Me-Better Drug Design Based on Nevirapine and Mechanism of Molecular Interactions with Y188C Mutant HIV-1 Reverse Transcriptase
Abstract
:1. Introduction
2. Experimental
2.1. Homology Modeling, Model Evaluation and Target-Site Determination
2.2. Fragment Growth and ADMET Prediction
2.3. Molecular Docking
2.4. Molecular Dynamics Simulation
3. Results and Discussion
3.1. Homology Modeling and Evaluation
3.2. Binding Analysis of NVP-Y188CM-RT
3.3. Structural Analysis
3.4. ADMET Prediction
3.5. Molecular Docking Studies
3.6. Molecular Dynamics Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
References
- Becken, B.; Multani, A.; Padival, S.; Cunningham, C.K. Human Immunodeficiency Virus I: History, Epidemiology, Transmission, and Pathogenesis: A Problem-Based Approach; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Li, K.; Schurig-Briccio, L.A.; Feng, X.; Upadhyay, A.; Pujari, V.; Lechartier, B.; Fontes, F.L.; Yang, H.; Rao, G.; Zhu, W.; et al. Multitarget drug discovery for tuberculosis and other infectious diseases. J. Med. Chem. 2014, 57, 3126–3139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, R.C.; Montagnier, L. The Discovery of HIV as the Cause of AIDS. N. Engl. J. Med. 2003, 349, 2283–2285. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.H.; Park, C.M.; Yoon, C.H. An Overview of Human Immunodeficiency Virus-1 Antiretroviral Drugs: General Principles and Current Status. Infect. Chemother. 2021, 53, 2093–2340. [Google Scholar] [CrossRef] [PubMed]
- Chang, J. 4′-Modified Nucleosides for Antiviral Drug Discovery: Achievements and Perspectives. ACS Chem. Res. 2022, 55, 564–578. [Google Scholar] [CrossRef] [PubMed]
- Tompa, D.R.; Immanuel, A.; Srikanth, S.; Kadhirvel, S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int. J. Biol. Macromol. 2021, 172, 524–541. [Google Scholar] [CrossRef]
- Sarafianos, S.G.; Hughes, S.H.; Arnold, E. Designing anti-AIDS drugs targeting the major mechanism of HIV-1 RT resistance to nucleoside analog drugs. Int. J. Biochem. Cell Biol. 2004, 36, 1706–1715. [Google Scholar] [CrossRef]
- Lapkouski, M.; Lan, T.; Miller, J.T.; Grice, S.; Wei, Y. Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nat. Struct. Mol. Biol. 2013, 20, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Xiao, H.; Yun, X.; Da, W.Z.; Zhang, J. Quantum study of mutational effect in binding of efavirenz to HIV-1 RT. Proteins Struct. Funct. Bioinform. 2010, 59, 489–495. [Google Scholar]
- Vanangamudi, M.; Kurup, S.; Namasivayam, V. Non-nucleoside reverse transcriptase inhibitors (NNRTIs): A brief overview of clinically approved drugs and combination regimens. Curr. Opin. Pharmacol. 2020, 54, 179–187. [Google Scholar] [CrossRef]
- Zhuang, C.; Pannecouque, C.; Clercq, E.D.; Chen, F. Development of non-nucleoside reverse transcriptase inhibitors (NNRTIs): Our past twenty years. Acta Pharm. Sin B. 2019, 10, 961–978. [Google Scholar] [CrossRef]
- Battini, L.; Bollini, M. Challenges and approaches in the discovery of human immunodeficiency virus typenon-nucleoside reverse transcriptase inhibitors. Med. Res. Rev. 2019, 39, 1235–1273. [Google Scholar] [CrossRef]
