Synthesis of Novel Bromophenol with Diaryl Methanes—Determination of Their Inhibition Effects on Carbonic Anhydrase and Acetylcholinesterase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biochemistry
3. Materials and Methods
3.1. General
3.2. Chemistry
3.2.1. General Synthesis Procedure for the Synthesis of Compounds 13–17
3.2.2. 1-Bromo-2-(2-bromo-4-methoxybenzyl)-4,5-dimethoxybenzene (13)
3.2.3. 1-Bromo-4,5-dimethoxy-2-(5-methoxy-2-methylbenzyl)benzene (14)
3.2.4. 1-Bromo-2-(4-bromo-2,5-dimethoxybenzyl)-4,5-dimethoxybenzene (15)
3.2.5. 1-Bromo-2-(2,5-dimethoxybenzyl)-4,5-dimethoxybenzene (16)
3.2.6. 1-Bromo-2-(2,5-dimethoxybenzyl)-4,5-dimethoxybenzene (17)
3.2.7. General Procedure for the Synthesis of Bromophenols 18–21
3.2.8. 4-Bromo-5-(2-bromo-4-hydroxybenzyl)benzene-1,2-diol (18)
3.2.9. 4-Bromo-5-(2-bromo-4-hydroxybenzyl)benzene-1,2-diol (19)
3.2.10. 4-Bromo-5-(4-bromo-2,5-dihydroxybenzyl)benzene-1,2-diol (20)
3.2.11. 4-Bromo-5-(2,5-dihydroxybenzyl)benzene-1,2-diol (21)
3.3. Biochemical Studies
3.3.1. Enzyme Activity Assays
3.3.2. Enzyme Inhibition Assays
3.3.3. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oztaşkın, N.; Çetinkaya, Y.; Taslimi, P.; Göksu, S.; Gulcin, I. Antioxidant and acetylcholinesterase inhibition properties of novel bromophenol derivatives. Bioorg. Chem. 2015, 60, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Katsui, N.; Suzuki, Y.; Kitamura, S.; Irie, T. 5,6-dibromoprotocatechualdehyde and 2,3-dibromo-4,5-dihydroxybenzyl methyl ether: New dibromophenols from Rhodomela larix. Tetrahedron 1967, 23, 1185–1188. [Google Scholar] [CrossRef]
- Fan, X.; Xu, N.J.; Shi, J.G. Bromophenols from the red alga Rhodomela confervoides. J. Nat. Prod. 2003, 66, 455–458. [Google Scholar] [CrossRef]
- Liu, H.; Namikoshi, M.; Meguro, S.; Nagai, H.; Kobayashi, H.; Yao, X. Isolation and characterization of polybrominated diphenyl ethers as inhibitors of microtubule assembly from the marine sponge Phyllospongia dendyi collected at Palau. J. Nat. Prod. 2004, 67, 472–474. [Google Scholar] [CrossRef]
- Tian, L.W.; Feng, Y.; Shimizu, Y.; Pfeifer, T.A.; Wellington, C.; Hooper, J.N.A.; Quinn, R.J. ApoE secretion modulating bromotyrosine derivative from the Australian marine sponge Callyspongia sp. Bioorg. Med. Chem. Lett. 2014, 24, 3537–3540. [Google Scholar] [CrossRef]
- Lindsay, B.S.; Battershill, C.N.; Copp, B.R. Isolation of 2-(3′-bromo-4′-hydroxyphenol)ethanamine from the New Zealand ascidian Cnemidocarpa bicornuta. J. Nat. Prod. 1998, 61, 857–858. [Google Scholar] [CrossRef]
- Gribble, G.W. The diversity of naturally occurring organobromine compounds. Chem. Soc. Rev. 1999, 28, 335–346. [Google Scholar] [CrossRef]
- Wu, N.; Luo, J.; Jiang, B.; Wang, L.; Wang, S.; Wang, C.; Fu, C.; Li, J.; Shi, D. Marine bromophenol bis (2,3-dibromo-4,5-dihydroxy-phenyl)-methane inhibits the proliferation, migration, and invasion of hepatocellular carcinoma cells via modulating β1-Integrin/FAK signaling. Mar. Drugs 2015, 13, 1010–1025. [Google Scholar] [CrossRef]
