Determination of Total Sennosides and Sennosides A, B, and A1 in Senna Leaflets, Pods, and Tablets by Two-Dimensional qNMR
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.1.1. Background
2.1.2. Sample Preparation
2.1.3. NMR Measurements for Total Sennosides
2.1.4. Quantification of Sennosides A, B, and A1
2.2. Method Validation
2.2.1. Linearity and Quantitation Limit
2.2.2. Precision and Repeatability
2.2.3. Accuracy
2.2.4. Specificity and Selectivity
3. Materials and Methods
3.1. Materials and Reagents
3.2. General Experimental Procedures
3.3. Isolation of Reference Standards
3.4. Determination of Total Sennoside Content
3.5. Determination of Sennosides A, B, and A1
3.6. Spectroscopic Analysis
- Aloin (CH-10): 4.71 to 4.45 ppm in F2 (1H) and 45.21 to 43.84 ppm in F1 (13C);
- Aloin (CH-6): 7.62 to 7.49 ppm in F2 (1H) and 136.90 to 135.69 ppm in F1 (13C);
- Sennosides (CH-10): 5.14 to 4.86 ppm in F2 (1H) and 55.02 to 53.62 ppm in F1 (13C);
- Sennoside A (CH-6): 7.81 to 7.61 ppm in F2 (1H) and 135.95 to 135.22 ppm in F1 (13C);
- Sennoside B (CH-6): 7.66 to 7.40 ppm in F2 (1H) and 135.32 to 134.48 ppm in F1 (13C);
- Sennoside A1 (CH-6): 7.43 to 7.31 ppm in F2 (1H) and 134.57 to 134.09 ppm in F1 (13C).
3.7. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Farag, M.A.; Porzel, A.; Mahrous, E.A.; El-Massry, M.M.; Wessjohann, L. Integrated comparative metabolite proiling via MS and NMR techniques for Senna drug quality control analysis. Anal. Bioanal. Chem. 2015, 407, 1937–1949. [Google Scholar] [CrossRef] [PubMed]
- Stoll, A.; Becker, B. Sennosides A and B, the active principles of Senna. In Progress in the Chemistry of Organic Natural Products, 1st ed.; Zechmeister, L., Ed.; Springer: Vienna, Austria, 1950; Volume 7, pp. 248–269. [Google Scholar]
- Metzger, W.; Reif, K. Determination of 1,8-dihydroxyanthranoids in senna. J. Chromatogr. A 1996, 740, 133–138. [Google Scholar] [CrossRef]
- Chinou, I.; Knoess, W.; Calapai, G. Regulation of herbal medicinal products in the EU: An up-to-date scientific review. Phytochem. Rev. 2014, 13, 539–545. [Google Scholar] [CrossRef]
- Akao, T.; Che, Q.-M.; Kobashi, K.; Yang, L.; Hattori, M.; Namba, T. Isolation of a human intestinal anaerobe, Bifidobacterium sp. strain SEN, capable of hydrolyzing sennosides to sennidines. Appl. Environ. Microbiol. 1994, 60, 1041–1043. [Google Scholar] [CrossRef] [Green Version]
- Franca, M.G.A.; Cavalheiro, A.J.; Silva, M.G.V. A comprehensive LC-DAD-QTOF-MS method for the dereplication of bioactive compounds in Senna extracts. Rev. Bras. Farmacogn. 2021, 31, 32–39. [Google Scholar] [CrossRef]
- Carcasona, A.; Grimminger, W.; Hietala, P.; Zaeske, H.; Witthon, K. Verfahren zur Gewinnung der Sennoside A, B und A1. European Patent Office. European Patent No. EP0544886B1, 9 June 1993. [Google Scholar]
- Park, S.B.; Kim, Y.S. Simultaneous separation of three isomeric sennosides from senna leaf (Cassia acutifolia) using counter-current chromatography. J. Sep. Sci. 2015, 38, 3502–3507. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & Health Care (EDQM). European Pharmacopoeia, 10th ed.; European Directorate for the Quality of Medicines & Health Care (EDQM): Strasbourg, France, 2020. [Google Scholar]
