Development of a Functional Cookie Formulated with Chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst) and Amaranth (Amaranthus cruentus)
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Different Formulation of Cookies
2.2. Antioxidant Activity and Phytochemical Profile of Different Formulation of Cookies
2.3. Oxalate Content in Different Formulation of Cookies
2.4. Fatty Acid Profile of Different Formulation of Cookies
2.5. Microbial Analysis of Different Formulations of Cookies
2.6. Sensorial Analysis of Cookies
3. Discussion
4. Materials and Methods
4.1. Samples
4.2. Formulation of Cookies with Chaya and Amaranth Flour
4.3. Analysis of Chemical Composition of Cookies
4.4. Determination of Antioxidant Activity and Total Polyphenols
4.5. Evaluation of Phytochemical Profile of Cookies by HPLC
4.6. Determination of Oxalates Content
4.7. Quantification of Fatty Acid Profile
4.8. Microbiological Analysis of Cookies
4.9. Sensorial Analysis of Cookies
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Flores, M.; Macias, N.; Rivera, M.; Lozada, A.; Barquera, S.; Rivera-Dommarco, J.; Tucker, K.L. Dietary Patterns in Mexican Adults Are Associated with Risk of Being Overweight or Obese. J. Nutr. 2010, 140, 1869–1873. [Google Scholar] [CrossRef] [Green Version]
- Garcia, L.; Gold, E.B.; Wang, L.; Yang, X.; Mao, M.; Schwartz, A.V. The Relation of Acculturation to Overweight, Obesity, Pre-Diabetes and Diabetes among US Mexican-American Women and Men. Ethn. Dis. 2012, 22, 58. [Google Scholar]
- Capone, R.; Bilali, H.E.; Debs, P.; Cardone, G.; Driouech, N. Food System Sustainability and Food Security: Connecting the Dots. J. Food Secur. 2014, 2, 13–22. [Google Scholar]
- Rivas-Gomez, B.; Almeda-Valdés, P.; Tussié-Luna, M.T.; Aguilar-Salinas, C.A. Dyslipidemia in Mexico, a Call for Action. RIC 2018, 70, 1097. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.; Poudyal, H.; Panchal, S.K. Functional Foods as Potential Therapeutic Options for Metabolic Syndrome. Obes. Rev. 2015, 16, 914–941. [Google Scholar] [CrossRef]
- Ramasubramanian, B.; Griffith, C.; Hanson, M.; Bunquin, L.E.; Reddy, A.P.; Hegde, V.; Reddy, P.H. Protective Effects of Chaya against Mitochondrial and Synaptic Toxicities in the Type 2 Diabetes Mouse Model TallyHO. Cells 2022, 11, 744. [Google Scholar] [CrossRef]
- Tang, Y.; Tsao, R. Phytochemicals in Quinoa and Amaranth Grains and Their Antioxidant, Anti-Inflammatory, and Potential Health Beneficial Effects: A Review. Mol. Nutr. Food Res. 2017, 61, 1600767. [Google Scholar] [CrossRef]
- Guevara-Cruz, M.; Medina-Vera, I.; Cu-Cañetas, T.E.; Cordero-Chan, Y.; Torres, N.; Tovar, A.R.; Márquez-Mota, C.; Talamantes-Gómez, J.M.; Pérez-Monter, C.; Lugo, R.; et al. Chaya Leaf Decreased Triglycerides and Improved Oxidative Stress in Subjects With Dyslipidemia. Front. Nutr. 2021, 8, 458. [Google Scholar] [CrossRef]
- García-Rodríguez, R.V.; Gutiérrez-Rebolledo, G.A.; Méndez-Bolaina, E.; Sánchez-Medina, A.; Maldonado-Saavedra, O.; Domínguez-Ortiz, M.Á.; Vázquez-Hernández, M.; Muñoz-Muñiz, O.D.; Cruz-Sánchez, J.S. Cnidoscolus Chayamansa Mc Vaugh, an Important Antioxidant, Anti-Inflammatory and Cardioprotective Plant Used in Mexico. J. Ethnopharmacol. 2014, 151, 937–943. [Google Scholar] [CrossRef]
- Malgor, M.; Sabbione, A.C.; Scilingo, A. Amaranth Lemon Sorbet, Elaboration of a Potential Functional Food. Plant Foods Hum. Nutr. 2020, 75, 404–412. [Google Scholar] [CrossRef]
- Baraniak, J.; Kania-Dobrowolska, M. The Dual Nature of Amaranth—Functional Food and Potential Medicine. Foods 2022, 11, 618. [Google Scholar] [CrossRef] [PubMed]
- NOM, N.O.M. 247-SSA1-2008, Productos y Servicios. Cereales y sus productos. Cereales, harinas de cereales, sémolas o semolinas. Alimentos a base de: Cereales, semillas comestibles, de harinas, sémolas o semolinas o sus mezclas. Productos de panificación. Disposiciones y especificaciones sanitarias y nutrimentales. Métodos de prueba. 2008. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5100356&fecha=27/07/2009 (accessed on 10 October 2022).
