Comparative Analysis of Coumarin Profiles in Different Parts of Peucedanum japonicum and Their Aldo–Keto Reductase Inhibitory Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Coumarins in the Different Parts of P. japonicum Using UPLC-QTof MS
2.2. Aldo–Keto Reductases Inhibitory Effects of the Different Parts for P. japonicum
2.3. Multivariate Analysis
3. Materials and Methods
3.1. Plant Materials
3.2. Sample Preparation
3.3. UPLC-QTof MS Analysis
3.4. Aldo–Keto Reductases Activity Assay
3.5. Statistical and Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarkhail, P. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: A review. J. Ethnopharmacol. 2014, 156, 235–270. [Google Scholar] [CrossRef] [PubMed]
- Morioka, T.; Suzui, M.; Nabandith, V.; Inamine, M.; Aniya, Y.; Nakayama, T.; Ichiba, T.; Mori, H.; Yoshimi, N. The modifying effect of Peucedanum japonicum, a herb in the Ryukyu Islands, on azoxymethane-induced colon preneoplastic lesions in male F344 rats. Cancer Lett. 2004, 205, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Ikeshiro, Y.; Mase, I.; Tomita, Y. Dihydropyranocoumarins from roots of Peucedanum japonicum. Phytochemistry 1992, 31, 4303–4306. [Google Scholar] [CrossRef]
- Lee, S.O.; Choi, S.Z.; Lee, J.H.; Chung, S.H.; Park, S.H.; Kang, H.C.; Yang, E.Y.; Cho, H.J.; Lee, K. Antidiabetic coumarin and cyclitol compounds from Peucedanum japonicum. Arch. Pharm. Res. 2004, 27, 1207–1210.21. [Google Scholar] [CrossRef]
- Yang, E.J.; Kim, S.S.; Oh, T.H.; Song, G.; Kim, K.N.; Kim, J.Y.; Lee, N.H.; Hyun, C.G. Peucedanum japonicum and Citrus unshiu essential oils inhibit the growth of antibiotic-resistant skin pathogens. Ann. Microbiol. 2009, 59, 623–628. [Google Scholar] [CrossRef]
- Hong, M.J.; Kim, J. Determination of the absolute configuration of khellactone esters from Peucedanum japonicum roots. J. Nat. Prod. 2017, 80, 1354–1360. [Google Scholar] [CrossRef]
- Won, H.J.; Lee, S.M.; Kim, D.-Y.; Kwon, O.-K.; Park, M.H.; Kim, J.-H.; Ryu, H.W.; Oh, S.-R. Rapid securing of reference substances from Peucedanum japonicum Thunberg by recycling preparative high-performance liquid chromatography. J. Chromatogr. B 2019, 1133, 121835. [Google Scholar] [CrossRef]
- Kim, J.-M.; Noh, E.-M.; Kim, H.-R.; Kim, M.-S.; Song, H.-K.; Lee, M.; Yang, S.-H.; Lee, G.-S.; Moon, H.-C.; Kwon, K.-B.; et al. Suppression of TPA-induced cancer cell invasion by Peucedanum japonicum Thunb. extract through the inhibition of PKCα/NF-κB-dependent MMP-9 expression in MCF-7 cells. Int. J. Mol. Med. 2016, 37, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Choi, R.-Y.; Nam, S.-J.; Ham, J.-R.; Lee, H.-I.; Yee, S.-T.; Kang, K.-Y.; Seo, K.-I.; Lee, J.-H.; Kim, M.-J.; Lee, M.-K. Anti-adipogenic and anti-diabetic effects of cis-3′,4′-diisovalerylkhellactone isolated from Peucedanum japonicum Thunb leaves in vitro. Bioorg. Med. Chem. Lett. 2016, 26, 4655–4660. [Google Scholar] [CrossRef]