- Xu, Q.; Luo, J.; Wu, N.; Zhang, R.S.; Shi, D.Y. BPN, a marine-derived PTP1B inhibitor, activates insulin signaling and improves insulin resistance in C2C12 myotubes. Int. J. Biol. Macromol. 2018, 106, 379–386. [Google Scholar] [CrossRef]
- Wang, W.; Okada, Y.; Shi, H.; Wang, Y.; Okuyama, T. Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia latiuscula. J. Nat. Prod. 2005, 68, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Olsen, E.; Hansen, E.; Isaksson, J.; Andersen, J. Cellular antioxidant effect of four bromophenols from the red algae, Vertebrata lanosa. Mar. Drugs 2013, 11, 2769–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.S.; Lee, T.H.; Lee, J.H.; Chae, C.S.; Chung, S.C.; Shin, D.S.; Shin, J.; Oh, K.B. Inhibition of the pathogenicity of Magnaporthe grisea by bromophenols, isocitrate lyase inhibitors, from the red alga Odonthalia corymbifera. J. Agric. Food Chem. 2007, 55, 6923–6928. [Google Scholar] [CrossRef]
- Xu, X.; Song, F.; Wang, S.; Li, S.; Xiao, F.; Zhao, J.; Yang, Y.; Shang, S.; Yang, L.; Shi, J. Dibenzyl bromophenols with diverse dimerization patterns from the brown alga Leathesia nana. J. Nat. Prod. 2004, 67, 1661–1666. [Google Scholar] [CrossRef]
- Oh, K.B.; Lee, J.H.; Chung, S.C.; Shin, J.; Shin, H.J.; Kim, H.K.; Lee, H.S. Antimicrobial activities of the bromophenols from the red alga Odonthalia corymbifera and some synthetic derivatives. Bioorg. Med. Chem. Lett. 2008, 18, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Kurata, K.; Taniguchii, K.; Takashima, K.; Hayashi, I.; Suzuki, M. Feeding-deterrent bromophenols from Odonthalia corymbifera. Phytochemistry 1997, 45, 485–487. [Google Scholar] [CrossRef]
- Xu, N.; Fan, X.; Yan, X.; Li, X.; Niu, R.; Tseng, C.K. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 2003, 62, 1221–1224. [Google Scholar] [CrossRef]
- Balaydın, H.T.; Gulcin, I.; Menzek, A.; Goksu, S.; Sahin, E. Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J. Enzyme Inhib. Med. Chem. 2010, 25, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Akbaba, Y.; Balaydın, H.T.; Menzek, A.; Goksu, S.; Sahin, E.; Ekinci, D. Synthesis and biological evaluation of novel bromophenol derivatives as carbonic anhydrase inhibitors. Arch. Pharm. 2013, 346, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Balaydın, H.T.; Soyut, H.; Ekinci, D.; Göksu, S.; Beydemir, S.; Menzek, A.; Sahin, E. Synthesis and carbonic anhydrase inhibitory properties of novel bromophenols including natural products. J. Enzyme Inhib. Med. Chem. 2012, 27, 43–50. [Google Scholar] [CrossRef]
- Oztaşkın, N.; Taslimi, P.; Maras, A.; Goksu, S.; Gulcin, I. Novel antioxidant bromophenols with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Bioorg. Chem. 2017, 74, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Balaydin, H.T.; Akbaba, Y.; Menzek, A.; Sahin, E.; Goksu, S. First and short syntheses of biologically active, naturally occurring brominated mono-and dibenzyl phenols. Arkivoc 2009, XIV, 75–87. [Google Scholar]