- Allen, L.; Williams, J.; Townsend, N.; Mikkelsen, B.; Roberts, N.; Foster, C.; Wickramasinghe, K. Socioeconomic Status and Non-Communicable Disease Behavioural Risk Factors in Low-Income and Lower-Middle-Income Countries: A Systematic Review. Lancet Glob. Health 2017, 5, e277–e289. [Google Scholar] [CrossRef]
- Haytowitz, D.; Ahuja, J.; Wu, X.; Khan, M.; Somanchi, M.; Nickle, M.; Nguyen, Q.; Roseland, J.; Williams, J.; Patterson, K. USDA National Nutrient Database for Standard Reference, Legacy. USDA Natl. Nutr. Database Stand. Ref. 2018. Available online: https://data.nal.usda.gov/dataset/usda-national-nutrient-database-standard-reference-legacy-release (accessed on 12 October 2022).
- Bhat, N.A.; Wani, I.A.; Hamdani, A.M. Tomato Powder and Crude Lycopene as a Source of Natural Antioxidants in Whole Wheat Flour Cookies. Heliyon 2020, 6, e03042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsen, S.M.; Fadel, H.H.M.; Bekhit, M.A.; Edris, A.E.; Ahmed, M.Y.S. Effect of Substitution of Soy Protein Isolate on Aroma Volatiles, Chemical Composition and Sensory Quality of Wheat Cookies. Int. J. Food Sci. Technol. 2009, 44, 1705–1712. [Google Scholar] [CrossRef]
- Kulthe, A.A.; Pawar, V.D.; Kotecha, P.M.; Chavan, U.D.; Bansode, V.V. Development of High Protein and Low Calorie Cookies. J. Food Sci. Technol. 2014, 51, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Ahnen, R.T.; Jonnalagadda, S.S.; Slavin, J.L. Role of Plant Protein in Nutrition, Wellness, and Health. Nutr. Rev. 2019, 77, 735–747. [Google Scholar] [CrossRef]
- Rojas Conzuelo, Z.; Bez, N.S.; Theobald, S.; Kopf-Bolanz, K.A. Protein Quality Changes of Vegan Day Menus with Different Plant Protein Source Compositions. Nutrients 2022, 14, 1088. [Google Scholar] [CrossRef]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef]
- Temesgen, M.; Yegerem, L.; Yilma, M. Phenolic Acid and Amino Acid Composition of Ethiopian Chaya (Cnidoscolus Chayamans a). Int. J. Food Prop. 2022, 25, 227–236. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Schneider, R.G. The Role of Amaranth, Quinoa, and Millets for the Development of Healthy, Sustainable Food Products—A Concise Review. Foods 2022, 11, 2442. [Google Scholar] [CrossRef]
- Siddiqi, R.A.; Singh, T.P.; Rani, M.; Sogi, D.S.; Bhat, M.A. Diversity in Grain, Flour, Amino Acid Composition, Protein Profiling, and Proportion of Total Flour Proteins of Different Wheat Cultivars of North India. Front. Nutr. 2020, 7, 141. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary Fibre in Gastrointestinal Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biobaku, F.; Ghanim, H.; Batra, M.; Dandona, P. Macronutrient-Mediated Inflammation and Oxidative Stress: Relevance to Insulin Resistance, Obesity, and Atherogenesis. J. Clin. Endocrinol. Metab. 2019, 104, 6118–6128. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.; Tagliani, C.; Arcia, P.; Cozzano, S.; Curutchet, A. Blueberry By-Product Used as an Ingredient in the Development of Functional Cookies. Food Sci. Technol. Int. 2018, 24, 301–308. [Google Scholar] [CrossRef]
