Biomass Novel Adsorbents for Phenol and Mercury Removal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Materials
2.2. Phenol Adsorption
2.3. Mercury Adsorption
3. Materials and Methods
3.1. Preparation of ACs
3.2. Liquid Phase Adsorption
3.3. Characterization of the Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- EPA. 2020. Available online: http://www.epa.gov/waterscience/methods/pollutants.htm (accessed on 1 October 2022).
- European Union. Directive (EU) 2020/2184 of the European Parliament and of the council of 16 December 2020 on the quality of water intended for human consumption. Off. J. Eur. Union 2020, 435, 1–62. [Google Scholar]
- WHO. Guidelines for Drinking Water Quality, 4th ed.; WHO Press: Geneva, Switzerland, 2017. [Google Scholar]
- Liu, M.; Zhang, Q.; Maavara, T.; Liu, S.; Wang, X.; Raymond, P. Rivers as the largest source of mercury to coastal oceans worldwide. Nat. Geosci. 2021, 14, 672–677. [Google Scholar] [CrossRef]
- Valdés-Rodríguez, E.M.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E.; Aguayo-Villarreal, I.A.; Bonilla-Petriciolet, A. Activated carbon manufacturing via alternative Mexican lignocellulosic biomass and their application in water treatment: Preparation conditions, surface chemistry analysis and heavy metal adsorption properties. Chem. Eng. Res. Des. 2022, 187, 9–26. [Google Scholar] [CrossRef]
- Chen, Y.; Yasin, A.; Zhang, Y.; Zan, X.; Liu, X.; Zhang, L. Preparation and Modification of Biomass-Based Functional Rubbers for Removing Mercury(II) from Aqueous Solution. Materials 2020, 13, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharrazi, S.M.; Mirghaffari, N.; Dastgerdi, M.M.; Soleimani, M. A novel post-modification of powdered activated carbon prepared from lignocellulosic waste through thermal tension treatment to enhance the porosity and heavy metals adsorption. Powder Tech. 2020, 366, 358–368. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Liu, H.; Kang, Y. Development of a nitrogen-functionalized carbon adsorbent derived from biomass waste by diammonium hydrogen phosphate activation for Cr(VI) removal. Powder Tech. 2017, 318, 459–464. [Google Scholar] [CrossRef]
- Guo, X.; Li, M.; Liu, A.; Jiang, M.; Niu, X.; Liu, X. Adsorption Mechanisms and Characteristics of Hg2+ Removal by Different Fractions of Biochar. Water 2020, 12, 2105. [Google Scholar] [CrossRef]
- Nabais, J.M.V.; Gomes, J.A.; Suhas; Carrott, P.J.M.; Laginhas, C.; Roman, S. Phenol removal onto novel activated carbons made from lignocellulosic precursors: Influence of surface properties. J. Hazard. Mat. 2009, 167, 904–910. [Google Scholar] [CrossRef]
- Roman, S.; Valente Nabais, J.M.; Gonzalez, J.F.; Gonzalez-Garcia, C.M.; Ortiz, A.L. Study of the Contributions of Non-Specific and specific Interactions during Fluoxetine Adsorption onto Activated Carbons. Clean-Soil Air Water 2012, 40, 698–705. [Google Scholar] [CrossRef] [Green Version]
- Mourão, P.A.M.; Laginhas, C.; Custódio, F.; Nabais, J.M.V.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. Influence of oxidation process on the adsorption capacity of activated carbons from lignocellulosic precursors. Fuel Process. Technol. 2011, 92, 241–246. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.H.; Pernicone; Ramsay, J.N.; Sing, K.S.; Unger, K.K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Ecob, C.M.; Clements, A.J.; Flaherty, P.; Griffiths, J.G.; Nacapricha, D.; Taylor, C.G. Effect of humidity on the trapping of radioiodine by impregnated carbons. Sci. Total Environ. 1993, 419, 130–131. [Google Scholar]
- González-García, C.M.; González, J.F.; Román, S. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons. Fuel Proc. Technol. 2011, 92, 247–252. [Google Scholar] [CrossRef]