- Balaydin, H.T.; Şentürk, M.; Goksu, S.; Menzek, A. Synthesis and carbonic anhydrase inhibitory properties of novel bromophenols and their derivatives including natural products: Vidalol B. Eur. J. Med. Chem. 2012, 54, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Scozzafava, A.; Supuran, C.T.; Akıncıoğlu, H.; Koksal, Z.; Turkan, F.; Alwasel, S. The effect of caffeic acid phenethyl ester (CAPE) metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione s-transferase, lactoperoxidase and carbonic anhydrase isoenzymes I, II, IX and XII. J. Enzyme Inhib. Med. Chem. 2016, 31, 1095–1101. [Google Scholar] [CrossRef]
- Küçük, M.; Gulcin, I. Purification and characterization of carbonic anhydrase enzyme from Black Sea trout (Salmo trutta Labrax Coruhensis) kidney and inhibition effects of some metal ions on the enzyme activity. Environ. Toxicol. Pharmacol. 2016, 44, 134–139. [Google Scholar] [CrossRef]
- Akıncıoglu, A.; Topal, M.; Gulcin, I.; Goksu, S. Novel sulphamides and sulphonamides incorporating the tetralin scaffold as carbonic anhydrase and acetylcholine esterase inhibitors. Arch. Pharm. 2014, 347, 68–76. [Google Scholar] [CrossRef]
- Topal, A.; Atamanalp, M.; Oruc, E.; Demir, Y.; Beydemir, Ş.; Isik, A. In vivo changes in carbonic anhydrase activity and histopathology of gill and liver tissues after acute exposure to chlorpyrifos in rainbow trout. Arh. Hig. Rada. Toksikol. 2014, 65, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Caglayan, C.; Taslimi, P.; Turk, C.; Gulcin, I.; Kandemir, F.M.; Demir, Y.; Beydemir, Ş. Inhibition effects of some pesticides and heavy metals on carbonic anhydrase enzyme activity purified from horse mackerel (Trachurus trachurus) gill tissues. Environ. Sci. Pollut. Res. 2020, 27, 10607–10616. [Google Scholar] [CrossRef]
- Gümüş, M.; Babacan, S.N.; Demir, Y.; Sert, Y.; Koca, I.; Gulcin, I. Discovery of sulfadrug-pyrrole conjugates as carbonic anhydrase and acetylcholinesterase inhibitors. Arch. Pharm. 2022, 355, 2100242. [Google Scholar] [CrossRef]
- Hamide, M.; Gök, Y.; Demir, Y.; Yakalı, G.; Tok, T.T.; Aktas, A.; Sevinçek, R.; Güzel, B.; Gülcin, I. Pentafluorobenzyl-substituted benzimidazolium salts: Synthesis, characterization, crystal structures, computational studies and inhibitory properties of some metabolic enzymes. J. Mol. Struct. 2022, 1265, 133266. [Google Scholar] [CrossRef]
- Gulcin, I.; Taslimi, P. Sulfonamide inhibitors: A patent review 2013–present. Exp. Opin. Therap. Pat. 2018, 28, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Gündoğdu, S.; Türkeş, C.; Arslan, M.; Demir, Y.; Beydemir, Ş. New isoindole-1,3-dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: Design, synthesis, and biological evaluation. ChemistrySelect 2019, 4, 13347. [Google Scholar] [CrossRef]
- Tugrak, M.; Gul, H.I.; Demir, Y.; Gulcin, I. Synthesis of benzamide derivatives with thiourea-substituted benzenesulfonamides as carbonic anhydrase inhibitors. Arch. Pharm. 2021, 354, 2000230. [Google Scholar] [CrossRef] [PubMed]
- Tugrak, M.; Gul, H.I.; Demir, Y.; Levent, S.; Gulcin, I. Synthesis and in vitro carbonic anhydrases and acetylcholinesterase inhibitory activities of novel imidazolinone-based benzenesulfonamides. Arch. Pharm. 2021, 354, 2000375. [Google Scholar] [CrossRef]