- Şahin, O.I. Functional and Sensorial Properties of Cookies Enriched with SPIRULINA and DUNALIELLA Biomass. J. Food Sci. Technol. 2020, 57, 3639–3646. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, R.; Dong, L.; Huang, F.; Liu, L.; Deng, Y.; Ma, Y.; Zhang, Y.; Wei, Z.; Xiao, J. A Comparison of the Chemical Composition, in Vitro Bioaccessibility and Antioxidant Activity of Phenolic Compounds from Rice Bran and Its Dietary Fibres. Molecules 2018, 23, 202. [Google Scholar] [CrossRef] [Green Version]
- Tarancón, P.; Salvador, A.; Sanz, T. Sunflower Oil–Water–Cellulose Ether Emulsions as Trans-Fatty Acid-Free Fat Replacers in Biscuits: Texture and Acceptability Study. Food Bioprocess Technol. 2013, 6, 2389–2398. [Google Scholar] [CrossRef]
- DeSalvo, K.B.; Olson, R.; Casavale, K.O. Dietary Guidelines for Americans. JAMA 2016, 315, 457–458. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Cruz, M.; Tovar, A.R.; del Prado, M.; Torres, N. Mecanismos Moleculares de Acción de Los Ácidos Grasos Poliinsaturados y Sus Beneficios En La Salud. Rev. De Investig. Clín. 2005, 57, 457–472. [Google Scholar]
- Budin, J.T.; Breene, W.M.; Putnam, D.H. Some Compositional Properties of Seeds and Oils of EightAmaranthus Species. J. Am. Oil Chem. Soc. 1996, 73, 475–481. [Google Scholar] [CrossRef]
- Silva, T.G.; Kasemodel, M.G.; Ferreira, O.M.; da Silva, R.C.; Souza, C.J.; Sanjinez-Argandona, E.J. Addition of Pachira Aquatica Oil and Platonia Insignis Almond in Cookies: Physicochemical and Sensorial Aspects. Food Sci. Nutr. 2020, 8, 5267–5274. [Google Scholar] [CrossRef]
- Rajiv, J.; Indrani, D.; Prabhasankar, P.; Rao, G.V. Rheology, Fatty Acid Profile and Storage Characteristics of Cookies as Influenced by Flax Seed (Linum usitatissimum). J. Food Sci. Technol. 2012, 49, 587–593. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento-Franco, L.; Sandoval-Castro, C.A.; McNab, J.M.; Quijano-Cervera, R.; Reyes-Ramirez, R.R. Effect of Age of Regrowth on Chemical Composition of Chaya (Cnidoscolus aconitifolius) Leaves. J. Sci. Food Agric. 2003, 83, 609–612. [Google Scholar] [CrossRef]
- Lorenz, E.C.; Michet, C.J.; Milliner, D.S.; Lieske, J.C. Update on Oxalate Crystal Disease. Curr. Rheumatol. Rep. 2013, 15, 340. [Google Scholar] [CrossRef] [Green Version]
- Chai, W.; Liebman, M. Effect of Different Cooking Methods on Vegetable Oxalate Content. J. Agric. Food Chem. 2005, 53, 3027–3030. [Google Scholar] [CrossRef]