- Kim, J.-M.; Erkhembaatar, M.; Lee, G.S.; Lee, J.-H.; Noh, E.-M.; Lee, M.; Song, H.-K.; Lee, C.H.; Kwon, K.-B.; Kim, M.S.; et al. Peucedanum japonicum Thunb. ethanol extract suppresses RANKL-mediated osteoclastogenesis. Exp. Ther. Med. 2017, 14, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.M.; Lee, A.R.; Kim, H.S.; Lee, A.Y.; Gu, G.J.; Moon, B.C.; Kwon, B.-I. Peucedanum japonicum extract attenuates allergic airway inflammation by inhibiting Th2 cell activation and production of pro-inflammatory mediators. J. Ethnopharmacol. 2018, 211, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Jong, H.S.; Yoon, M.H.; Oh, S.H.; Jung, K.T. Antinociceptive effect of intrathecal sec-O-glucosylhamaudol on the formalin-induced pain in rats. Korean J. Pain 2017, 30, 98–103. [Google Scholar] [CrossRef]
- Suzuki, T.; Otsuka, A.; Ito, Y.; Yamada, S.; Miyake, H.; Ozono, S. Isosamidin, an extract of Peucedanum japonicum, inhibits phenylephrine-mediated contractions of the human prostate in vitro. Phytother. Res. 2018, 32, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.M.; Lee, A.Y.; Kim, J.S.; Choi, G.; Kim, S.H. Protective Effects of Peucedanum japonicum extract against osteoarthritis in an animal model using a combined systems approach for compound-target prediction. Nutrients 2018, 10, 754. [Google Scholar] [CrossRef] [Green Version]
- Taira, J.; Ogi, T. Induction of antioxidant protein HO-1 through Nrf2-ARE signaling due to pteryxin in Peucedanum japonicum Thunb in RAW264.7 macrophage cells. Antioxidants 2019, 8, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossin, A.Y.; Inafuku, M.; Oku, H. Dihydropyranocoumarins exerted anti-obesity activity in vivo and its activity was enhanced by nanoparticulation with polylactic-co-glycolic acid. Nutrients 2019, 11, 3053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, M.H.; Lee, J.H.; Ahn, J.; Hong, M.J.; Kim, J.; Kim, S.Y. Isosamidin from Peucedanum japonicum roots prevents methylglyoxal-induced glucotoxicity in human umbilical vein endothelial cells via suppression of ROS-mediated Bax/Bcl-2. Antioxidants 2020, 9, 531. [Google Scholar] [CrossRef]
- Heo, J.H.; Eom, B.H.; Ryu, H.W.; Kang, M.-G.; Park, J.E.; Kim, D.-Y.; Kim, J.-H.; Park, D.; Oh, S.-R.; Kim, H. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of khellactone coumarin derivatives isolated from Peucedanum japonicum Thurnberg. Sci. Rep. 2020, 10, 21695. [Google Scholar] [CrossRef]
- Kang, W.S.; Choi, H.; Lee, K.H.; Kim, E.; Kim, K.J.; Na, C.S.; Kim, S. Peucedanum japonicum Thunberg and its active components mitigate oxidative stress, inflammation and apoptosis after urban particulate matter-induced ocular surface damage. Antioxidants 2021, 10, 1717. [Google Scholar] [CrossRef]
- Gil, T.Y.; Jin, B.R.; An, H.J. Peucedanum japonicum Thunberg alleviates atopic dermatitis-like inflammation via STAT/MAPK signaling pathways in vivo and in vitro. Mol. Immunol. 2022, 144, 106–116. [Google Scholar] [CrossRef]