- Johnson, J.A.; Jin-Fen, L.; Lynn, M.; Neil, M.; Glenda, G.; James, M.I.; Walid, H. Emergence of Drug-Resistant HIV-1 after Intrapartum Administration of Single-Dose Nevirapine Is Substantially Underestimated. J. Infect. Dis. 2005, 192, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Jiang, J.; Pan, P.; Chen, R.; Zhuang, D.; Zhao, F.; Chen, H.; Huang, J.; Su, Q.; Cao, C. Morphine Increases Lamivudine- and Nevirapine-Induced Human Immunodeficiency Virus-1 Drug-Resistant Mutations In Vitro. Microb. Drug. Resist. 2017, 32, 285–293. [Google Scholar] [CrossRef]
- Pilger, D.; Hauser, A.; Kuecherer, C.; Mugenyi, K.; Kabasinguzi, R.; Somogyi, S.; Harms, G.; Kunz, A. Minor drug-resistant HIV type-1 variants in breast milk and plasma of HIV type-1-infected Ugandan women after nevirapine single-dose prophylaxis. Antivir. Ther. 2011, 16, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Nichols, C.; Bird, L.; Chamberlain, P.; Weaver, K.; Short, S.; Stuart, D.I.; Stammers, D.K. Structural mechanisms of drug resistance for mutations at codons 181 and 188 in HIV-1 reverse transcriptase and the improved resilience of second generation non-nucleoside inhibitors 1. J. Mol. Biol. 2001, 312, 795–805. [Google Scholar] [CrossRef]
- Guo, W.; Li, H.; Zhuang, D.; Jiao, L.; Liu, S.; Li, L.; Liu, Y.; Gui, T.; Jia, L.; Li, J. Impact of Y181C and/or H221Y mutation patterns of HIV-1 reverse transcriptase on phenotypic resistance to available non-nucleoside and nucleoside inhibitors in China. BMC Infect. Dis. 2014, 14, 237. [Google Scholar] [CrossRef] [Green Version]
- Blanca, G.; Baldanti, F.; Paolucci, S.; Skoblov, A.Y.; Victorova, L.; Hubscher, U.; Gerna, G.; Spadari, S.; Maga, G. Nevirapine resistance mutation at codon 181 of the HIV-1 reverse transcriptase confers stavudine resistance by increasing nucleotide substrate discrimination and phosphorolytic activity. J. Biol. Chem. 2003, 278, 15469–15472. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Kutzner, C.; David, V.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Lindahl, E. A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar]
- Beveridge, D.L.; Dicapua, F.M. Free energy via molecular simulation: Applications to chemical and biomolecular systems. Annu. Rev. Biophys. Biophys. Chem. 1989, 18, 431–492. [Google Scholar] [CrossRef]
- Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory. Comput. 2007, 4, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Dassault Systemes BIOVIA. Discovery Studio Modeling Environment, Release 2016; Dassault Systemes: San Diego, CA, USA, 2016. [Google Scholar]
- Ren, J.; Nichols, C.; Stamp, A.; Chamberlain, P.P.; Stammers, D.K. Structural insights into mechanisms of non-nucleoside drug resistance for HIV-1 reverse transcriptases mutated at codons 101 or 138. FEBS J. 2006, 273, 3850–3860. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.N.; Hubbard, R.E. Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol. 1984, 44, 97–179. [Google Scholar] [CrossRef]