- Ranhotra, G.S.; Gelroth, J.A.; Leinen, S.D.; Vinas, M.A.; Lorenz, K.J. Nutritional Profile of Some Edible Plants from Mexico. J. Food Compos. Anal. 1998, 11, 298–304. [Google Scholar] [CrossRef]
- Gebreil, S.Y.; Ali, M.I.K.; Mousa, E.A.M. Utilization of Amaranth Flour in Preparation of High Nutritional Value Bakery Products. Food Nutr. Sci. 2020, 10, 336. [Google Scholar]
- Matseychik, I.V.; Korpacheva, S.M.; Mazarova, P.G.; Khivuk, A.V.; Lomovsky, I.O. Prospects of Using Amaranth as a Functional Ingredient in Bakery Products. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 677, p. 032057. [Google Scholar]
- Yu, P.; Low, M.Y.; Zhou, W. Design of Experiments and Regression Modelling in Food Flavour and Sensory Analysis: A Review. Trends Food Sci. Technol. 2018, 71, 202–215. [Google Scholar] [CrossRef]
- Marrón-Ponce, J.A.; Flores, M.; Cediel, G.; Monteiro, C.A.; Batis, C. Associations between Consumption of Ultra-Processed Foods and Intake of Nutrients Related to Chronic Non-Communicable Diseases in Mexico. J. Acad. Nutr. Diet. 2019, 119, 1852–1865. [Google Scholar] [CrossRef]
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-Processed Foods and Health Outcomes: A Narrative Review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists; Horwitz, W. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1975; Volume 222. [Google Scholar]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Koren, E.; Kohen, R.; Ginsburg, I. Polyphenols Enhance Total Oxidant-Scavenging Capacities of Human Blood by Binding to Red Blood Cells. Exp. Biol. Med. 2010, 235, 689–699. [Google Scholar] [CrossRef]
- Zu, Y.; Li, C.; Fu, Y.; Zhao, C. Simultaneous Determination of Catechin, Rutin, Quercetin Kaempferol and Isorhamnetin in the Extract of Sea Buckthorn (Hippophae rhamnoides L.) Leaves by RP-HPLC with DAD. J. Pharm. Biomed. Anal. 2006, 41, 714–719. [Google Scholar] [CrossRef]
- Karamad, D.; Khosravi-Darani, K.; Hosseini, H.; Tavasoli, S. Analytical Procedures and Methods Validation for Oxalate Content Estimation. Biointerface Res. Appl. Chem. 2019, 9, 4305. [Google Scholar]
- Ramos, L.L.P.; Jiménez-Aspee, F.; Theoduloz, C.; Burgos-Edwards, A.; Domínguez-Perles, R.; Oger, C.; Durand, T.; Gil-Izquierdo, Á.; Bustamante, L.; Mardones, C. Phenolic, Oxylipin and Fatty Acid Profiles of the Chilean Hazelnut (Gevuina avellana): Antioxidant Activity and Inhibition of pro-Inflammatory and Metabolic Syndrome-Associated Enzymes. Food Chem. 2019, 298, 125026. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Descriptive Analysis. In Sensory Evaluation of Food; Springer: Berlin/Heidelberg, Germany, 2010; pp. 227–257. [Google Scholar]