- Hwang, D.; Ryu, H.W.; Park, J.-W.; Kim, J.-H.; Kim, D.-Y.; Oh, J.-H.; Kwon, O.-K.; Han, S.-B.; Ahn, K.-S. Effects of 3′-isovaleryl-4′-senecioylkhellactone from Peucedanum japonicum Thunberg on PMA-stimulated inflammatory response in A549 human lung epithelial cells. J. Microbiol. Biotechnol. 2022, 32, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Gil, T.Y.; Jin, B.R.; Lee, J.H.; An, H.J. In vitro and in vivo experimental investigation of anti-inflammatory effects of Peucedanum japonicum aqueous extract by suppressing the LPS-induced NF-κB/MAPK JNK pathways. Am. J. Chin. Med. 2022, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, R.; Morimoto, R.; Horio, Y.; Sumitani, H.; Isegawa, Y. Inhibition of influenza virus replication by Apiaceae plants, with special reference to Peucedanum japonicum (Sacna) constituents. J. Ethnopharmacol. 2022, 292, 115243. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.M.; Chang, L.L.; Ying, M.D.; Cao, J.; He, Q.J.; Zhu, H.; Yang, B. Aldo-keto reductase AKR1C1-AKR1C4: Functions, regulation, and intervention for anti-cancer therapy. Front. Pharmacol. 2017, 8, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penning, T.M.; Jonnalagadda, S.; Trippier, P.C.; Rižner, T.L. Aldo-keto reductases and cancer drug resistance. Pharmacol. Rev. 2021, 73, 1150–1171. [Google Scholar] [CrossRef] [PubMed]
- Barski, O.A.; Tipparaju, S.M.; Bhatnagar, A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug. Metab. Rev. 2008, 40, 553–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologie developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229. [Google Scholar] [CrossRef] [Green Version]
- Hofman, J.; Malcekova, B.; Skarka, A.; Novotna, E.; Wsol, V. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3. Toxicol. Appl. Pharmacol. 2014, 278, 238–248. [Google Scholar] [CrossRef]
- Wsol, V.; Szotakova, B.; Martin, H.J.; Maser, E. Aldo-keto reductases (AKR) from the AKR1C subfamily catalyze the carbonyl reduction of the novel anticancer drug oracin in man. Toxicology 2007, 238, 111–118. [Google Scholar] [CrossRef]
- Matsunaga, T.; Hojo, A.; Yamane, Y.; Endo, S.; El-Kabbani, O.; Hara, A. Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Chem. Biol. Interact. 2013, 202, 234–242. [Google Scholar] [CrossRef]
- Chang, W.M.; Chang, Y.C.; Yang, Y.C.; Lin, S.K.; Chang, P.M.; Hsiao, M. AKR1C1 controls cisplatin-resistance in head and neck squamous cell carcinoma through cross-talk with the STAT1/3 signaling pathway. J. Exp. Clin. Cancer Res. 2019, 38, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Shen, G.; Yang, F.; Duan, J.; Wu, Z.; Yang, M.; Liu, Y.; Du, X.; Zhang, X.; Xiao, S. Loss of AKR1C1 is a good prognostic factor in advanced NPC cases and increases chemosensitivity to cisplatin in NPC cells. J. Cell Mol. Med. 2020, 24, 6438–6447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortolozzi, R.; Bresolin, S.; Rampazzo, E.; Paganin, M.; Maule, F.; Mariotto, E.; Boso, D.; Minuzzo, S.; Agnusdei, V.; Viola, G.; et al. AKR1C enzymes sustain therapy resistance in paediatric T-ALL. Br. J. Cancer. 