- Mete, E.; Comez, B.; Gul, H.I.; Gulcin, I.; Supuran, C.T. Synthesis and carbonic anhydrase inhibitory activities of new thienyl-substituted pyrazoline benzenesulfonamides. J. Enzyme Inhib. Med. Chem. 2016, 31, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ozmen Ozgün, D.; Gul, H.I.; Yamali, C.; Sakagami, H.; Gulcin, I.; Sukuroglu, M.; Supuran, C.T. Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorg. Chem. 2019, 84, 511–517. [Google Scholar] [CrossRef]
- Yamali, C.; Gul, H.I.; Kazaz, C.; Levent, S.; Gulcin, I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg. Chem. 2020, 96, 103627. [Google Scholar] [CrossRef]
- Taslimi, P.; Sujayev, A.; Mamedova, S.; Kalın, P.; Gulcin, I.; Sadeghian, N.; Beydemir, S.; Küfrevioglu, Ö.İ.; Alwasel, S.H.; Farzaliyev, V.; et al. Synthesis and bioactivity of several new hetaryl sulfonamides. J. Enzyme Inhib. Med. Chem. 2017, 32, 137–145. [Google Scholar] [CrossRef]
- Gocer, H.; Akıncıoglu, A.; Goksu, S.; Gulcin, I. Carbonic anhydrase inhibitory properties of phenolic sulfonamides derived from dopamine related compounds. Arab. J. Chem. 2017, 10, 398–402. [Google Scholar] [CrossRef]
- Sepheri, N.; Mohammadi-Khanaposhtani, M.; Asemanipoor, N.; Hosseini, S.; Biglar, M.; Larijani, B.; Mahdavi, M.; Hamedifar, H.; Taslimi, P.; Sadeghian, N.; et al. Novel quinazolin-sulfonamid derivatives: Synthesis, characterization, biological evaluation, and molecular docking studies. J. Biomol. Struct. 2022, 40, 3359–3370. [Google Scholar]
- Aydin, B.O.; Anil, D.; Demir, Y. Synthesis of N-alkylated pyrazolo [3,4-d] pyrimidine analogs and evaluation of acetylcholinesterase and carbonic anhydrase inhibition properties. Arch. Pharm. 2021, 354, 2000330. [Google Scholar] [CrossRef] [PubMed]
- Burmaoğlu, S.; Yılmaz, A.O.; Polat, M.F.; Kaya, R.; Gulcin, I.; Algul, O. Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibitors. Bioorg. Chem. 2019, 85, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Garibov, E.; Taslimi, P.; Sujayev, A.; Bingöl, Z.; Çetinkaya, S.; Gulcin, I.; Beydemir, S.; Farzaliyev, V.; Alwasel, S.H.; Supuran, C.T. Synthesis of 4,5-disubstituted-2-thioxo-1,2,3,4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities. J. Enzyme Inhib. Med. Chem. 2016, 31, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya, Y.; Erçag, A.; Zorlu, Y.; Demir, Y.; Gulcin, I. New Pd (II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J. Biol. Inorg. 2022, 27, 271–281. [Google Scholar] [CrossRef]
- Erdemir, F.; Barut Celepci, D.; Aktas, A.; Gok, Y.; Kaya, R.; Taslimi, P.; Demir, Y.; Gulcin, I. Novel 2-aminopyridine liganded Pd (II) N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure and bioactivity properties. Bioorg. Chem. 2019, 91, 103134. [Google Scholar] [CrossRef]
- Türkan, F.; Huyut, Z.; Demir, Y.; Ertaş, F.; Beydemir, Ş. The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: An in vivo and in vitro study. Arch. Physiol. Biochem. 2019, 125, 235–243. [Google Scholar] [CrossRef]
- Bayrak, Ç.; Taslimi, P.; Kahraman, H.S.; Gulcin, I.; Menzek, A. The first synthesis, carbonic anhydrase inhibition and anticholinergic activities of some bromophenol derivatives with S including natural products. Bioorg. Chem. 2019, 85, 128–139. [Google Scholar] [CrossRef]