Component | Formulation | |||
---|---|---|---|---|
Ch5:A20 | Ch10:A15 | Ch15:A10 | Ch20:A5 | |
Moisture | 2.86 ± 0.03 c | 3.77 ± 0.07 b | 4.36 ± 0.10 a | 2.90 ± 0.003 c |
Ash | 0.03 ± 0.02 c | 0.91 ± 0.01 c | 1.03 ± 0.02 b | 1.13 ± 0.00 a |
Protein | 10.1 ± 0.00 b | 10.6 ± 0.02 a | 10.5 ± 0.16 a | 9.21 ± 0.01 c |
Lipids | 18.0 ± 0.05 ab | 17.4 ± 0.32 b | 17.7 ± 0.03 ab | 18.2 ± 0.04 a |
Fiber | 6.32 ± 0.07 * | 6.63 ± 0.24 * | 5.34 ± 0.57 * | 5.63 ± 0.10 * |
Sodium | 7.53 ± 0.17 a | 4.99 ± 0.12 a | 3.46 ± 0.07 c | 4.07 ± 0.02 b |
Flour | Oxalate Content |
---|---|
Chaya | 2.10 ± 0.27 |
Ch5:A20 | 0.31 ± 0.003 b |
Ch10:A15 | 0.70 ± 0.13 a |
Ch15:A10 | 0.39 ± 0.06 ab |
Ch20:A5 | 0.64 ± 0.02 a |
Component | Formulation | |||
---|---|---|---|---|
Ch5:A20 | Ch10:A15 | Ch15:A10 | Ch20:A5 | |
Caproic acid (C6:0) | 0.06 ± 0.001 | 0.08 ± 0.0017 | 0.1 ± 0.003 | 0.08 ± 0.004 |
Caprylic acid (C8:0) | 0.26 ± 0.003 | 0.26 ± 0.0003 | 0.2 ± 0.001 | 0.23 ± 0.011 |
Capric acid (C10:0) | 0.23 ± 0.0021 | 0.23 ± 0.0009 | 0.23 ± 0.003 | 0.19 ± 0.007 |
Lauric acid (C12:0) | 3.85 ± 0.152 | 3.66 ± 0.003 | 3.68 ± 0.005 | 3.64 ± 0.134 |
Myristic acid (C14:0) | 1.14 ± 0.046 | 1.04 ± 0.003 | 1.09 ± 0.027 | 1.0 ± 0.022 |
Palmitic acid (C16:0 | 13.97 ± 0.146 | 13.3 ± 0.070 | 13.4 ± 0.025 | 13.28 ±0.022 |
Palmitoleic acid (C16:1) | 0.23 ± 0.002 | 0.21 ± 0.001 | 0.2 ± 0.002 | 0.24 ± 0.0003 |
Heptadecanoic acid (C17:0) | 0.06 ± 0.001 | 0.06 ± 0.001 | 0.07 ± 0.001 | 0.07 ± 0.0009 |
cis-10Heptadecenoic acid (C17:1) | 0.03 ± 0.0006 | 0.07 ± 0.0002 | 0.05 ± 0.00 | ND |
Stearic acid (C18:0) | 5.9 ± 0.028 | 5.5 ± 0.013 | 6.08 ± 0.020 | 5.45 ± 0.018 |
Oleic acid (C18:1, ω-9) | 21.1 ± 0.091 | 21.3 ± 0.022 | 18.6 ± 0.014 | 21.90 ±0.139 |
Linoleic acid (C18:2, ω-6) | 0.65 ± 0.006 | 0.76 ± 0.007 | 0.74 ± 0.006 | 0.69 ± 0.026 |
α-Linolenic acid (C18:3, ω-3) | 49.5 ± 0.237 | 50.5 ± 0.0004 | 52.4 ± 0.04 | 50.15 ± 0.350 |
γ-Linolenic acid (C18:3, ω-3) | 0.07 ± 0.001 | 0.10 ± 0.003 | 0.08 ± 0.002 | ND |
Arachidic acid (C20:0) | 2.2 ± 0.002 | 2.23 ± 0.009 | 2.72 ± 0.012 | 2.40 ± 0.007 |
Eicosanoid acid (C20:1, ω-9) | 0.11 ± 0.002 | ND | ND | 0.11 ± 0.000 |
Heneicosylic acid (C21:0) | ND | 0.07 ± 0.0004 | 0.05 ± 0.001 | 0.07 ± 0.003 |
Arachidonic acid (C20:4, ω-6) | 0.14 ± 0.0013 | 0.09 ± 0.002 | ND | ND |
Behenic (C22:0) | 0.27 ± 0.005 | 0.27 ± 0.002 | 0.20 ± 0.000 | 0.27 ± 0.0014 |
Eicosapentaenoic acid (C20:5, ω-3) | 0.10 ± 0.002 | 0.11 ± 0.001 | ND | 0.10 ± 0.0003 |
Lignoceric acid (C24:0) | 0.13 ± 0.001 | 0.13 ± 0.002 | 0.1 ± 0.0002 | 0.13 ± 0.0018 |
Σ SFA | 28.08 ± 1.28 | 26.8 ± 1.12 | 27.9 ± 1.15 | 26.81 ± 1.12 |
Σ UFA | 71.92 ± 8.16 | 73.2 ± 8.35 | 72.1 ± 8.62 | 73.19 ± 8.37 |
Σ MFA | 21.45 ± 5.24 | 21.6 ± 7.06 | 18.8 ± 6.15 | 22.25 ± 7.24 |