2018, 118, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Yonezawa, A.; Takasawa, H.; Nagao, Y.; Iguchi, K.; Endo, S.; Ikari, A.; Matsunaga, T. Development of cisplatin resistance in breast cancer MCF7 cells by up-regulating aldo-keto reductase 1C3 expression, glutathione synthesis and proteasomal proteolysis. J. Biochem. 2022, 171, 97–108. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Z.; Li, J.; Wu, X.; Fan, N.; Li, D.; Liu, F.; Plum, P.S.; Hoppe, S.; Hillmer, A.M.; et al. Aldo-keto reductase 1C3 mediates chemotherapy resistance in esophageal adenocarcinoma via ROS detoxification. Cancers 2021, 13, 2403. [Google Scholar] [CrossRef]
- Ji, Q.; Aoyama, C.; Nien, Y.D.; Liu, P.I.; Chen, P.K.; Chang, L.; Stanczyk, F.Z.; Stolz, A. Selective loss of AKR1C1 and AKR1C2 in breast cancer and their potential effect on progesterone signaling. Cancer Res. 2004, 64, 7610–7617. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Chang, Y.Q.; Feng, X.; Yang, G.Y.; Zheng, Y.G.; Zheng, Q.; Zhang, L.L.; Zhang, D.; Guo, L. Chemical comparison and discrimination of two plant sources of Angelicae dahuricae Radix, Angelica dahurica and Angelica dahurica var. formosana, by HPLC-Q/TOF-MS and quantitative analysis of multiple components by a single marker. Phytochem. Anal. 2022, 33, 776–791. [Google Scholar] [CrossRef]
- Chen, I.S.; Chang, C.T.; Sheen, W.S.; Teng, C.M.; Tsai, I.L.; Duh, C.Y.; Ko, F.N. Coumarins and antiplatelet aggregation constituents from Formosan Peucedanum japonicum. Phytochemistry 1996, 41, 525–530. [Google Scholar] [CrossRef]
- Reisch, J.; Khaled, S.A.; Szendrei, K.; Novak, I. Natural product chemistry. 51. 5-Alkoxy-furanocoumarins from Peucedanum ostruthium. Phytochemistry 1975, 14, 1889–1890. [Google Scholar] [CrossRef]
- Varga, E.; Simokovics, J.; Szendrei, K.; Reisch, J. Furanocoumarins and chromones from the fruits of Peucedanum ostrutbium L. (Koch) (Umbelliferae). Fitoterapia 1979, 50, 259–264. [Google Scholar]
- Lee, J.; Lee, Y.J.; Kim, J.; Bang, O.-S. Pyranocoumarins from root extracts of Peucedanum praeruptorum dunn with multidrug resistance reversal and anti-inflammatory activities. Molecules 2015, 20, 20967–20978. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Lin, Z.; Niu, F.; Ding, J. Studies on Chinese herbs in Umbelliferae. II. New coumarins in Peucedanum turgeniifolium Wolff. Yunnan Zhiwu Yanjiu 1981, 3, 173–180. [Google Scholar]
- Song, Y.-L.; Jing, W.-H.; Tu, P.-F.; Wang, Y.-T. Enantiomeric separation of angular-type pyranocoumarins from Peucedani Radix using AD-RH chiral column. Nat. Prod. Res. 2014, 28, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Taira, N.; Nugara, R.N.; Inafuku, M.; Takara, K.; Ogi, T.; Ichiba, T.; Iwasaki, H.; Okabe, T.; Oku, H. In vivo and in vitro anti-obesity activities of dihydropyranocoumarins derivatives from Peucedanum japonicum Thunb. J. Funct. Foods. 2017, 29, 19–28. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Kang, C.; Zhao, H.; Xiang, L.; Li, C.; Wang, Q. Sodiation-based in-source collision for profiling of pyranocoumarins in Radix Peucedani (Qianhu): Utility of sodium adducts’ stability with in-source collision. J. Mass Spectrom. 