitate industrial mass production and practical application. What’s more, it is necessary for oil–water separation materials to be recycled.
- (2)
- The smart responsive Janus materials possess better intelligent performance for on-demand oil–water separation. The existing research is focused on 2D smart responsive materials. The 3D smart responsive materials are more advanced than 2D smart responsive materials. Hence, it is suggested that researchers can introduce smart responsive monomers to develop 3D smart responsive materials in the future.
- (3)
- Researchers in various fields are now moving in the direction of environmental friendliness, sustainability, and greenness. It is the future trend of asymmetric wettable Janus materials too. Although the current asymmetric wettable Janus materials have been available to perform oil–water separation excellently, most of them could lead to secondary contamination during the preparation process and after being discarded. The causes of secondary contamination include non-degradable raw materials, toxic and harmful reagents in the preparation process, and non-recyclable materials. Therefore, the future development of asymmetric wettable Janus materials should focus on finding environmentally friendly, renewable, and degradable resources as raw materials; optimizing the preparation process; and avoiding the use of toxic and harmful reagents. It is expected that environmentally friendly Janus materials will be paid more attention in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Zhang, W.; Wan, Z.; Li, S.; Huang, T.; Fei, Y. Oil Spills from Global Tankers: Status Review and Future Governance. J. Clean. Prod. 2019, 227, 20–32. [Google Scholar] [CrossRef]
- Bengani-Lutz, P.; Zaf, R.D.; Culfaz-Emecen, P.Z.; Asatekin, A. Extremely Fouling Resistant Zwitterionic Copolymer Membranes with ~ 1 Nm Pore Size for Treating Municipal, Oily and Textile Wastewater Streams. J. Membr. Sci. 2017, 543, 184–194. [Google Scholar] [CrossRef]
- Zeng, X.; Qian, L.; Yuan, X.; Zhou, C.; Li, Z.; Cheng, J.; Xu, S.; Wang, S.; Pi, P.; Wen, X. Inspired by Stenocara Beetles: From Water Collection to High-Efficiency Water-in-Oil Emulsion Separation. ACS Nano 2017, 11, 760–769. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.-H. Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants from Different Geographical Regions-a Review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Almojjly, A.; Johnson, D.; Oatley-Radcliffe, D.L.; Hilal, N. Removal of Oil from Oil-Water Emulsion by Hybrid Coagulation/Sand Filter as Pre-Treatment. J. Water Process Eng. 2018, 26, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Li, X.; Xu, Q.; Garcia-Pineda, O.; Andersen, O.B.; Pichel, W.G. SAR Observation and Model Tracking of an Oil Spill Event in Coastal Waters. Mar. Pollut. Bull. 2011, 62, 350–363. [Google Scholar] [CrossRef]
- Gupta, R.K.; Dunderdale, G.J.; England, M.W.; Hozumi, A. Oil/Water Separation Techniques: A Review of Recent Progresses and Future Directions. J. Mater. Chem. A 2017, 5, 16025–16058. [Google Scholar] [CrossRef]
- Abdulredha, M.M. Water-in-Oil Emulsion Stability and Demulsification via Surface-Active Compounds: A Review. J. Pet. Sci. Eng. 2022, 15. [Google Scholar] [CrossRef]
- Ismail, N.H.; Salleh, W.N.W.; Ismail, A.F.; Hasbullah, H.; Yusof, N.; Aziz, F.; Jaafar, J. Hydrophilic Polymer-Based Membrane for Oily Wastewater Treatment: A Review. Sep. Purif. Technol. 2020, 233, 116007. [Google Scholar] [CrossRef]