- European Directorate for the Quality of Medicines & Health Care (EDQM). European Pharmacopoeia, 9th ed.; European Directorate for the Quality of Medicines & Health Care (EDQM): Strasbourg, France, 2017. [Google Scholar]
- Brendel, W.D.; Schneider, D. Quantitative determination of sennosides in senna pods and senna leaves. I. Method. Planta Med. 1974, 25, 63–67. [Google Scholar] [CrossRef]
- Bala, S.; Uniyal, G.C.; Dubey, T.; Singh, S.P. An improved method for the analysis of sennosides in Cassia angustifolia by high-performance liquid chromatography. Phytochem. Anal. 2001, 12, 277–280. [Google Scholar] [CrossRef]
- Terreaux, T.; Wang, Q.; Loset, J.R.; Ndjoko, K.; Grimminger, W.; Hostettmann, K. Compete LC/MS analysis of a Tinnevelli Senna pod extract and subsequent isolation and identification of two new benzophenone glucosides. Planta Med. 2002, 68, 349–354. [Google Scholar] [CrossRef]
- Lainonen, H.; Marvola, M.; Hietala, P.; Parviainen, T. The effect of different storage conditions on the chemical stability, laxative effect and acute toxicity of sennoside solutions. Pharmacol. Toxicol. 1988, 63, 37–41. [Google Scholar] [CrossRef]
- Goppel, M.; Franz, G. Stability control of senna leaves and senna extracts. Planta Med. 2004, 70, 432–436. [Google Scholar]
- Lewis, I.A.; Schommer, S.C.; Hodis, B.; Robb, K.A.; Tonelli, M.; Westler, W.M.; Sussman, M.R.; Markley, J.L. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H–13C NMR spectra. Anal. Chem. 2007, 79, 9385–9390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fardus-Reid, F.; Warren, J.; Le Gresley, A. Validating heteronuclear 2D quantitative NMR. Anal. Methods 2016, 8, 2013–2019. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gellerstedt, G. Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn. Res. Chem. 2007, 45, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.K.; Sinha, N. Fast and accurate metabolic profiling of body fluids by nonlinear sampling of 1H–13C two-dimensional nuclear magnetic resonance spectroscopy. Anal. Chem. 2012, 84, 10005–10011. [Google Scholar] [CrossRef] [PubMed]
- Cicek, S.S.; Pfeifer Barbosa, A.L.; Girreser, U. Quantification of diterpene acids in Copaiba oleoresin by UHPLC-ELSD and heteronuclear two-dimensional qNMR. J. Pharm. Biomed. Anal. 2018, 160, 126–134. [Google Scholar] [CrossRef]
- Holzgrabe, U. Quantitative NMR spectroscopy in pharmaceutical applications. Prog. NMR Spectrosc. 2010, 57, 229–240. [Google Scholar] [CrossRef]
- Gödecke, T.; Napolitano, J.G.; Rodriguez-Brasco, M.F.; Chen, S.-N.; Jaki, B.U.; Lankin, D.C.; Pauli, G.F. Validation of a generic quantitative 1H NMR method for natural products analysis. Phytochem. Anal. 2013, 24, 581–597. [Google Scholar] [CrossRef] [Green Version]
- Baharti, S.K.; Roy, R. Quantitative 1H NMR spectroscopy. Trends Anal. Chem. 2012, 35, 5–26. [Google Scholar] [CrossRef]
- Girreser, U.; Ugolini, T.; Çiçek, S.S. Quality control of Aloe vera (Aloe barbadensis) and Aloe ferox using band-selective quantitative heteronuclear single quantum correlation spectroscopy (bs-qHSQC). Talanta 2019, 205, 120109. [Google Scholar] [CrossRef]
