Simultaneous Removal of Polymers with Different Ionic Character from Their Mixed Solutions Using Herb-Based Biochars and Activated Carbons
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Properties of the Prepared Adsorbents
2.2. Adsorbents Electrokinetic Characteristic
2.3. Adsorption–Desorption Studies
3. Materials and Methods
3.1. Adsorbates
3.2. Biochars and Activated Carbons Preparation
3.3. Characterization of the Biochars and Activated Carbons
3.4. Electrokinetic Parameters Determination
3.5. Adsorption–Desorption Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Peters, C.M. Sustainable Harvest of Non-Timber Plant Resources in Tropical Moist Forests: An Ecological Primer; Biodiversity Support Program: Washington, DC, USA, 1994. [Google Scholar]
- Cobbina, S.J.; Duwiejuah, A.B.; Quainoo, A.K. Single and simultaneous adsorption of heavy metals onto groundnut shell biochar produced under fast and slow pyrolysis. Int. J. Environ. Sci. Technol. 2019, 16, 3081–3090. [Google Scholar] [CrossRef]
- Zheng, L.; Gao, Y.; Du, J.; Zhang, W.; Huang, Y.; Zhao, Q.; Duan, L.; Liu, Y.; Naidu, R.; Pan, X. Single and binary adsorption behaviour and mechanisms of Cd2+, Cu2+ and Ni2+ onto modified biochar in aqueous solutions. Processes 2021, 9, 1829. [Google Scholar] [CrossRef]
- Jiang, T.-Y.; Jiang, J.; Xu, R.-K.; Li, Z. Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 2012, 89, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Tang, Y.; Wang, X.; Wu, L.; Nong, J.; Yang, X.; Guo, J. Cobalt-gadolinium modified biochar as an adsorbent for antibiotics in single and binary systems. Microchem. J. 2021, 166, 106235. [Google Scholar] [CrossRef]
- Su, L.; Zhang, H.; Oh, K.; Liu, N.; Luo, Y.; Cheng, H.; Zhang, G.; He, X. Activated biochar derived from spent Auricularia auricula substrate for the efficient adsorption of cationic azo dyes from single and binary adsorptive systems. Water Sci. Technol. 2021, 84, 101–121. [Google Scholar] [CrossRef]
- Gęca, M.; Wiśniewska, M.; Nowicki, P. Biochars and activated carbons as adsorbents of inorganic and organic compounds from multicomponent systems–A review. Adv. Colloid Interface Sci. 2022, 305, 102687. [Google Scholar] [CrossRef]
- Yang, S.; Fu, Y.; Jeong, S.H.; Park, K. Application of poly(acrylic acid) superporous hydrogel microparticles as a super-disintegrant in fast-disintegrating tablets. J. Pharm. Pharmacol. 2004, 56, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Keßler, B.; Fröhlich, J.; Poeschla, S.; Torger, B. Polyelectrolyte complex nanoparticles of poly(ethyleneimine) and poly(acrylic acid): Preparation and applications. Polymers 2011, 3, 762–778. [Google Scholar] [CrossRef] [Green Version]
- Szewczuk-Karpisz, K.; Wiśniewska, M.; Medykowska, M.; Galaburda, M.V.; Bogatyrov, V.M.; Oranska, O.I.; Błachnio, M.; Oleszczuk, P. Simultaneous adsorption of Cu(II) ions and poly(acrylic acid) on the hybrid carbon-mineral nanocomposites with metallic elements. J. Hazard. Mater. 2021, 412, 125138. [Google Scholar] [CrossRef]
- Vancha, A.R.; Govindaraju, S.; Parsa, K.V.; Jasti, M.; González-García, M.; Ballestero, R.P. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhance. BMC Biotechnol. 2004, 4, 23. [Google Scholar] [CrossRef]
- Mbareck, C.; Nguyen, Q.T.; Alaoui, O.T.; Barillier, D. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water. J. Hazard. Mater. 2009, 171, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Navarathna, C.; Keel, M.G.; Rodrigo, P.M.; Carrasco, C.; Ramirez, A.; Jamison, H.; Mohan, D.; Mlsna, T.E. 16-Biochar and biochar composites for poly- and perfluoroalkyl substances (PFAS) sorption. In Sustainable Biochar for Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2022; pp. 555–595. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Nowicki, P.; Szewczuk-Karpisz, K.; Gęca, M.; Jędruchniewicz, K.; Oleszczuk, P. Simultaneous removal of toxic Pb(II) ions, poly(acrylic acid) and Triton X-100 from their mixed solution using engineered biochars obtained from horsetail herb precursor–Impact of post-activation treatment. Sep. Purif. Technol. 