- Kücük, Ş.; Hejase, C.A.; Kolesnyk, I.S.; Chew, J.W.; Tarabara, V.V. Microfiltration of Saline Crude Oil Emulsions: Effects of Dispersant and Salinity. J. Hazard. Mater. 2021, 412, 124747. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, G.; Bai, R.; Shen, S.; Zhou, X.; Wyman, I. Fabrication of Superhydrophilic and Underwater Superoleophobic Membranes via an in Situ Crosslinking Blend Strategy for Highly Efficient Oil/Water Emulsion Separation. J. Membr. Sci. 2019, 569, 60–70. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, D.; Jiang, L.; Jin, J. Recent Progress in Developing Advanced Membranes for Emulsified Oil/Water Separation. NPG Asia Mater. 2014, 6, e101. [Google Scholar] [CrossRef]
- Song, J.; Huang, S.; Lu, Y.; Bu, X.; Mates, J.E.; Ghosh, A.; Ganguly, R.; Carmalt, C.J.; Parkin, I.P.; Xu, W.; et al. Self-Driven One-Step Oil Removal from Oil Spill on Water via Selective-Wettability Steel Mesh. ACS Appl. Mater. Interfaces 2014, 6, 19858–19865. [Google Scholar] [CrossRef] [PubMed]
- Chew, N.G.P.; Zhang, Y.; Goh, K.; Ho, J.S.; Xu, R.; Wang, R. Hierarchically Structured Janus Membrane Surfaces for Enhanced Membrane Distillation Performance. ACS Appl. Mater. Interfaces 2019, 11, 25524–25534. [Google Scholar] [CrossRef]
- Tanudjaja, H.J.; Hejase, C.A.; Tarabara, V.V.; Fane, A.G.; Chew, J.W. Membrane-Based Separation for Oily Wastewater: A Practical Perspective. Water Res. 2019, 156, 347–365. [Google Scholar] [CrossRef]
- Tummons, E.N.; Tarabara, V.V.; Chew, J.W.; Fane, A.G. Behavior of Oil Droplets at the Membrane Surface during Crossflow Microfiltration of Oil–Water Emulsions. J. Membr. Sci. 2016, 500, 211–224. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, N.; Cao, Y.; Lin, X.; Liu, Y.; Feng, L. Superwetting Porous Materials for Wastewater Treatment: From Immiscible Oil/Water Mixture to Emulsion Separation. Adv. Mater. Interfaces 2017, 4, 1600029. [Google Scholar] [CrossRef]
- Zhu, X.; Dudchenko, A.; Gu, X.; Jassby, D. Surfactant-Stabilized Oil Separation from Water Using Ultrafiltration and Nanofiltration. J. Membr. Sci. 2017, 529, 159–169. [Google Scholar] [CrossRef]
- Bhushan, B. Bioinspired Oil–Water Separation Approaches for Oil Spill Clean-up and Water Purification. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2019, 377, 20190120. [Google Scholar] [CrossRef] [Green Version]
- Qu, M.; Liu, Q.; He, J.; Li, J.; Liu, L.; Yang, C.; Yang, X.; Peng, L.; Li, K. A Multifunctional Superwettable Material with Excellent PH-Responsive for Controllable in Situ Separation Multiphase Oil/Water Mixture and Efficient Separation Organics System. Appl. Surf. Sci. 2020, 515, 145991. [Google Scholar] [CrossRef]
- Tummons, E.; Han, Q.; Tanudjaja, H.J.; Hejase, C.A.; Chew, J.W.; Tarabara, V.V. Membrane Fouling by Emulsified Oil: A Review. Sep. Purif. Technol. 2020, 248, 116919. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, H.; Niu, H.; Zhang, J.; Du, Y.; Lin, T. Dual-Layer Superamphiphobic/Superhydrophobic-Oleophilic Nanofibrous Membranes with Unidirectional Oil-Transport Ability and Strengthened Oil-Water Separation Performance. Adv. Mater. Interfaces 2015, 2, 1400506. [Google Scholar] [CrossRef]