- Murray-Rust, P.; Glusker, J.P. Directional hydrogen bonding to sp2- and sp3-hybridized oxygen atoms and its relevance to ligand-macromolecule interactions. J. Am. Chem. Soc. 1984, 106, 1018–1025. [Google Scholar] [CrossRef]
- Rosa, M.; Hong, W.K.; Gunic, E.; Jenket, C.; Boyle, U.; Koh, Y.H.; Korboukh, I.; Allan, M.; Zhang, W.; Chen, H. Tri-substituted triazoles as potent non-nucleoside inhibitors of the HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2006, 16, 4444–4449. [Google Scholar] [CrossRef]
- Bansod, S.; Raj, N.; Amjesh, R.; Nair, A.S.; Bhattacharyya, S. Molecular docking and molecular dynamics simulation identify a novel Radicicol derivative that predicts exclusive binding to Plasmodium falciparum Topoisomerase VIB. J. Biomol. Struct. Dyn. 2022, 40, 6939–6951. [Google Scholar] [CrossRef]
- Ahmad, S.; Waheed, Y.; Ismail, S.; Hasannajmi, M.; Ansari, J.K. Rational design of potent anti-COVID-19 main protease drugs: An extensive multi-spectrum in silico approach. J. Mol. Liq. 2021, 330, 115636. [Google Scholar] [CrossRef]
- Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019(COVID-19) outbreak—An update on the status. Mil. Med. Res. 2020, 7, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Dai, T.; Hu, P.; Zhang, C.; Chen, J.; Liu, C.; Li, T. Characterization the non-covalent interactions between beta lactoglobulin and selected phenolic acids. Food Hydrocoll. 2020, 105, 105761. [Google Scholar] [CrossRef]
- Kaspchak, E.; Mafra, L.I.; Mafra, M.R. Effect of heating and ionic strength on the interaction of bovine serum albumin and the antinutrients tannic and phytic acids, and its influence on in vitro protein digestibility. Food. Chem. 2018, 252, 1–8. [Google Scholar] [CrossRef]
- Amezcua, M.; Khoury, L.E.; Mobley, D.L. SAMPL7 Host–Guest Challenge Overview: Assessing the reliability of polarizable and non-polarizable methods for binding free energy calculations. J. Comput. Aid. Mol. Des. 2021, 35, 1–35. [Google Scholar] [CrossRef]
- Duan, G.F.; Ji, C.G.; Zhang, J.Z.H. A Force Consistent Method for Electrostatic Energy Calculation in Fluctuating Charge Model. J. Chem. Phys. 2019, 151, 094105. [Google Scholar] [CrossRef]
- Duan, G.F.; Ji, C.G.; Zhang, J.Z. Developing Effective Polarizable Bond method for small molecules with application to optimized molecular docking. RSC Adv. 2020, 10, 15530–15540. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Martinez, S.E.; Gu, W.; Nguyen, H.; Schols, D.; Herdewijn, P.; De Jonghe, S.; Das, K. Sliding of HIV-1 reverse transcriptase over DNA creates a transient P pocket Targeting P-pocket by fragment screening. Nat. Commun. 2021, 12, 7127. [Google Scholar] [CrossRef]
- Hsiou, Y.; Das, K.; Ding, J.; Clark, A.D.; Kleim, J.P.; Rosner, M. HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: Inhibitor flexibility is a useful design feature for reducing drug resistance. J. Mol. Biol. 1998, 284, 313–323. [Google Scholar] [CrossRef]
- Ren, J.; Milton, J.; Weaver, K.L.; Short, S.A.; Stuart, D.I.; Stammers, D.K. Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Struct. Fold. Des. 2000, 8, 1089–1094. [Google Scholar] [CrossRef]