2017, 52, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, C.; Jin, Q.; Yeon, E.T.; Lee, D.; Kim, S.-Y.; Han, S.B.; Hong, J.T.; Lee, M.K.; Hwang, B.Y. Pyranocoumarins from Glehnia littoralis inhibit the LPS-induced NO production in macrophage RAW 264.7 cells. Bioorg. Med. Chem. Lett. 2014, 24, 2717–2719. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Fedorov, I.A.; Kashchenko, N.I.; Chirikova, N.K.; Vennos, C. Khellactone derivatives and other phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV profile, and antiobesity potential of dihydrosamidin. Molecules 2019, 24, 2286. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-Y.; Li, J.-F.; Jian, Y.-M.; Wu, Z.; Fang, M.-J.; Qiu, Y.-K. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum. J. Chromatogr. A 2015, 1387, 60–68. [Google Scholar] [CrossRef]
- Li, X.-M.; Jiang, X.-J.; Yang, K.; Wang, L.-X.; Wen, S.-Z.; Wang, F. Prenylated Coumarins from Heracleum stenopterum, Peucedanum praeruptorum, Clausena lansium, and Murraya paniculata. Nat. Prod. Bioprospect. 2016, 6, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Hata, K.; Kozawa, M.; Ikeshiro, Y.; Yen, K.-Y. New coumarins isolated from the root of Peucedanum formosanum and Peucedanum japonicum. Yakugaku Zasshi 1968, 88, 513–520. [Google Scholar] [CrossRef]
- Jong, T.T.; Hwang, H.C.; Jean, M.Y.; Wu, T.S.; Teng, C.M. An antiplatelet aggregation principle and X-ray structural analysis of cis-khellactone diester from Peucedanum japonicum. J. Nat. Prod. 1992, 5, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Song, Q.; Liu, Y.; Li, J.; Wan, J.-B.; Wang, Y.; Jiang, Y.; Tu, P. Integrated work-flow for quantitative metabolome profiling of plants, Peucedani Radix as a case. Anal. Chim. Acta 2017, 953, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Luo, J.; Wang, X.; Kong, L. Application of UPLC-Quadrupole-TOF-MS coupled with recycling preparative HPLC in isolation and preparation of coumarin isomers with similar polarity from Peucedanum praeruptorum. Chromatographia 2013, 76, 141–148. [Google Scholar] [CrossRef]
- Brozic, P.; Cesar, J.; Kovac, A.; Davies, M.; Johnson, A.P.; Fishwick, C.W.G.; Lanisnik Rizner, T.; Gobec, S. Derivatives of pyrimidine, phthalimide and anthranilic acid as inhibitors of human hydroxysteroid dehydrogenase AKR1C1. Chem. Biol. Interact 2009, 178, 158–164. [Google Scholar] [CrossRef]
- El-Kabbani, O.; Scammells, P.J.; Gosling, J.; Dhagat, U.; Endo, S.; Matsunaga, T.; Soda, M.; Hara, A. Structure-guided design, synthesis, and evaluation of salicylic acid-based inhibitors targeting a selectivity pocket in the active site of human 20alpha-hydroxysteroid dehydrogenase (AKR1C1). J. Med. Chem. 2009, 52, 3259–3264. [Google Scholar] [CrossRef]
- Verma, P.; Hassan, M.I.; Singh, A.; Singh, I.K. Design and development of novel inhibitors of aldo-ketoreductase 1C1 as potential lead molecules in treatment of breast cancer. Mol. Cell Biochem. 2021, 476, 2975–2987. [Google Scholar] [CrossRef]