- Liang, Y.; Kim, S.; Kallem, P.; Choi, H. Capillary Effect in Janus Electrospun Nanofiber Membrane for Oil/Water Emulsion Separation. Chemosphere 2019, 221, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.; Chen, F.; Yang, Q.; Huo, J.; Hou, X. Superoleophobic Surfaces. Chem. Soc. Rev. 2017, 46, 4168–4217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Yang, J.; Song, S.; Liu, X.; Li, S. A Bio-Inspired Method to Fabricate the Substrate-Independent Janus Membranes with Outstanding Floatability for Precise Oil/Water Separation. Bull. Mater. Sci. 2021, 44, 153. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, Y.; Guo, Z.; Liu, W. Janus Membranes with Asymmetric Wettability Applied in Oil/Water Emulsion Separations. Adv. Sustain. Syst. 2021, 5, 2000253. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, L. Water-Repellent Legs of Water Striders. Nature 2004, 432, 36. [Google Scholar] [CrossRef]
- Li, J.-J.; Zhou, Y.-N.; Luo, Z.-H. Mussel-Inspired V-Shaped Copolymer Coating for Intelligent Oil/Water Separation. Chem. Eng. J. 2017, 322, 693–701. [Google Scholar] [CrossRef]
- Du, X.; You, S.; Wang, X.; Wang, Q.; Lu, J. Switchable and Simultaneous Oil/Water Separation Induced by Prewetting with a Superamphiphilic Self-Cleaning Mesh. Chem. Eng. J. 2017, 313, 398–403. [Google Scholar] [CrossRef]
- Li, J.; Kang, R.; Tang, X.; She, H.; Yang, Y.; Zha, F. Superhydrophobic Meshes That Can Repel Hot Water and Strong Corrosive Liquids Used for Efficient Gravity-Driven Oil/Water Separation. Nanoscale 2016, 8, 7638–7645. [Google Scholar] [CrossRef]
- Zhou, C.; Cheng, J.; Hou, K.; Zhao, A.; Pi, P.; Wen, X.; Xu, S. Superhydrophilic and Underwater Superoleophobic Titania Nanowires Surface for Oil Repellency and Oil/Water Separation. Chem. Eng. J. 2016, 301, 249–256. [Google Scholar] [CrossRef]
- Cho, I.; Lee, K.-W. Morphology of Latex Particles Formed by Poly(Methyl Methacrylate)-Seeded Emulsion Polymerization of Styrene. J. Appl. Polym. Sci. 1985, 30, 1903–1926. [Google Scholar] [CrossRef]
- de Gennes, P.-G. Soft Matter (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1992, 31, 842–845. [Google Scholar] [CrossRef]
- Yang, H.; Xie, Y.; Hou, J.; Cheetham, A.K.; Chen, V.; Darling, S.B. Janus Membranes: Creating Asymmetry for Energy Efficiency. Adv. Mater. 2018, 30, 1801495. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Z.; Shao, L. Construction of Oil-Unidirectional Membrane for Integrated Oil Collection with Lossless Transportation and Oil-in-Water Emulsion Purification. J. Membr. Sci. 2018, 549, 67–74. [Google Scholar] [CrossRef]
- Wang, H.; Ding, J.; Dai, L.; Wang, X.; Lin, T. Directional Water-Transfer through Fabrics Induced by Asymmetric Wettability. J. Mater. Chem. 2010, 20, 7938. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Huang, J.; Li, S.; Ge, M.; Teng, L.; Chen, Z.; Lai, Y. Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation. ACS Appl. Mater. Interfaces 2021, 13, 67–87. [Google Scholar] [CrossRef]
- Yang, H.; Wei, F.; Hu, K.; Lyu, J. Effects of Mud Slurry on Flow Resistance of Cohesionless Coarse Particles. Powder Technol. 2017, 310, 1–7. [Google Scholar] [CrossRef]
- Ranganath, A.S.; Baji, A. Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation. Macromol. Mater. Eng. 2018, 303, 1800272. [Google Scholar] [CrossRef]
- An, Y.-H.; Yu, S.J.; Kim, I.S.; Kim, S.-H.; Moon, J.-M.; Kim, S.L.; Choi, Y.H.; Choi, J.S.; Im, S.G.; Lee, K.E.; et al. Hydrogel Functionalized Janus Membrane for Skin Regeneration. Adv. Healthc. Mater. 2017, 6, 1600795. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Wu, J.; Hedhili, M.N.; Wang, P. A Facile Strategy for the Fabrication of a Bioinspired Hydrophilic–Superhydrophobic Patterned Surface for Highly Efficient Fog-Harvesting. J. Mater. Chem. A 2015, 3, 18963–18969. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Wu, Z.; Zhang, S.; Xiao, W.; Zhang, L.; Wang, L.; Xue, H.; Gao, J. Mechanically Robust Janus Nanofibrous Membrane with Asymmetric Wettability for High Efficiency Emulsion Separation. J. Hazard. Mater. 2022, 429, 128250. [Google Scholar] [CrossRef]