Entry | Aqueous Solubility | BBB Penetration Level | CYP 2D6 | Hepatotoxicity | HIA Level | TOPKAT Ames Prediction | TOPKAT Aerobic Biodegradability | TOPKAT Rat Oral LD50 |
---|---|---|---|---|---|---|---|---|
NVP | 2 | 2 | −22.2017 | −1.29011 | 0 | Non-Mutagen | Non-Degradable | 1.30686 |
Lig. 1 | 2 | 3 | −5.4824 | −1.58513 | 0 | Non-Mutagen | Non-Degradable | 1.21532 |
Lig. 2 | 2 | 3 | −10.559 | −1.27281 | 0 | Non-Mutagen | Non-Degradable | 0.13506 |
Lig. 3 | 3 | 3 | −10.2184 | −0.44516 | 0 | Non-Mutagen | Non-Degradable | 0.71373 |
Lig. 4 | 2 | 2 | −8.29288 | −1.20287 | 0 | Non-Mutagen | Non-Degradable | 0.32569 |
Lig. 5 | 3 | 3 | −8.18333 | −1.91685 | 0 | Non-Mutagen | Non-Degradable | 0.88734 |
Lig. 6 | 3 | 3 | -8.99978 | −0.95539 | 0 | Non-Mutagen | Non-Degradable | 0.07502 |
Lig. 7 | 3 | 3 | −9.23876 | −1.77251 | 0 | Non-Mutagen | Non-Degradable | 0.64649 |
Lig. 8 | 2 | 1 | −7.08521 | −1.85011 | 0 | Non-Mutagen | Non-Degradable | 0.98136 |
Lig. 9 | 3 | 3 | −9.9088 | −2.42656 | 0 | Non-Mutagen | Non-Degradable | 0.36748 |
Lig. 10 | 3 | 3 | −6.8001 | −2.66234 | 0 | Non-Mutagen | Non-Degradable | 0.37014 |
Name | -CDOCKER Interaction Energy (kcal/mol) | |
---|---|---|
wt | Y188CM-RT | |
NVP | 40.9570 | 38.8888 |
Lig 1 | 34.7014 | 52.3722 |
Lig 2 | 26.4688 | 42.9788 |
Lig 3 | 27.6387 | 44.7056 |
Lig 4 | 26.7918 | 41.0572 |
Lig 5 | 40.0960 | 45.3174 |
Lig 6 | 43.7165 | 45.1867 |
Lig 7 | 38.3035 | 46.1387 |
Lig 8 | 38.5926 | 47.2030 |
Lig 9 | 38.5508 | 48.2571 |
Lig 10 | 41.6896 | 48.7245 |
Type | Samples | Mean ± SD | p |
---|---|---|---|
wt | 10 | 35.6550 ± 6.4401 | <0.05 * |
Y188CM-RT | 10 | 46.1941 ± 3.1723 |
Entry | ΔGMM/Van(kcal/mol) | ΔGMM/Ele(kcal/mol) | ΔGPB (kcal/mol) | ΔGSA (kcal/mol) | ΔGBind (kcal/mol) |
---|---|---|---|---|---|
Lig 1 | −3981.3802 | −22,549.8082 | −7350.4749 | 159.4452 | −25,725.4551 |
Lig 9 | −4029.5507 | −22,448.9056 | −7365.6155 | 160.0775 | −25,970.9303 |
Lig 10 | −4024.0403 | −22,799.7019 | −7020.5051 | 161.0332 | −25,752.7602 |
NVP | −3987.5892 | −22,500.7683 | −7328.0362 | 162.2186 | −25,005.7664 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, A.; Wang, J.; Wu, X.; Sun, Y.; Wu, Y. Me-Better Drug Design Based on Nevirapine and Mechanism of Molecular Interactions with Y188C Mutant HIV-1 Reverse Transcriptase. Molecules 2022, 27, 7348. https://doi.org/10.3390/molecules27217348
Wang Y, Wang A, Wang J, Wu X, Sun Y, Wu Y. Me-Better Drug Design Based on Nevirapine and Mechanism of Molecular Interactions with Y188C Mutant HIV-1 Reverse Transcriptase. Molecules. 2022; 27(21):7348. https://doi.org/10.3390/molecules27217348
Chicago/Turabian StyleWang, Yan, Aidong Wang, Jianhua Wang, Xiaoran Wu, Yijie Sun, and Yan Wu. 2022. "Me-Better Drug Design Based on Nevirapine and Mechanism of Molecular Interactions with Y188C Mutant HIV-1 Reverse Transcriptase" Molecules 27, no. 21: 7348. https://doi.org/10.3390/molecules27217348
APA StyleWang, Y., Wang, A., Wang, J., Wu, X., Sun, Y., & Wu, Y. (2022). Me-Better Drug Design Based on Nevirapine and Mechanism of Molecular Interactions with Y188C Mutant HIV-1 Reverse Transcriptase. Molecules, 27(21), 7348. https://doi.org/10.3390/molecules27217348