- Román, S.; Nabais, J.M.V.; Ledesma, B.; Laguinhas, C.; Titirici, M.M. Surface Interactions during the Removal of Emerging Contaminants by Hydrochar-Based Adsorbents. Molecules 2020, 25, 2264. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption. J. Colloid Interf. Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Stavropoulos, G.G.; Samaras, P.; Sakellaropoulos, G.P. Effect of activated carbon modification on porosity, surface structure and phenol adsorption. J. Hazard. Mat. 2008, 151, 414–421. [Google Scholar] [CrossRef]
- Villacanas, F.; Pereira, M.F.R.; Orfão, J.M.; Figueiredo, J.L. Adsorption of simple aromatic compounds on activated carbons. J. Colloid Interf. Sci. 2006, 293, 128–136. [Google Scholar] [CrossRef]
- Din, A.T.M.; Hameed, B.H.; Ahmad, A.L. Batch adsorption of phenol onto physicochemical-activated coconut shell. J. Hazard. Mat. 2009, 161, 1522–1529. [Google Scholar]
- Nabais, J.M.V.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L.; Belchior, M.; Boavida, D.; Diall, T.; Gulyurtlu, I. Mercury Removal from Aqueous Solution and Flue Gas by Adsorption on Activated Carbon Fibres. App. Surface Sci. 2006, 252, 6046–6052. [Google Scholar] [CrossRef]
- Zoppi, G.; Pipitone, G.; Galletti, C.; Rizzo, A.M.; Chiaramonti, D.; Pirone, R.; Bensaid, S. Aqueous phase reforming of lignin-rich hydrothermal liquefaction by-products: A study on catalyst deactivation. Catal. Today 2021, 1, 206–213. [Google Scholar] [CrossRef]
- Carrott, P.J.M.; Carrott, M.M.L.; Nabais, J.M.V. Influence of surface ionization on the adsorption of aqueous mercury chlorocomplexes by activated carbons. Carbon 1998, 36, 11–17. [Google Scholar] [CrossRef]
- Park, G.; Jeong, M.; Kim, B.; Lee, H. Method and Apparatus for Manufacturing TEDA-Impregnated Active Carbon in Fluidized Bed Type Absorbing Tower by Generating TEDA Vapor by Means of Hot Air. U.S. Patent 5792720, 11 August 1998. [Google Scholar]
- Nabais, J.M.V.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L.; Silvestre, S.; Durán-Valle, C.J. Adsorption of aqueous mercury (II) species by commercial activated carbon fibres with and without surface modification. Ads. Sci. Tech. 2007, 25, 199–215. [Google Scholar] [CrossRef]
- Carrott, P.J.M.; Nabais, J.M.V.; Ribeiro Carrott, M.M.L.; Menéndez, J.A. Thermal treatments of activated carbon fibres using a microwave furnace. Microporous Mesoporous Mat. 2001, 47, 243–252. [Google Scholar] [CrossRef]
Sample | Porosity | pzc | |||
---|---|---|---|---|---|
BET | αS | DR | |||
ABET (m2g−1) | Vs (cm3g−1) | Aext (m2g−1) | V0 (cm3g−1) | ||
Cf825 | 567 | 0.25 | 13 | 0.24 | 10.17 |
Cf825T | 592 | 0.31 | 40 | 0.28 | 9.63 |
Cf850 | 796 | 0.36 | 19 | 0.35 | 10.07 |
Cf850T | 626 | 0.30 | 48 | 0.29 | 9.65 |
V840 1 | 956 | 0.44 | 26 | 0.40 | 9.71 |
V840ox 1 | 646 | 0.29 | 41 | 0.25 | 2.32 |
V823W | 523 | 0.24 | 34 | 0.21 | 9.95 |
V823WT | 358 | 0.19 | 31 | 0.16 | 9.60 |
G733W | 594 | 0.28 | 26 | 0.25 | 9.86 |
G733WT | 555 | 0.29 | 46 | 0.25 | 9.61 |
G838W | 737 | 0.35 | 37 | 0.32 | 10.04 |
G742 | 618 | 0.30 | 71 | 0.27 | 9.52 |
G819 | 308 | 0.15 | 25 | 0.13 | 9.40 |
Sample | Net Surface Charge | HgCl2 | [HgCl4]2− | Hg2+ |
---|---|---|---|---|
V840 | + | 584 | 204 | 896 |
V840ox | − | 103 | 89 | 1104 |
Cf825 | + | 734 | 266 | 557 |
Cf825T | + | 966 | 587 | 945 |
Cf850 | + | 204 | 232 | 277 |
Cf850T | + | 290 | 771 | 968 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabais, J.M.V.; Laguinhas, C.E.; Román, S. Biomass Novel Adsorbents for Phenol and Mercury Removal. Molecules 2022, 27, 7345. https://doi.org/10.3390/molecules27217345
Nabais JMV, Laguinhas CE, Román S. Biomass Novel Adsorbents for Phenol and Mercury Removal. Molecules. 2022; 27(21):7345. https://doi.org/10.3390/molecules27217345
Chicago/Turabian StyleNabais, Joao Manuel Valente, Carlos Eduardo Laguinhas, and Silvia Román. 2022. "Biomass Novel Adsorbents for Phenol and Mercury Removal" Molecules 27, no. 21: 7345. https://doi.org/10.3390/molecules27217345
APA StyleNabais, J. M. V., Laguinhas, C. E., & Román, S. (2022). Biomass Novel Adsorbents for Phenol and Mercury Removal. Molecules, 27(21), 7345. https://doi.org/10.3390/molecules27217345