2021, 276, 119297. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Nowicki, P. Peat-based activated carbons as adsorbents for simultaneous separation of organic molecules from mixed solution of poly(acrylic acid) polymer and sodium dodecyl sulfate surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124179. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Szewczuk-Karpisz, K. Removal possibilities of colloidal chromium (III) oxide from water using polyacrylic acid. Environ. Sci. Pollut. Res. 2013, 20, 3657–3669. [Google Scholar] [CrossRef] [Green Version]
- Szewczuk-Karpisz, K.; Fijałkowska, G.; Wiśniewska, M.; Wójcik, G. Chromium(VI) reduction and accumulation on the kaolinite surface in the presence of cationic soil flocculant. J. Soils Sediments 2020, 20, 3688–3697. [Google Scholar] [CrossRef]
- Skwarek, E.; Janusz, W.; Sternik, D. Adsorption of citrate ions on hydroxyapatite synthetized by various methods. J. Radioanal. Nucl. Chem. 2014, 299, 2027–2036. [Google Scholar] [CrossRef] [Green Version]
- Wiśniewska, M.; Chibowski, S.; Wawrzkiewicz, M.; Onyszko, M.; Bogatyrov, V.C.I. Basic Red 46 Removal from Sewage by Carbon and Silica Based Composite: Equilibrium, Kinetic and Electrokinetic Studies. Molecules 2022, 27, 1043. [Google Scholar] [CrossRef]
- Vincent, B. The effect of adsorbed polymers on dispersion stability. Adv. Colloid Interface Sci. 1974, 4, 193–277. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B. Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv. Colloid Interface Sci. 2004, 110, 19–48. [Google Scholar] [CrossRef]
- Summers, R.S.; Roberts, P.V. Activated carbon adsorption of humic substances. J. Colloid Interface Sci. 1998, 122, 382–397. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Nowicki, P.; Nosal-Wiercińska, A.; Pietrzak, R.; Szewczuk-Karpisz, K.; Ostolska, I.; Sternik, D. Adsorption of poly(acrylic acid) on the surface of microporous activated carbon obtained from cherry stones. Colloids Surf. A Physicochem. Eng. Asp. 2017, 514, 137–145. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Nowicki, P. Simultaneous removal of lead(II) ions and poly(acrylic acid) macromolecules from liquid phase using of biocarbons obtained from corncob and peanut shell precursors. J. Mol. Liq. 2019, 296, 111806. [Google Scholar] [CrossRef]
- Chibowski, S.; Wiśniewska, M.; Marczewski, A.W.; Pikus, S. Application of the SAXS method and viscometry for determination of the thickness of adsorbed polymer layers at the ZrO2 –polymer solution interface. J. Colloid Interface Sci. 2003, 267, 1–8. [Google Scholar] [CrossRef]
- Von Harpe, A.; Petersen, H.; Li, Y.; Kissel, T. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Release 2000, 69, 309–322. [Google Scholar] [CrossRef]
- Ochiai, H.; Anabuki, Y.; Kojima, O.; Tominaga, K.; Murakami, I. Dissociation of poly(allylammonium) cations in salt solutions. J. Polym. Sci. Part B Polym. Phys. 1990, 28, 233–240. [Google Scholar] [CrossRef]
- Bazan-Wozniak, A.; Nowicki, P.; Pietrzak, R. The effect of demineralization on the physicochemical and sorption properties of activated bio-carbons. Adsorption 2019, 25, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Janusz, W. Electrical double layer in the system TiO2 (anathase)/aqueous solution of NaCl. Polish J. Chem. 1994, 68, 1871–1880. [Google Scholar]
- Ohshima, H. A Simple Expression for Henry’s Function for the Retardation Effect in Electrophoresis of Spherical Colloidal Particles. J. Colloid Interface Sci. 1994, 168, 269–271. [Google Scholar] [CrossRef]
- Crummett, W.B.; Hummel, R.A. The determination of traces of polyacrylamides in water. J. Am. Water Work. Assoc. 1 1963, 55, 209–219. [Google Scholar] [CrossRef]
- Patkowski, J.; Myśliwiec, D.; Chibowski, S. Validation of a new method for spectrophotometric determination of polyethylenimine. Int. J. Polym. Anal. Charact. 2016, 21, 486–494. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