- Wu, H.; Shi, J.; Ning, X.; Long, Y.-Z.; Zheng, J. The High Flux of Superhydrophilic-Superhydrophobic Janus Membrane of CPVA-PVDF/PMMA/GO by Layer-by-Layer Electrospinning for High Efficiency Oil-Water Separation. Polymers 2022, 14, 621. [Google Scholar] [CrossRef]
- Ren, X.; Guo, H.; Ma, X.; Hou, G.; Chen, L.; Xu, X.; Chen, Q.; Feng, J.; Si, P.; Zhang, L.; et al. Improved Interfacial Floatability of Superhydrophobic and Compressive S, N Co-Doped Graphene Aerogel by Electrostatic Spraying for Highly Efficient Organic Pollutants Recovery from Water. Appl. Surf. Sci. 2018, 457, 780–788. [Google Scholar] [CrossRef]
- Abraham, S.; Ma, G.; Montemagno, C.D. Janus Carbon Nanotube Membranes by Selective Surface Plasmoxidation. Adv. Mater. Interfaces 2016, 3, 1600445. [Google Scholar] [CrossRef]
- Waldman, R.Z.; Yang, H.; Mandia, D.J.; Nealey, P.F.; Elam, J.W.; Darling, S.B. Janus Membranes via Diffusion-Controlled Atomic Layer Deposition. Adv. Mater. Interfaces 2018, 5, 1800658. [Google Scholar] [CrossRef]
- Hu, Y.-Q.; Li, H.-N.; Xu, Z.-K. Janus Hollow Fiber Membranes with Functionalized Outer Surfaces for Continuous Demulsification and Separation of Oil-in-Water Emulsions. J. Membr. Sci. 2022, 648, 120388. [Google Scholar] [CrossRef]
- Zheng, L.; Li, H.; Lai, X.; Huang, W.; Lin, Z.; Zeng, X. Superwettable Janus Nylon Membrane for Multifunctional Emulsion Separation. J. Membr. Sci. 2022, 642, 119995. [Google Scholar] [CrossRef]
- Rezaei, M.; Warsinger, D.M.; Lienhard, V.J.H.; Duke, M.C.; Matsuura, T.; Samhaber, W.M. Wetting Phenomena in Membrane Distillation: Mechanisms, Reversal, and Prevention. Water Res. 2018, 139, 329–352. [Google Scholar] [CrossRef]
- Lin, Y.; Salem, M.S.; Zhang, L.; Shen, Q.; El-shazly, A.H.; Nady, N.; Matsuyama, H. Development of Janus Membrane with Controllable Asymmetric Wettability for Highly-Efficient Oil/Water Emulsions Separation. J. Membr. Sci. 2020, 606, 118141. [Google Scholar] [CrossRef]
- Kota, A.K.; Kwon, G.; Choi, W.; Mabry, J.M.; Tuteja, A. Hygro-Responsive Membranes for Effective Oil–Water Separation. Nat. Commun. 2012, 3, 1025. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Gu, L.; Zeng, Z.; Xue, Q. Simply Adjusting the Unidirectional Liquid Transport of Scalable Janus Membranes toward Moisture-Wicking Fabric, Rapid Demulsification, and Fast Oil/Water Separation. ACS Appl. Mater. Interfaces 2020, 12, 51102–51113. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Yang, N.; Sha, S.; Yang, C.; Zhao, J.; Duoerkun, A.; Hong, Y.; Wu, C. Underwater Superoleophobic Graphene Oxide-Connected Cotton Fibers Membrane for Antifouling Oil/Water Separation. J. Water Process Eng. 2021, 44, 102334. [Google Scholar] [CrossRef]
- Liang, L.; Li, X.; Hu, H.; Zhang, J.; Peng, Y.; Liu, C.; Yang, M. Preparation of a Novel Janus-Cotton via the in-Situ Dual-Phase Formation and Volatilization-Induced Fabrication Method for Oil/Water Separation with Single and Double Layers. J. Environ. Chem. Eng. 2021, 9, 106444. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Fang, S.; Wang, G.; Zhu, L.; Zeng, Z.; Wang, L. Janus Polyvinylidene Fluoride Membranes with Controllable Asymmetric Configurations and Opposing Surface Wettability Fabricated via Nanocasting for Emulsion Separation. Colloids Surf. Physicochem. Eng. Asp. 2021, 616, 126120. [Google Scholar] [CrossRef]