- Bilginer, S.; Gul, H.I.; Anil, B.; Demir, Y.; Gulcin, I. Synthesis and in silico studies of triazene-substituted sulfamerazine derivatives as acetylcholinesterase and carbonic anhydrases inhibitors. Arch. Pharm. 2021, 354, 2000243. [Google Scholar] [CrossRef]
- Mahmudov, I.; Demir, Y.; Sert, Y.; Abdullayev, Y.; Sujayev, E.; Alwasel, S.H.; Gulcin, I. Synthesis and inhibition profiles of N-benzyl-and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase—A molecular docking study. Arab. J. Chem. 2022, 15, 103645. [Google Scholar] [CrossRef]
- Crombie, L.; Josephs, J.L. Rotenoid synthesis by Wadsworth-Emmons coupling and Mukaiyama cyclisation: Application to 5-thiorotenoids. J. Chem. Soc. 1993, 21, 2599–2604. [Google Scholar] [CrossRef]
- Jiang, B.; Shi, D.; Cui, Y.; Guo, S. Design, synthesis, and biological evaluation of bromophenol derivatives as protein tyrosine phosphatase 1B inhibitors. Arch. Pharm. 2012, 345, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, Y.; Gocer, H.; Menzek, A.; Gulcin, I. Synthesis and antioxidant properties of (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl) methanone and its derivatives. Arch. Pharm. 2011, 345, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Turan, B.; Sendil, K.; Sengul, E.; Gultekin, M.S.; Taslimi, P.; Gulcin, I.; Supuran, C.T. The synthesis of some β-lactams and investigation of their metal-chelating activity, carbonic anhydrase and acetylcholinesterase inhibition profiles. J. Enzyme Inhib. Med. Chem. 2016, 31, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Taslimi, P.; Akıncıoğlu, H.; Gulcin, I. Synephrine and phenylephrine act as α-amylase, α-glycosidase, acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase enzymes inhibitors. J. Biochem. Mol. Toxicol. 2017, 31, e21973. [Google Scholar] [CrossRef]
- Huseynova, M.; Taslimi, P.; Medjidov, A.; Farzaliyev, V.; Aliyeva, M.; Gondolova, G.; Şahin, O.; Yalçın, B.; Sujayev, A.; Orman, E.B.; et al. Synthesis, characterization, crystal structure, electrochemical studies and biological evaluation of metal complexes with thiosemicarbazone of glyoxylic acid. Polyhedron 2018, 155, 25–33. [Google Scholar] [CrossRef]
- Anil, D.; Ozturk Aydin, B.; Demir, Y.; Turkmenoglu, B. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J. Mol. Struct. 2022, 1257, 132613. [Google Scholar] [CrossRef]
- Kocyigit, U.M.; Budak, Y.; Gurdere, M.B.; Erturk, F.; Yencilek, B.; Taslimi, P.; Gulcin, I.; Ceylan, M. Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Arch. Physiol. Biochem. 2018, 124, 61–68. [Google Scholar] [CrossRef]
- Taslimi, P.; Caglayan, C.; Gulcin, I. The impact of some natural phenolic compounds on carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzymes: An antidiabetic, anticholinergic, and antiepileptic study. J. Biochem. Mol. Toxicol. 2017, 31, e21995. [Google Scholar] [CrossRef]
- Caglayan, C.; Taslimi, P.; Demir, Y.; Kucukler, S.; Kandemir, F.M.; Gulcin, I. The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. J. Biochem. Mol. Toxicol. 2019, 33, e22381. [Google Scholar] [CrossRef]