- He, S.; Liu, Y.; Chu, X.; Li, Q.; Lyu, W.; Liu, Y.; Xing, S.; Feng, F.; Liu, W.; Guo, Q.; et al. Discovery of novel aldo-keto reductase 1C3 inhibitors as chemotherapeutic potentiators for cancer drug resistance. ACS Med. Chem. Lett. 2022, 13, 1286–1294. [Google Scholar] [CrossRef]
- Kljun, J.; Pavlič, R.; Hafner, E.; Lipec, T.; Moreno-Da Silva, S.; Tič, P.; Turel, I.; Büdefeld, T.; Stojan, J.; Rižner, T.L. Ruthenium complexes show potent inhibition of AKR1C1, AKR1C2, and AKR1C3 enzymes and anti-proliferative action against chemoresistant ovarian cancer cell line. Front Pharmacol. 2022, 13, 920379. [Google Scholar] [CrossRef]
- Zeng, C.; Zhu, D.; You, J.; Dong, X.; Yang, B.; Zhu, H.; He, Q. Liquiritin, as a natural inhibitor of AKR1C1, could interfere with the progesterone metabolism. Front. Physiol. 2019, 10, 833. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Li, S.; Liu, J.; Zhang, C.; Jian, C.; Wang, L.; Zhang, Y.; Shi, C. Natural product alantolactone targeting AKR1C1 suppresses cell proliferation and metastasis in non-small-cell lung cancer. Front. Pharmacol. 2022, 13, 847906. [Google Scholar] [CrossRef]
Peak No. | ESI MS tR (min) | Observed Mass (m/z) | Calculated Mass (m/z) | Error (ppm) | Molecular Formula | Key MSE Fragment Ions (m/z) | Identification 1 |
---|---|---|---|---|---|---|---|
1 | 1.831 | 305.1027 [M + H]+ | 305.1025 | 0.2 | C16H16O6 | 631.1793 [2M + Na]+ 327.0848 [M + Na]+ 203.0344 [M − R + H]+ | oxypeucedanin hydrate |
2 | 4.712 | 319.1223 [M + H]+ | 319.1182 | 4.1 | C17H18O6 | 659.2193 [2M + Na]+ 341.1046 [M + Na]+ 203.0366 [M − R + H]+ | oxypeucedanin methanolate |
3 | 4.895 | 287.0919 [M + H]+ | 287.0920 | −0.1 | C16H14O5 | 309.0735 [M + Na]+ 203.0340 [M − R + H]+ | pabulenol |
4 | 5.889 | 287.0921 [M + H]+ | 287.0920 | 0.1 | C16H14O5 | 309.0739 [M + Na]+ 203.0346 [M − R + H]+ | 5-[(3-hydroxy-3-methyl-1-butenyl)oxy]psoralen |
5 | 7.878 | 383.1158 [M + Na]+ | 383.1107 | 5.2 | C19H20O7 | 383.1158 [M + Na]+ 287.0963 [M-R2OH+H]+ 245.0847 [M-R2OH-(R1-H)+H]+ 227.0740 [M-R2OH-(OR1-H)+H]+ | 3′-O-acetyl-4′-O-propanoylkhellactone |
6 | 8.261 | 369.1314 [M + Na]+ | 369.1314 | 0.0 | C19H22O6 | 715.2726 [2M + Na]+ 369.1314 [M + Na]+ 329.1384 [M-R2OH+H]+ 245.0814 [M-R2OH-(R1-H)+H]+ | 3′- O-(2-methyl-butyryl)-4′-hydroxy khellactone (or 3′-O-(isovaleryl)-4′-hydroxy khellactone) |
7 | 9.667 | 397.1269 [M + Na]+ | 397.1263 | 0.6 | C20H22O7 | 771.2624 [2M + Na]+ 397.1269 [M + Na]+ 287.0924 [M-R2OH+H]+ 245.0820 [M-R2OH-(R1-H)+H]+ 227.0709 [M-R2OH-(OR1-H)+H]+ | 3′-O-acetyl-4′-O-isobutyryl khellactone |
8 | 10.015 | 293.0795 [M + Na]+ | 293.0790 | 0.5 | C16H14O4 | 563.1677 [2M + Na]+ 293.0795 [M + Na]+ 203.0344 [M – R + H]+ | isoimpertorin |
9 | 10.581 | 409.1266 [M + Na]+ | 409.1263 | 0.3 | C21H22O7 | 795.2621 [2M + Na]+ 409.1266 [M + Na]+ 287.0916 [M-R2OH+H]+ 245.0814 [M-R2OH-(R1-H)+H]+ 227.0707 [M-R2OH-(OR1-H)+H]+ | 3′-O-acetyl-4′-O-angeloylkhellactone a |
10 | 10.678 | 409.1270 [M + Na]+ | 409.1263 | 0.7 | C21H22O7 | 795.2626 [2M + Na]+ 409.1270 [M + Na]+ 287.0919 [M-R2OH+H]+ 245.0816 [M-R2OH-(R1-H)+H]+ 227.0708 [M-R2OH-(OR1-H)+H]+ | 3′-O-acetyl-4′-O-senecioylkhellactone a |