- Cheng, C.; Wei, Z.; Gu, J.; Wu, Z.; Zhao, Y. Rational Design of Janus Nanofibrous Membranes with Novel Under-Oil Superhydrophilic/Superhydrophobic Asymmetric Wettability for Water-in-Diesel Emulsion Separation. J. Colloid Interface Sci. 2022, 606, 1563–1571. [Google Scholar] [CrossRef]
- Pan, T.; Li, Z.; Shou, D.; Shou, W.; Fan, J.; Liu, X.; Liu, Y. Buoyancy Assisted Janus Membrane Preparation by ZnO Interfacial Deposition for Water Pollution Treatment and Self-cleaning. Adv. Mater. Interfaces 2019, 6, 1901130. [Google Scholar] [CrossRef]
- Zuo, J.-H.; Gu, Y.-H.; Wei, C.; Yan, X.; Chen, Y.; Lang, W.-Z. Janus Polyvinylidene Fluoride Membranes Fabricated with Thermally Induced Phase Separation and Spray-Coating Technique for the Separations of Both W/O and O/W Emulsions. J. Membr. Sci. 2020, 595, 117475. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, X.; Qiu, L.; Yang, F. 2D Nanoneedle-like ZnO/SiO2 Janus Membrane with Asymmetric Wettability for Highly Efficient Separation of Various Oil/Water Mixtures. Colloids Surf. Physicochem. Eng. Asp. 2022, 650, 129352. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Q.; Gao, M.; Zhou, N.; Shi, J.; Jiang, W. Fabrication of Janus Cellulose Nanocomposite Membrane for Various Water/Oil Separation and Selective One-Way Transmission. J. Environ. Chem. Eng. 2021, 9, 106016. [Google Scholar] [CrossRef]
- Lv, Y.; Li, Q.; Hou, Y.; Wang, B.; Zhang, T. Facile Preparation of an Asymmetric Wettability Janus Cellulose Membrane for Switchable Emulsions’ Separation and Antibacterial Property. ACS Sustain. Chem. Eng. 2019, 7, 15002–15011. [Google Scholar] [CrossRef]
- Ma, H.-Y.; Hu, Y.-N.; Yang, H.; Zhu, L.-J.; Wang, G.; Zeng, Z.-X.; Wang, L.-H. In Situ Mussel-Inspired Janus Membranes Using Catechol and Polyethyleneimine as the Additives for Highly Efficient Oil/Water Emulsions Separation. Sep. Purif. Technol. 2021, 262, 118310. [Google Scholar] [CrossRef]
- Qin, Y.; Shen, H.; Han, L.; Zhu, Z.; Pan, F.; Yang, S.; Yin, X. Mechanically Robust Janus Poly(Lactic Acid) Hybrid Fibrous Membranes toward Highly Efficient Switchable Separation of Surfactant-Stabilized Oil/Water Emulsions. ACS Appl. Mater. Interfaces 2020, 12, 50879–50888. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, X.; Xing, Y.; Zhang, H.; Jiang, W.; Zhou, K.; Li, Y. Development of Janus Cellulose Acetate Fiber (CA) Membranes for Highly Efficient Oil–Water Separation. Materials 2021, 14, 5916. [Google Scholar] [CrossRef]
- Wang, K.; Liu, X.; Dong, Y.; Zhang, S.; Li, J. A Biomimetic Janus Delignified Wood Membrane with Asymmetric Wettability Prepared by Thiol-Ol Chemistry for Unidirectional Water Transport and Selective Oil/Water Separation. Colloids Surf. Physicochem. Eng. Asp. 2022, 652, 129793. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Gao, A.; Cui, J.; Zhao, S.; Yan, Y. Robust Graphene/Poly(Vinyl Alcohol) Janus Aerogels with a Hierarchical Architecture for Highly Efficient Switchable Separation of Oil/Water Emulsions. ACS Appl. Mater. Interfaces 2019, 11, 36638–36648. [Google Scholar] [CrossRef]
- Thangavelu, K.; Ravaux, F.; Zou, L. Cellulose Acetate-MoS 2 Amphiphilic Janus-like Fibrous Sponge for Removing Oil from Wastewater. Environ. Technol. Innov. 2021, 24, 101870. [Google Scholar] [CrossRef]
- Liu, Z.; Zuo, J.; Zhao, T.; Chen, Z.; Zeng, X.; Chen, M.; Xu, S.; Cheng, J.; Wen, X.; Pi, P. A 3D Janus Stainless Steel Mesh Bed with High Efficiency and Flux for On-Demand Oil-in-Water and Water-in-Oil Emulsion Separation. Sep. Purif. Technol. 2022, 289, 120779. [Google Scholar] [CrossRef]