Adsorbent | C | O | N | P | Ca | Mg | K | Others |
---|---|---|---|---|---|---|---|---|
NE_AC | 90.62 | 7.66 | 1.13 | 0.59 | - | - | - | - |
SA_AC | 89.61 | 8.81 | 0.24 | 0.63 | - | - | - | 0.71 |
NE_B | 78.76 | 16.35 | 2.77 | 0.14 | 1.23 | 0.27 | 0.30 | 0.18 |
SA_B | 81.31 | 15.50 | 1.78 | 0.20 | 0.47 | 0.38 | 0.15 | 0.21 |
Adsorbent | Pyrolysis/ Activation Yield [wt. %] | Surface Area [m2/g] | Pore Volume [cm3/g] | Mean Pore Size [nm] | Micropore Contribution | ||
---|---|---|---|---|---|---|---|
Total | Micropore | Total | Micropore | ||||
NE_AC | 37.7 | 801 | 157 | 0.847 | 0.074 | 4.231 | 0.087 |
SA_AC | 40.3 | 842 | 155 | 0.826 | 0.074 | 3.926 | 0.090 |
NE_B | 42.9 | 2.5 | - | 0.006 | - | 9.594 | - |
SA_B | 45.8 | 2.1 | - | 0.006 | - | 10.555 | - |
Adsorbent | Acidic Groups [mmol/g] | Basic Groups [mmol/g] | Total Amount [mmol/g] |
---|---|---|---|
NE_AC | 0.858 | 0.272 | 1.130 |
SA_AC | 0.436 | 0.215 | 0.651 |
NE_B | 1.041 | 1.753 | 2.794 |
SA_B | 1.109 | 1.008 | 2.197 |
System | Size of Aggregates [nm] | ||
---|---|---|---|
pH 3 | pH 6 | pH 9 | |
NE_AC | 509.5 | 478.2 | 448.5 |
NE_AC + PAA | 499.2 | 405.4 | 433.7 |
NE_AC + PEI | 459.1 | 516.4 | 519.3 |
NE_AC + PAA + PEI | 599.9 | 1099.7 | 741.9 |
SA_AC | 327.8 | 430.9 | 517.4 |
SA_AC + PAA | 701.0 | 441.4 | 4002.0 |
SA_AC + PEI | 475.0 | 842.1 | 370.9 |
SA_AC + PAA + PEI | 204.0 | 874.6 | 289.2 |
NE_B | 1257.0 | 731.2 | 1448.0 |
SA_B | 688.2 | 1799 | 1494.0 |
Calculated Parameters | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|
qe [mg/g] | k1 [1/min] | R2 | qe [mg/g] | k2 [g/(mg·min)] | R2 | |
PAA | ||||||
NE_AC | 1.03624 | 8.03309 | 0.9376 | 102.041 | 0.00237 | 0.9999 |
SA_AC | 1.02768 | 6.86179 | 0.9556 | 71.9424 | 0.00476 | 0.9976 |
PEI | ||||||
NE_AC | 1.0329 | 1.22266 | 0.6614 | 20.5339 | 0.05842 | 0.9693 |
SA_AC | 1.01837 | 1.6098 | 0.699 | 21.322 | 0.05418 | 0.9913 |
Element | NE_AC | NE_AC + PAA | NE_AC + PEI | AC + PAA + PEI |
---|---|---|---|---|
Cl [at. %] | - | - | 1.3 | 0.8 |
N [at. %] | 1.1 | 0.6 | 2.9 | 5.4 |
O [at. %] | 8.6 | 16.6 | 13.0 | 16.1 |
P [at. %] | 0.8 | 0.6 | 0.6 | 0.8 |
C [at. %] | 89.5 | 82.2 | 82.2 | 76.9 |
Desorption Agent | Desorption [%] | ||
---|---|---|---|
H2O | HNO3 | NaOH | |
System | PAA | ||
NE_AC + PAA | 1.36 | 2.76 | 61.01 |
NE_AC + PAA + PEI | 1.23 | 1.81 | 47.68 |
SA_AC + PAA | 2.53 | 2.00 | 46.45 |
SA_AC + PAA + PEI | 1.36 | 2.42 | 48.59 |
NE_B + PAA | 6.57 | 8.95 | - |
NE_B + PAA + PEI | 34.19 | 7.08 | - |
SA_B + PAA | 18.01 | 6.40 | - |
SA_B + PAA + PEI | 2.19 | 7.81 | - |
System | PEI | ||
NE_AC + PEI | 44.15 | - | - |
NE_AC + PEI + PAA | 4.52 | - | - |
SA_AC + PEI | 24.73 | - | - |
SA_AC + PEI + PAA | 9.69 | - | - |
NE_B + PEI | - | - | - |
NE_B + PEI + PAA | - | - | - |
SA_B + PEI | 44.08 | - | - |
SA_B + PEI + PAA | 34.80 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gęca, M.; Wiśniewska, M.; Nowicki, P. Simultaneous Removal of Polymers with Different Ionic Character from Their Mixed Solutions Using Herb-Based Biochars and Activated Carbons. Molecules 2022, 27, 7557. https://doi.org/10.3390/molecules27217557
Gęca M, Wiśniewska M, Nowicki P. Simultaneous Removal of Polymers with Different Ionic Character from Their Mixed Solutions Using Herb-Based Biochars and Activated Carbons. Molecules. 2022; 27(21):7557. https://doi.org/10.3390/molecules27217557
Chicago/Turabian StyleGęca, Marlena, Małgorzata Wiśniewska, and Piotr Nowicki. 2022. "Simultaneous Removal of Polymers with Different Ionic Character from Their Mixed Solutions Using Herb-Based Biochars and Activated Carbons" Molecules 27, no. 21: 7557. https://doi.org/10.3390/molecules27217557
APA StyleGęca, M., Wiśniewska, M., & Nowicki, P. (2022). Simultaneous Removal of Polymers with Different Ionic Character from Their Mixed Solutions Using Herb-Based Biochars and Activated Carbons. Molecules, 27(21), 7557. https://doi.org/10.3390/molecules27217557