11 | 11.987 | 411.1419 [M + Na]+ | 411.1420 | −0.1 | C21H24O7 | 799.2952 [2M + Na]+ 411.1419 [M + Na]+ 287.0921 [M-R2OH+H]+ 245.0820 [M-R2OH-(R1-H)+H]+ 227.0715 [M-R2OH-(OR1-H)+H]+ | 3′-O-acetyl-4′-O-(2-methyl butanoate)khellactone (or 3′-O-acetyl-4′-O-isovalerylkhellactone) |
12 | 13.181 | 423.1532 [M + Na]+ | 423.1420 | 11.2 | C22H24O7 | 823.3156 [2M + Na]+ 423.1532 [M + Na]+ 301.1155 [M-R2OH+H]+ 245.0878 [M-R2OH-(R1-H)+H]+ 227.0769 [M-R2OH-(OR1-H)+H]+ | 3′-O-propanoyl-4′-O-angeloyl khellactone (or 3′-O-propanoyl-4′-O-senecioylkhellactone) |
13 | 13.433 | 423.1539 [M + Na]+ | 423.1420 | 11.9 | C22H24O7 | 823.3171 [2M + Na]+ 423.1539 [M + Na]+ 327.1321 [M-R2OH+H]+ 245.0879 [M-R2OH-(R1-H)+H]+ 227.0769 [M-R2OH-(OR1-H)+H]+ | 3′-O-angeloyl-4′-O-propanoylkhellactone (or 3′-O-senecioyl-4′-O-propanoylkhellactone) |
14 | 14.542 | 425.1577 [M + Na]+ | 425.1577 | 0.0 | C22H26O7 | 827.3246 [2M + Na]+ 425.1577 [M + Na]+ 315.1229 [M-R2OH+H]+ 245.0813 [M-R2OH-(R1-H)+H]+ 227.0704 [M-R2OH-(OR1-H)+H]+ | 3′,4′-O-diisobutyrylkhellactone |
15 | 15.319 | 437.1574 [M + Na]+ | 437.1576 | −0.2 | C23H26O7 | 851.3203 [2M + Na]+ 437.1574 [M + Na]+ 327.1227 [M-R2OH+H]+ 245.0810 [M-R2OH-(R1-H)+H]+ 227.0708 [M-R2OH-(OR1-H)+H]+ | 3′-O-angeloyl-4′-O-isobutyrylkhellactone b |
16 | 15.442 | 437.1577 [M + Na]+ | 437.1576 | 0.1 | C23H26O7 | 851.3234 [2M + Na]+ 437.1577 [M + Na]+ 315.1229 [M-R2OH+H]+ 245.0813 [M-R2OH-(R1-H)+H]+ 227.0702 [M-R2OH-(OR1-H)+H]+ | 3′-O- isobutyryl-4′-O-angeloylkhellactone c |
17 | 15.667 | 437.1581 [M + Na]+ | 437.1576 | 0.5 | C23H26O7 | 851.3275 [2M + Na]+ 437.1581 [M + Na]+ 315.1231 [M-R2OH+H]+ 245.0814 [M-R2OH-(R1-H)+H]+ 227.0704 [M-R2OH-(OR1-H)+H]+ | 3′-O-isobutyryl-4′-O-senecioylkhellactone c |
18 | 15.885 | 437.1584 [M + Na]+ | 437.1576 | 0.8 | C23H26O7 | 851.3269 [2M + Na]+ 437.1584 [M + Na]+ 327.1234 [M-R2OH+H]+ 245.0812 [M-R2OH-(R1-H)+H]+ 227.0704 [M-R2OH-(OR1-H)+H]+ | 3′-O-senecioyl-4′-O-isobutyrylkhellactone b |
19 | 16.016 | 449.1585 [M + Na]+ | 449.1576 | 0.9 | C24H26O7 | 875.3253 [2M + Na]+ 449.1585 [M + Na]+ 327.1234 [M-R2OH+H]+ 245.0814 [M-R2OH-(R1-H)+H]+ 227.0708 [M-OR2-R1-H2O]+ | 3′,4′-O-diangeloylkhellactone d |
20 | 16.365 | 449.1579 [M + Na]+ | 449.1576 | 0.3 | C24H26O7 | 875.3353 [2M + Na]+ 449.1579 [M + Na]+ 327.1230 [M-R2OH+H]+ 245.0810 [M-R2OH-(R1-H)+H]+ 227.0705 [M-OR2-R1-H2O]+ | 3′-O-angeloyl-4′-O-senecioylkhellactone d |
21 | 16.747 | 449.1581 [M + Na]+ | 449.1576 | 0.5 | C24H26O7 | 875.3261 [2M + Na]+ 449.1581 [M + Na]+ 327.1229 [M-R2OH+H]+ 245.0809 [M-R2OH-(R1-H)+H]+ 227.0706 [M-OR2-R1-H2O]+ | 3′,4′-O-disenecioylkhellactone d |
22 | 16.993 | 449.1578 [M + Na]+ | 449.1576 | 0.2 | C24H26O7 | 875.3243 [2M + Na]+ 449.1578 [M + Na]+ 327.1230 [M-R2OH+H]+ 245.0811 [M-R2OH-(R1-H)+H]+ 227.0705 [M-OR2-R1-H2O]+ | 3′-O-senecioyl-4′-O-angeloylkhellactone d |
23 | 17.273 | 439.1729 [M + Na]+ | 439.1733 | −0.4 | C23H28O7 | 855.3560 [2M + Na]+ 439.1729 [M + Na]+ 329.1384 [M-R2OH+H]+ 245.0814 [M-R2OH-(R1-H)+H]+ 227.0706 [M-R2OH-(OR1-H)+H]+ | 3′-O-(2-methyl butyryl)-4′-O-isobutyrylkhellactone e |