- Liu, C.; Peng, Y.; Huang, C.; Ning, Y.; Shang, J.; Li, Y. Bioinspired Superhydrophobic/Superhydrophilic Janus Copper Foam for On-Demand Oil/Water Separation. ACS Appl. Mater. Interfaces 2022, 14, 11981–11988. [Google Scholar] [CrossRef]
- Qu, M.; Liu, Q.; Liu, L.; Yang, C.; Yuan, S.; Shi, F.; Peng, L.; Xiong, S.; He, J. A Superwettable Functionalized-Fabric with PH-Sensitivity for Controlled Oil/Water, Organic Solvents Separation, and Selective Oil Collection from Water-Rich System. Sep. Purif. Technol. 2021, 254, 117665. [Google Scholar] [CrossRef]
- Jin, L.; Wang, Y.; Xue, T.; Xie, J.; Xu, Y.; Yao, Y.; Li, X. Smart Amphiphilic Random Copolymer-Coated Sponge with PH-Switchable Wettability for On-Demand Oil/Water Separation. Langmuir 2019, 35, 14473–14480. [Google Scholar] [CrossRef] [PubMed]
- Dang, Z.; Liu, L.; Li, Y.; Xiang, Y.; Guo, G. In Situ and Ex Situ PH-Responsive Coatings with Switchable Wettability for Controllable Oil/Water Separation. ACS Appl. Mater. Interfaces 2016, 8, 31281–31288. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Wang, J.; Lai, H.; Du, Y.; Hou, R.; Li, C.; Zhang, N.; Sun, K. PH-Controllable On-Demand Oil/Water Separation on the Switchable Superhydrophobic/Superhydrophilic and Underwater Low-Adhesive Superoleophobic Copper Mesh Film. Langmuir 2015, 31, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xia, F.; Sun, T.; Song, W.; Zhao, T.; Liu, M.; Jiang, L. Wettability Switching between High Hydrophilicity at Low PH and High Hydrophobicity at High PH on Surface Based on PH-Responsive Polymerw. Chem. Commun. 2008, 3, 1199–1201. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Yang, K.; Huang, C.; Yang, K.; Xu, S.; Wang, L.; Pi, P.; Wen, X. Novel PH-Responsive Smart Fabric: From Switchable Wettability to Controllable On-Demand Oil/Water Separation. ACS Sustain. Chem. Eng. 2019, 7, 368–376. [Google Scholar] [CrossRef]
- Hu, J.; Gui, L.; Zhu, M.; Liu, K.; Chen, Y.; Wang, X.; Lin, J. Smart Janus Membrane for On-Demand Separation of Oil, Bacteria, Dye, and Metal Ions from Complex Wastewater. Chem. Eng. Sci. 2022, 253, 117586. [Google Scholar] [CrossRef]
- Kim, Y.-J. Thermo-Responsive Polymers and Their Application as Smart Biomaterials. J. Mater. Chem. B 2017, 5, 4307–4321. [Google Scholar] [CrossRef]
- Wei, B.; Wang, K.; Wang, J.; Zhang, T.C.; Tian, X.; Yuan, S.; Li, Y.; Chang, H.; Liang, Y.; Zhou, Z. Thermo-Modulated Nanofibrous Skin Covered Janus Membranes for Efficient Oil/Water Separation. Colloids Surf. Physicochem. Eng. Asp. 2022, 641, 127935. [Google Scholar] [CrossRef]
- Huang, A.; Kan, C.-C.; Lo, S.-C.; Chen, L.-H.; Su, D.-Y.; Soesanto, J.F.; Hsu, C.-C.; Tsai, F.-Y.; Tung, K.-L. Nanoarchitectured Design of Porous ZnO@copper Membranes Enabled by Atomic-Layer-Deposition for Oil/Water Separation. J. Membr. Sci. 2019, 582, 120–131. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, Z.; Luo, D.; Zhao, M.; Zhao, G. A Facial Approach Combining Photosensitive Solgel with Self-Assembly Method to Fabricate Superhydrophobic TiO2 Films with Patterned Surface Structure. Appl. Surf. Sci. 2016, 360, 1030–1035. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Zhao, S.; Sun, B.; Wang, Z.; Wang, J. Robust Superhydrophobic Mesh Coated by PANI/TiO2 Nanoclusters for Oil/Water Separation with High Flux, Self-Cleaning, Photodegradation and Anti-Corrosion. Sep. Purif. Technol. 2020, 235, 116166. [Google Scholar] [CrossRef]