- Çiçek, S.S.; Ugolini, T.; Girreser, U. Two-dimensional qNMR of anthraquinones in Frangula alnus (Rhamnus frangula) using surrogate standards and delay time adaption. Anal. Chim. Acta 2019, 1081, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Çiçek, S.S.; Girreser, U.; Zidorn, C. Quantification of the total amount of black cohosh cycloartanoids by integration of one specific 1H NMR signal. J. Pharm. Biomed. Anal. 2018, 155, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Çiçek, S.S.; Esposito, T.; Girreser, U. Prediction of the sweetening effect of Siraitia grosvenorii (luo han guo) fruits by two-dimensional quantitative NMR. Food Chem. 2021, 335, 127622. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Kawaguchi, M.; Tagami, T.; Sawabe, Y.; Takatori, S. Simple and rapid analysis of sennoside A and sennoside B contained in crude drugs and drug products by solid-phase extraction and high-performance liquid chromatography. J. Nat. Med. 2010, 64, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Mobli, M.; Maciejewski, M.W.; Schuyler, A.D.; Stern, A.S.; Hoch, J.C. Sparse Sampling Methods in Multidimensional NMR. Phys. Chem. Chem. Phys. 2012, 14, 10835–10843. [Google Scholar] [CrossRef] [Green Version]
- Stoll, A.; Becker, B.; Kussmaul, W. Die Isolierung der Anthraglykoside aus Sennadrogen. Helv. Chim. Acta 1949, 32, 1892–1903. [Google Scholar] [CrossRef]
Cross-Correlation Signal | Regression Equation | R2 | LoQ |
---|---|---|---|
CH-10 (total sennosides) | y = 6,213,364 x − 1,164,109 | 0.9955 | 0.500 mmol/L |
CH-6 (sennoside A, B, A1) | y = 69,176,745 x − 43,389,229 | 0.9956 | 0.875 mmol/L |
Compound Class | Repeatability | Intra-Day 1 | Intra-Day 2 | Inter-Day |
---|---|---|---|---|
Total sennosides | 4.611 (0.103) | 4.702 (0.133) | 4.812 (0.151) | 4.757 (0.147) |
Sennoside A | 1.073 (0.058) | 0.984 (0.069) | 0.906 (0.072) | 0.945 (0.060) |
Sennoside B | 1.303 (0.074) | 1.095 (0.106) | 1.046 (0.121) | 1.071 (0.107) |
Sennoside A1 | 0.349 (0.037) | 0.206 (0.028) | 0.222 (0.016) | 0.214 (0.030) |
Product | qNMR | Reference Value | Recovery Rate |
---|---|---|---|
Senna leaflets | 2.42 ± 0.08% | 2.35 ± 0.15% | 103.0% |
Retard tablets | 12.77 ± 0.85 mg | 13 mg | 98.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çiçek, S.S.; Moreno Cardenas, C.; Girreser, U. Determination of Total Sennosides and Sennosides A, B, and A1 in Senna Leaflets, Pods, and Tablets by Two-Dimensional qNMR. Molecules 2022, 27, 7349. https://doi.org/10.3390/molecules27217349
Çiçek SS, Moreno Cardenas C, Girreser U. Determination of Total Sennosides and Sennosides A, B, and A1 in Senna Leaflets, Pods, and Tablets by Two-Dimensional qNMR. Molecules. 2022; 27(21):7349. https://doi.org/10.3390/molecules27217349
Chicago/Turabian StyleÇiçek, Serhat Sezai, Calisto Moreno Cardenas, and Ulrich Girreser. 2022. "Determination of Total Sennosides and Sennosides A, B, and A1 in Senna Leaflets, Pods, and Tablets by Two-Dimensional qNMR" Molecules 27, no. 21: 7349. https://doi.org/10.3390/molecules27217349
APA StyleÇiçek, S. S., Moreno Cardenas, C., & Girreser, U. (2022). Determination of Total Sennosides and Sennosides A, B, and A1 in Senna Leaflets, Pods, and Tablets by Two-Dimensional qNMR. Molecules, 27(21), 7349. https://doi.org/10.3390/molecules27217349