Σ PUFA | 50.46 ± 9.85 | 51.6 ± 10.1 | 53.2 ±17.3 | 50.94 ± 16.59 |
Microorganism | Reference Value * (CFU/g) | Formulation | |||
---|---|---|---|---|---|
Ch5:A20 | Ch10:A15 | Ch15:A10 | Ch20:A5 | ||
Aerobic mesophilic microorganisms | 3000 | 5 | 20 | 1 | 7.5 |
Total coliforms | <10 | <3 | <3 | <3 | <3 |
Yeast | 300 | <100 | <100 | <100 | <100 |
Molds | 300 | <100 | <100 | <100 | <100 |
Sensory Attribute | Formulation | |||
---|---|---|---|---|
Ch5:A20 | Ch10:A15 | Ch15:A10 | Ch20:A5 | |
Color | 6.4 ± 0.27 a | 6.1 ± 0.21 a | 6.0 ± 0.23 a | 5.0 ± 0.25 b |
Texture | 3.4 ± 0.10 a | 3.1 ± 0.10 ab | 3.3 ± 0.08 a | 2.8 ± 0.12 b |
Sweetness | 7.4 ± 0.19 a | 6.4 ± 0.24 b | 6.2 ± 0.22 b | 6.2 ± 0.23 b |
Sweet aroma | 2.5 ± 0.10 | 2.5 ± 0.12 | 2.2 ± 0.12 | 2.2 ± 0.16 |
Herbal aroma | 2.1 ± 0.12 b | 2.4 ± 0.15 b | 2.5 ± 0.15 ab | 3.0 ± 0.19 a |
Taste | 5.9 ± 0.38 a | 5.2 ± 0.33 ab | 5.0 ± 0.28 ab | 4.6 ± 0.30 b |
Ingredient (g/100 g) | Formulation | |||
---|---|---|---|---|
Ch5:A20 | Ch10:A15 | Ch15:A10 | Ch20:A5 | |
Whole-wheat flour | 40 | |||
Chaya flour | 5 | 10 | 15 | 20 |
Amaranth flour | 20 | 15 | 10 | 5 |
Brown sugar | 17.5 | |||
Desalted butter | 17.5 | |||
Egg * | 1 piece (60) | |||
Vanilla extract | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avila-Nava, A.; Alarcón-Telésforo, S.L.; Talamantes-Gómez, J.M.; Corona, L.; Gutiérrez-Solis, A.L.; Lugo, R.; Márquez-Mota, C.C. Development of a Functional Cookie Formulated with Chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst) and Amaranth (Amaranthus cruentus). Molecules 2022, 27, 7397. https://doi.org/10.3390/molecules27217397
Avila-Nava A, Alarcón-Telésforo SL, Talamantes-Gómez JM, Corona L, Gutiérrez-Solis AL, Lugo R, Márquez-Mota CC. Development of a Functional Cookie Formulated with Chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst) and Amaranth (Amaranthus cruentus). Molecules. 2022; 27(21):7397. https://doi.org/10.3390/molecules27217397
Chicago/Turabian StyleAvila-Nava, Azalia, Sayuri L. Alarcón-Telésforo, José Moisés Talamantes-Gómez, Luis Corona, Ana Ligia Gutiérrez-Solis, Roberto Lugo, and Claudia C. Márquez-Mota. 2022. "Development of a Functional Cookie Formulated with Chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst) and Amaranth (Amaranthus cruentus)" Molecules 27, no. 21: 7397. https://doi.org/10.3390/molecules27217397
APA StyleAvila-Nava, A., Alarcón-Telésforo, S. L., Talamantes-Gómez, J. M., Corona, L., Gutiérrez-Solis, A. L., Lugo, R., & Márquez-Mota, C. C. (2022). Development of a Functional Cookie Formulated with Chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst) and Amaranth (Amaranthus cruentus). Molecules, 27(21), 7397. https://doi.org/10.3390/molecules27217397