24 | 17.542 | 439.1734 [M + Na]+ | 439.1733 | 0.1 | C23H28O7 | 855.3547 [2M + Na]+ 439.1734 [M + Na]+ 329.1383 [M-R2OH+H]+ 245.0814 [M-R2OH-(R1-H)+H]+ 227.0706 [M-R2OH-(OR1-H)+H]+ | 3′-O-isovaleryl-4′-O-isobutyrylkhellactone e |
25 | 18.371 | 451.1734 [M + Na]+ | 451.1733 | 0.1 | C24H28O7 | 879.3566 [2M + Na]+ 451.1734 [M + Na]+ 329.1386 [M-R2OH+H]+ 245.0815 [M-R2OH-(R1-H)+H]+ 227.0707 [M-R2OH-(OR1-H)+H]+ | 3′-O-(2-methyl butyryl)-4′-O-angeloylkhellactone, 3′-O-(2-methyl butyryl)-4′-O-senecioyl khellactone, 3′-O-isovaleryl-4′-O-angeloylkhellactone, or 3′-O-isovaleryl-4′-O-senecioylkhellactone |
26 | 18.799 | 451.1741 [M + Na]+ | 451.1733 | 0.8 | C24H28O7 | 879.3578 [2M + Na]+ 451.1741 [M + Na]+ 327.1237 [M-R2OH+H]+ 245.0819 [M-R2OH-(R1-H)+H]+ 227.0710 [M-R2OH-(OR1-H)+H]+ | 3′-O-angeloyl-4′-O-(2-methyl butyryl)khellactone, 3′-O-angeloyl-4′-O-isovaleryl khellactone, 3′-O-senecioyl-4′-O-(2-methyl butyryl)khellactone, or 3′-O-senecioyl-4′-O-isovaleryl khellactone |
27 | 20.919 | 453.1896 [M + Na]+ | 453.1889 | 0.7 | C24H30O7 | 883.3885 [2M + Na]+ 453.1896 [M + Na]+ 329.1392 [M-R2OH+H]+ 245.0817 [M-R2OH-(R1-H)+H]+ 227.0708 [M-R2OH-(OR1-H)+H]+ | 3′,4′-O-di-(2-methyl butyryl)khellactone (or 3′-O-(2-methyl butyryl)-4′-O- isovalerylkhellactone) f |
28 | 21.268 | 453.1896 [M + Na]+ | 453.1889 | 0.7 | C24H30O7 | 883.3890 [2M + Na]+ 453.1896 [M + Na]+ 329.1393 [M-R2OH+H]+ 245.0818 [M-R2OH-(R1-H)+H]+ 227.0710 [M-R2OH-(OR1-H)+H]+ | 3′-O-isovaleryl-4′-O-(2-methyl butyryl)khellactone (or 3′,4′-O-diisovalerylkhellactone) f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Paudel, S.B.; Jin, C.H.; Lee, G.; Choi, H.-I.; Ryoo, G.-H.; Kil, Y.-S.; Nam, J.-W.; Jung, C.-H.; Kim, B.-R.; et al. Comparative Analysis of Coumarin Profiles in Different Parts of Peucedanum japonicum and Their Aldo–Keto Reductase Inhibitory Activities. Molecules 2022, 27, 7391. https://doi.org/10.3390/molecules27217391
Park J, Paudel SB, Jin CH, Lee G, Choi H-I, Ryoo G-H, Kil Y-S, Nam J-W, Jung C-H, Kim B-R, et al. Comparative Analysis of Coumarin Profiles in Different Parts of Peucedanum japonicum and Their Aldo–Keto Reductase Inhibitory Activities. Molecules. 2022; 27(21):7391. https://doi.org/10.3390/molecules27217391
Chicago/Turabian StylePark, Jisu, Sunil Babu Paudel, Chang Hyun Jin, Gileung Lee, Hong-Il Choi, Ga-Hee Ryoo, Yun-Seo Kil, Joo-Won Nam, Chan-Hun Jung, Bo-Ram Kim, and et al. 2022. "Comparative Analysis of Coumarin Profiles in Different Parts of Peucedanum japonicum and Their Aldo–Keto Reductase Inhibitory Activities" Molecules 27, no. 21: 7391. https://doi.org/10.3390/molecules27217391
APA StylePark, J., Paudel, S. B., Jin, C. H., Lee, G., Choi, H. -I., Ryoo, G. -H., Kil, Y. -S., Nam, J. -W., Jung, C. -H., Kim, B. -R., Na, M. K., & Han, A. -R. (2022). Comparative Analysis of Coumarin Profiles in Different Parts of Peucedanum japonicum and Their Aldo–Keto Reductase Inhibitory Activities. Molecules, 27(21), 7391. https://doi.org/10.3390/molecules27217391