- He, Y.; Wan, M.; Wang, Z.; Zhang, X.; Zhao, Y.; Sun, L. Fabrication and Characterization of Degradable and Durable Fluoride-Free Super-Hydrophobic Cotton Fabrics for Oil/Water Separation. Surf. Coat. Technol. 2019, 378, 125079. [Google Scholar] [CrossRef]
- Ma, L.; He, J.; Wang, J.; Zhou, Y.; Zhao, Y.; Li, Y.; Liu, X.; Peng, L.; Qu, M. Functionalized Superwettable Fabric with Switchable Wettability for Efficient Oily Wastewater Purification, in Situ Chemical Reaction System Separation, and Photocatalysis Degradation. ACS Appl. Mater. Interfaces 2019, 11, 43751–43765. [Google Scholar] [CrossRef] [PubMed]
- Kollarigowda, R.H.; Bhyrappa, H.M.; Cheng, G. Stimulus-Responsive Biopolymeric Surface: Molecular Switches for Oil/Water Separation. ACS Appl. Bio Mater. 2019, 2, 4249–4257. [Google Scholar] [CrossRef]
- Du, L.; Quan, X.; Fan, X.; Chen, S.; Yu, H. Electro-Responsive Carbon Membranes with Reversible Superhydrophobicity/Superhydrophilicity Switch for Efficient Oil/Water Separation. Sep. Purif. Technol. 2019, 210, 891–899. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40, 3941. [Google Scholar] [CrossRef]
- Agaba, A.; Marriam, I.; Tebyetekerwa, M.; Yuanhao, W. Janus Hybrid Sustainable All-Cellulose Nanofiber Sponge for Oil-Water Separation. Int. J. Biol. Macromol. 2021, 185, 997–1004. [Google Scholar] [CrossRef]
- Fei, Y.; Tan, Y.; Deng, Y.; Xia, P.; Cheng, J.; Wang, C.; Zhang, J.; Niu, C.; Fu, Q.; Lu, L. In Situ Construction Strategy for Three-Dimensional Janus Cellulose Aerogel with Highly Efficient Oil–Water Separation Performance: From Hydrophobicity to Asymmetric Wettability. Green Chem. 2022, 24, 7074–7081. [Google Scholar] [CrossRef]
- Yun, J.; Khan, F.A.; Baik, S. Janus Graphene Oxide Sponges for High-Purity Fast Separation of Both Water-in-Oil and Oil-in-Water Emulsions. ACS Appl. Mater. Interfaces 2017, 9, 16694–16703. [Google Scholar] [CrossRef]
Material | Method | Refs. |
---|---|---|
Janus membrane | Electrospinning | [42] |
Janus membrane | Electrospinning | [43] |
Co-doped graphene aerogel | Hydrothermal reduction combined with electrostatic spraying method | [44] |
Janus carbon nanotube membrane | Plasma treatment | [45] |
Janus membrane | Atomic layer deposition | [46] |
Janus hollow fiber membrane | Co-depositing | [47] |
Janus nylon membrane | In situ generation | [48] |
Material | Method | Emulsion | Separation Efficiency (Max) | Flux (L·m−2·h−1) (Max) | Recyclable | Refs. |
---|---|---|---|---|---|---|
CPVA-PVDF/PMMA/GO Janus membrane | Layer-by-layer electrospinning | O/W W/O | 99.9% | 1909.9 | Yes | [43] |
Janus cellulose nanocomposite membrane | High-pressure spraying and electrospinning | O/W W/O | >88% | 2238 | Yes | [60] |
Janus nanofibrous membrane | Electrospinning | O/W W/O | 99% | 6652 | Yes | [42] |
Janus hollow fiber membrane | Co-deposited; assembled | O/W | >99% | / | Yes | [47] |
Janus nylon membrane | In situ generation | O/W W/O | >99% | 1700 | Yes | [48] |
Janus membrane | Co-deposited | O/W W/O | >97% | 1526 ± 177 | Yes | [62] |
Janus PVDF membrane | Cold plasma modification | O/W W/O | >99.8% | 9300 | Yes | [50] |
Scalable Janus membrane | Cyclic self-assembly; single-side spray coating | O/W W/O | >99.9% | 23,800 | Yes | [52] |
Graphene oxide-connected cotton fibers membrane | Impregnation | Oil/water mixture | >99.8% | 95,000 | Yes | [53] |
Janus cotton | In situ dual-phase formation; volatilization induced fabrication. | Oil/water mixture | 98% | / | Yes | [54] |