- Kucukoglu, K.; Gul, H.I.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorg. Chem. 2019, 86, 316–321. [Google Scholar] [CrossRef]
- Ozensoy Guler, O.; Supuran, C.T.; Capasso, C. Carbonic anhydrase IX as a novel candidate in liquid biopsy. J. Enzyme Inhib. Med. Chem. 2020, 35, 255–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boztaş, M.; Çetinkaya, Y.; Topal, M.; Gulcin, I.; Menzek, A.; Sahin, E.; Tanc, M.; Supuran, C.T. Synthesis and carbonic anhydrase isoenzymes I, II, IX, and XII inhibitory effects of dimethoxybromophenol derivatives incorporating cyclopropane moieties. J. Enzyme Inhib. Med. Chem. 2015, 58, 640–650. [Google Scholar] [CrossRef]
- Gul, H.I.; Mete, E.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Synthesis, carbonic anhydrase I and II inhibition studies of the 1,3,5-trisubstituted-pyrazolines. J. Enzyme Inhib. Med. Chem. 2017, 32, 189–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamali, C.; Gul, H.I.; Ece, A.; Taslimi, P.; Gulcin, I. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem. Biol. Drug Des. 2018, 91, 854–866. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, L.; Erturk, A.; Akyüz, M.; Polat Kose, L.; Uc, E.M.; Bingol, Z.; Saglamtas, R.; Alwasel, S.; Gulcin, I. Screening of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzyme inhibition effects and antioxidant activity of coumestrol. Molecules 2022, 27, 3091. [Google Scholar] [CrossRef] [PubMed]
- Scozzafava, A.; Kalın, P.; Supuran, C.T.; Gulcin, I.; Alwasel, S.H. The impact of hydroquinone on acetylcholine esterase and certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII). J. Enzyme Inhib. Med. Chem. 2015, 30, 941–946. [Google Scholar] [CrossRef] [Green Version]
- Saglik, B.N.; Çevik, U.A.; Osmaniye, D.; Levent, S.; Çavuşoğlu, B.K.; Demir, Y.; Ilgın, S.; Ozbay, Y.; Koparal, A.S.; Beydemir, S.; et al. Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives Bioorg. Chem. 2019, 91, 103153. [Google Scholar]
- Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; de Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem. Rev. 2012, 112, 4421–4468. [Google Scholar] [CrossRef] [Green Version]
- Arabaci, B.; Gulcin, I.; Alwasel, S. Capsaicin: A potent inhibitor of carbonic anhydrase isoenzymes. Molecules 2014, 19, 10103–10114. [Google Scholar] [CrossRef] [Green Version]
- Boztas, M.; Taslimi, P.; Yavari, M.A.; Gulcin, I.; Sahin, E.; Menzek, A. Synthesis and biological evaluation of bromophenol derivatives with cyclopropyl moiety: Ring opening of cyclopropane with monoester. Bioorg. Chem. 2019, 89, 103017. [Google Scholar] [CrossRef]
- Işık, M.; Demir, Y.; Durgun, M.; Türkeş, C.; Necip, A.; Beydemir, Ş. Molecular docking and investigation of 4-(benzylideneamino)-and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors. Chem. Pap. 2020, 74, 1395. [Google Scholar] [CrossRef]
- Topal, F.; Gulcin, I.; Dastan, A.; Guney, M. Novel eugenol derivatives: Potent acetylcholinesterase and carbonic anhydrase inhibitors. Int. J. Biol. Macromol. 2017, 94, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, U.M.; Okten, S.; Cakmak, O.; Burhan, G.; Atas, M.; Taslimi, P.; Gulcin, I. Arylated quinoline and tetrahydroquinolines: Synthesis, characterization and their metabolic enzyme inhibitory and antimicrobial activities. ChemistrySelect 2022, 7, 202203469. [Google Scholar] [CrossRef]