Janus polyvinylidene fluoride membrane | Non-solvent induced phase separation (NIPS) | O/W W/O | 99.72% | 489.6 ± 91.2 | Yes | [55] |
Janus nanofibrous membrane | Electrospinning | W/O Oil/water mixture | 99.98% | / | Yes | [56] |
Janus PLA membrane | Electrospinning | O/W W/O Oil/water mixture | >99% | 1142–1185 | Yes | [63] |
Janus cellulose acetate fiber membrane | Plasma gas phase grafting | W/O | 98.81% | 331.72 | Yes | [64] |
Janus delignified wood membrane | Single-sided spray coating | Oil/water mixture | >99.3% | 2450 | Yes | [65] |
2D nanoneedle-like ZnO/SiO2 Janus membrane | Single-sided spray coating | Oil/water mixture | >99.99% | 13,067.5 | Yes | [59] |
Material | Response Mode | Method | Emulsion | Separation Efficiency (Max) | Flux (L·m−2·h−1) (Max) | Recyclable | Refs. |
---|---|---|---|---|---|---|---|
Functionalized fabric with pH-sensitivity | pH-response | In situ growth | Oil/water mixture | 99.5% | 9362 | Yes | [70] |
Smart Janus membrane | pH-response | Single-side spray coating | O/W W/O | 99% | 4917 | Yes | [76] |
Thermo-modulated nanofibrous skin covered Janus membrane | Thermal-response | Synergetic electro-spraying/electrospinning | O/W W/O | 99% | 6000 | Yes | [78] |
Porous ZnO@copper membrane | Light-response | Atomic layer deposition; low-temperature hydrothermal | O/W oil/water mixture | >99.7% | 40,000 | Yes | [79] |
Robust super-hydrophobic mesh coated by PANI/TiO2 nanoclusters | Light-response | Nanoclusters coating | Oil/water mixture | 99.7% | 176,000 | Yes | [81] |
Electro-responsive carbon membrane | Electric-response | Coating | O/W W/O oil/water mixture | >99.5% | / | Yes | [85] |
Material | Method | Emulsion | Separation Efficiency (Max) | Flux (L·m−2·h−1) (Max) | Recyclable | Refs. |
---|---|---|---|---|---|---|
Janus graphene oxide sponge | Freeze drying | O/W W/O | ≥99.2% | / | Yes | [89] |
Graphene/poly (vinyl alcohol) Janus aerogel | Floating-coating | O/W W/O | 99.7% | 1306 | Yes | [66] |
3D Janus mesh bed | In situ growth | O/W W/O | >99.68% | >7072 | Yes | [68] |
Janus copper foam | Alkaline erosion | Oil/water mixture | 93% | / | Yes | [69] |
Janus hybrid sustainable all-cellulose nanofiber sponge | Freeze drying | Oil/water mixture | 100% | 3300 | Yes | [87] |
Cellulose acetate-MoS2 amphiphilic Janus-like fibrous sponge | Hydrothermal method; drop-casting | O/W | 99% | / | Yes | [67] |
Three-dimensional Janus cellulose aerogel | Vacuum-assisted chemical vapor deposition; coating | W/O oil/water mixture | 99% | 3121 | Yes | [88] |
Scalable Janus membrane | Cyclic self-assembly; single-side spray coating | O/W W/O | >99.9% | 23,800 | Yes | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, C.; Xing, H.; Fu, Q.; Niu, C.; Lu, L. Advances in Asymmetric Wettable Janus Materials for Oil–Water Separation. Molecules 2022, 27, 7470. https://doi.org/10.3390/molecules27217470
Zhang J, Wang C, Xing H, Fu Q, Niu C, Lu L. Advances in Asymmetric Wettable Janus Materials for Oil–Water Separation. Molecules. 2022; 27(21):7470. https://doi.org/10.3390/molecules27217470
Chicago/Turabian StyleZhang, Jingjing, Congcong Wang, Huwei Xing, Qian Fu, Chenxi Niu, and Lingbin Lu. 2022. "Advances in Asymmetric Wettable Janus Materials for Oil–Water Separation" Molecules 27, no. 21: 7470. https://doi.org/10.3390/molecules27217470
APA StyleZhang, J., Wang, C., Xing, H., Fu, Q., Niu, C., & Lu, L. (2022). Advances in Asymmetric Wettable Janus Materials for Oil–Water Separation. Molecules, 27(21), 7470. https://doi.org/10.3390/molecules27217470