- Yamali, C.; Gul, I.H.; Cakir, T.; Demir, Y.; Gulcin, I. Aminoalkylated phenolic chalcones: Investigation of biological effects on acetylcholinesterase and carbonic anhydrase I and II as potential lead enzyme inhibitors. Lett. Drug Des. Discov. 2020, 17, 1283–1292. [Google Scholar] [CrossRef]
- Ozaslan, M.S.; Saglamtas, R.; Demir, Y.; Genç, Y.; Saraçoglu, I.; Gulcin, I. Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem. Biodivers. 2022, 19, e202200280. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Aktaş, A.; Taslimi, P.; Gulcin, I.; Gok, Y. Novel NHC precursors: Synthesis, characterization, and carbonic anhydrase and acetylcholinesterase inhibitory properties. Arch. Pharm. 2017, 350, e1700045. [Google Scholar] [CrossRef]
- Lolak, N.; Akocak, S.; Turkes, C.; Taslimi, P.; Isik, M.; Beydemir, Ş.; Gulcin, I.; Durgun, M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg. Chem. 2020, 100, 103897. [Google Scholar] [CrossRef]
- Cetin Cakmak, K.; Gulcin, I. Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicol. Rep. 2019, 6, 1273–1280. [Google Scholar] [CrossRef]
- Bytyqi-Damoni, A.; Kestane, A.; Taslimi, P.; Tüzün, B.; Zengin, M.; Genç Bilgiçli, H.; Gulçin, İ. Novel carvacrol based new oxypropanolamine derivatives: Design, synthesis, characterization, biological evaluation, and molecular docking studies. J. Mol. Struct. 2020, 1202, 127297. [Google Scholar] [CrossRef]
- Yigit, B.; Kaya, R.; Taslimi, P.; Isik, Y.; Karaman, M.; Yigit, M.; Ozdemir, I.; Gulcin, I. Midazolinium chloride salts bearing wingtip groups: Synthesis, molecular docking and metabolic enzymes inhibition. J. Mol. Struct. 2019, 1179, 709–718. [Google Scholar] [CrossRef]
- Verpoorte, J.A.; Mehta, S.; Edsall, J.T. Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem. 1967, 242, 184221–184229. [Google Scholar] [CrossRef]
- Erdoğan, M.; Polat Köse, L.; Eşsiz, S.; Gulcin, I. Synthesis and biological evaluation of some 1-naphthol derivatives as antioxidants, acetylcholinesterase, and carbonic anhydrase inhibitors. Arch. Pharm. 2021, 354, e2100113. [Google Scholar] [CrossRef] [PubMed]
- Demir, Y.; Duran, H.E.; Durmaz, L.; Taslimi, P.; Beydemir, Ş.; Gulcin, I. The influence of some nonsteroidal anti-inflammatory drugs on metabolic enzymes of aldose reductase, sorbitol dehydrogenase, and α-glycosidase: A perspective for metabolic disorders. Appl. Biochem. Biotechnol. 2020, 190, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Burmaoglu, S.; Yilmaz, A.O.; Taslimi, P.; Algul, O.; Kılıç, D.; Gulcin, I. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity. Arch. Pharm. 2018, 351, e1700314. [Google Scholar] [CrossRef]
- Guney, M.; Coskun, A.; Topal, F.; Dastan, A.; Gulcin, I.; Supuran, C.T. Oxidation of cyanobenzocycloheptatrienes: Synthesis, photooxygenation reaction and carbonic anhydrase isoenzymes inhibition properties of some new benzotropone derivatives. Bioorg. Med. Chem. 2014, 22, 3537–3543. [Google Scholar] [CrossRef]
- Nar, M.; Cetinkaya, Y.; Gulcin, I.; Menzek, A. (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and its derivatives as carbonic anhydrase isoenzymes inhibitors J. Enzyme Inhib. Med. Chem. 2013, 28, 402–406. [Google Scholar] [CrossRef]
- Sahin, I.; Bingol, Z.; Onur, S.; Gungor, S.A.; Kose, M.; Gulcin, I.; Tumer, F. Enzyme inhibition properties and molecular docking studies of 4-sulfonate containing aryl α-hydroxyphosphonates based hybrid molecules. Chem. Biodivers. 2022, 19, e202100787. [Google Scholar] [CrossRef]
- Gulcin, I.; Alwasel, S.H. Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
Compounds | IC50 (nM) | Ki (nM) | |||||||
---|---|---|---|---|---|---|---|---|---|
hCA I | r2 | hCA II | r2 | AChE | r2 | hCA I | hCA II | AChE | |
13 | 38.50 | 0.9848 | 21.00 | 0.9778 | 14.74 | 0.9862 | 25.67 ± 4.58 | 1.63 ± 0.11 | 11.04 ± 0.61 |
14 | 19.80 | 0.9833 | 14.74 | 0.9821 | 11.95 | 0.9743 | 2.53 ± 0.25 | 4.28 ± 0.86 | 11.62 ± 2.75 |
15 | 20.38 | 0.9837 | 15.07 | 0.9870 | 13.08 | 0.9734 | 9.35 ± 1.88 | 2.62 ± 0.13 | 24.86 ± 5.30 |
16 | 21.00 | 0.9748 | 15.75 | 0.9817 | 13.86 | 0.9882 | 12.80 ± 0.52 | 7.77 ± 0.57 | 16.27 ± 2.98 |
17 | 27.72 | 0.9845 | 23.10 | 0.9824 | 21.00 | 0.9767 | 18.76 ± 4.97 | 10.33 ± 1.88 | 21.04 ± 4.72 |
18 | 15.40 | 0.9714 | 11.36 | 0.9972 | 8.35 | 0.9825 | 12.49 ± 0.66 | 9.15 ± 1.36 | 7.92 ± 1.38 |
19 | 31.50 | 0.9868 | 27.72 | 0.9800 | 20.38 | 0.9871 | 20.35 ± 2.92 | 15.05 ± 1.07 | 17.43 ± 3.15 |
20 | 19.25 | 0.9812 | 14.14 | 0.9841 | 11.75 | 0.9921 | 13.37 ± 2.29 | 6.21 ± 1.01 | 8.32 ± 0.69 |
21 | 12.38 | 0.9783 | 7.45 | 0.9836 | 9.90 | 0.9869 | 11.00 ± 3.83 | 4.97 ± 0.59 | 6.54 ± 1.03 |
Acetazolamide | 48.15 | 0.9812 | 30.12 | 0.9856 | - | - | 40.44 ± 4.67 | 28.13 ± 3.56 | - |
Tacrine | - | - | - | - | 38.45 | 0.9756 | - | - | 32.44 ± 2.13 |
Donepezil | - | - | - | - | 23.05 | 0.9989 | 17.93 ± 2.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oztaskin, N.; Goksu, S.; Demir, Y.; Maras, A.; Gulcin, İ. Synthesis of Novel Bromophenol with Diaryl Methanes—Determination of Their Inhibition Effects on Carbonic Anhydrase and Acetylcholinesterase. Molecules 2022, 27, 7426. https://doi.org/10.3390/molecules27217426
Oztaskin N, Goksu S, Demir Y, Maras A, Gulcin İ. Synthesis of Novel Bromophenol with Diaryl Methanes—Determination of Their Inhibition Effects on Carbonic Anhydrase and Acetylcholinesterase. Molecules. 2022; 27(21):7426. https://doi.org/10.3390/molecules27217426
Chicago/Turabian StyleOztaskin, Necla, Suleyman Goksu, Yeliz Demir, Ahmet Maras, and İlhami Gulcin. 2022. "Synthesis of Novel Bromophenol with Diaryl Methanes—Determination of Their Inhibition Effects on Carbonic Anhydrase and Acetylcholinesterase" Molecules 27, no. 21: 7426. https://doi.org/10.3390/molecules27217426
APA StyleOztaskin, N., Goksu, S., Demir, Y., Maras, A., & Gulcin, İ. (2022). Synthesis of Novel Bromophenol with Diaryl Methanes—Determination of Their Inhibition Effects on Carbonic Anhydrase and Acetylcholinesterase. Molecules, 27(21), 7426. https://doi.org/10.3390/molecules27217426