Preliminary Microbiological Tests of S-Carvone and Geraniol and Selected Derivatives of These Compounds That May Be Formed in the Processes of Isomerization and Oxidation
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Therapeutic Creams
2.2. Preparation of the Post-Reaction Mixture after Isomerization of S-Carvone for Application in Creams
2.3. Microbiological Tests
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, L.; Zhang, X.; Zhang, Y.; Zheng, K.; Xiang, Q.; Chen, N.; Chen, Z.; Zhang, N.; Zhu, J.; He, Q. Antibiotic-Induced Disruption of Gut Microbiota Alters Local Metabolomes and Immune Response. Front. Cell. Infect. Microbiol. 2019, 9, 99. [Google Scholar] [CrossRef]
- Lee, C. The antibiotic resistance crisis, part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Saad, N.Y.; Muller, C.D.; Lobstein, A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr. J. 2013, 28, 269–279. [Google Scholar] [CrossRef]
- Preedy, V.R. Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- De Carvalho, C.R.; da Fonseca, M.R. Carvone: Why and how should one bother to produce this terpene. Food Chem. 2006, 95, 413–422. [Google Scholar] [CrossRef]
- Bailer, J.; Aichinger, T.; Hackl, G.; de Hueber, K.; Dachler, M. Essential oil content and composition in commercially available dill cultivars in comparison to caraway. Ind. Crops Prod. 2001, 14, 229–239. [Google Scholar] [CrossRef]
- Kamaleeswari, M.; Deeptha, K.; Sengottuvelan, M.; Nalini, N. Effect of dietary caraway (Carum carvi L.) on aberrant crypt foci development, fecal steroids, and intestinal alkaline phosphatase activities in 1,2-dimethylhydrazine-induced colon carcinogenesis. Toxicol. Appl. Pharm. 2006, 14, 290–296. [Google Scholar] [CrossRef]
- Husnu, C.; Baser, K. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des. 2008, 14, 3106–3119. [Google Scholar]
- Hartmans, K.J.; Lenssen, J.M.; de Vries, R.G. Use of talent (carvone) as a sprout growth regulator of seed potatoes and the effect on stem and tuber number. Potato Res. 1998, 41, 190–191. [Google Scholar]
- Esfandyari-Manesh, M.; Ghaedi, Z.; Asemi, M.; Khanavi, M.; Manayi, A.; Jamalifar, H.; Atyabi, F.; Dinarvand, R. Study of antimicrobial activity of anethole and carvone loaded PLGA nanoparticles. J. Pharm. Res. 2013, 7, 290–295. [Google Scholar] [CrossRef]
- Wah, Y.; Siow, K.S.; Yuen, P.; Gires, U.; Majlis, B.Y. Plasma polymerized carvone as an antibacterial and biocompatible coating. Mat. Sci. Eng. C 2016, 68, 861–871. [Google Scholar]
- McGeady, P.; Wansley, D.L.; Logan, D.A. Carvone and perillaldehyde interfere with the serum-induced formation of filamentous structures in Candida albicans at substantially lower concentrations than those causing significant inhibition of growth. J. Nat. Prod. 2002, 65, 953–955. [Google Scholar] [CrossRef]
- Raphael, T.J.; Kuttan, G. Immunomodulatory activity of naturally occurring monoterpenes carvone, limonene, and perillic acid. Immunophar. Immunotoxicol. 2003, 25, 285–294. [Google Scholar] [CrossRef]
- Retajczyk, M.; Wróblewska, A.; Szymańska, A.; Miądlicki, P.; Koren, C.; Michalkiewicz, B. Synthesis, Characterization, and catalytic applications of the Ti-SBA-16 porous material in the selective and green isomerizations of limonene and S-carvone. Catalysts 2020, 10, 1452–1456. [Google Scholar] [CrossRef]
- Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer. Drugs 2005, 26, 813–823. [Google Scholar] [CrossRef]
- Ozen, D.; Uyanoglu, M. Effect of carvacrol on IL-6/STAT3 pathway after partial hepatectomy in rat liver. Bratisl. Med. J. 2018, 119, 59–601. [Google Scholar] [CrossRef]
- Canbeka, M.; Uyanoglua, M.; Bayramoglua, G.; Senturka, H.; Erkasapb, N.; Kokenc, T.; Uslud, S.; Demirustue, C.; Aralf, E.; Husnu, K.; et al. Effects of carvacrol on defects of is chemia-reperfusion in the rat liver. Phytomedicine 2008, 15, 447–452. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. J. Biosci. Bioeng. 2010, 110, 614–619. [Google Scholar] [CrossRef]
- Nostro, A.; Roccaro, A.S.; Bisignano, G.; Marino, A.; Cannatelli, M.A.; Pizzimenti, F.C.; Luigi, C.P.; Procopio, F.; Blanco, A.R. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 2007, 56, 519–523. [Google Scholar] [CrossRef]
- Khan, I.; Bahuguna, A.; Kumar, P.; Bajpai, V.K.; Kang, S.C. Antimicrobial Potential of Carvacrol against Uropathogenic Escherichia coli via membrane disruption, depolarization, and reactive oxygen species generation. Front. Microbiol. 2017, 8, 2421–2425. [Google Scholar] [CrossRef]
- Vardar-Unlu, G.; Yagmuroglu, A.; Unlu, M. Evaluation of in vitro activity of carvacrol against Candida albicans strains. Nat. Product Res. 2010, 24, 1189–1193. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Papachristos, D.; Karamanoli, K.; Stamopoulos, D.C.; Menkissoglu-Spiroudi, U. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag. Sci. 2004, 60, 514–520. [Google Scholar] [CrossRef]
- Chen, W.; Viljoen, A.M. Geraniol—A review of a commercially important fragrance material. South Afr. J. Bot. 2010, 76, 643–651. [Google Scholar] [CrossRef]
- Hadian, Z.; Maleki, M.; Feizollahi, E.; Alibeyk, S.; Saryazdi, M. Health aspects of geraniol as a main bioactive compound of Rosa damascena Mill: A systematic review. Electron. Physician 2020, 12, 7724–7735. [Google Scholar] [CrossRef]
- Mączka, W.; Wińska, K.; Grabarczyk, M. One hundred faces of geraniol. Molecules 2020, 25, 3303–3308. [Google Scholar] [CrossRef]
- Fajdek-Bieda, A.; Wróblewska, A.; Miądlicki, P.; Tołpa, J.; Michalkiewicz, B. Clinoptilolite as a natural, active zeolite catalyst for the chemical transformations of geraniol. Reac. Kinet. Mech. Catal. 2021, 133, 997–1011. [Google Scholar] [CrossRef]
- Yamada, A.N.; Grespan, R.; Yamada, A.T.; Silva, E.L.; Silva-Filho, S.E.; Damiao, M.J.; de Oliveira Dalalio, M.M.; Bersani-Amado, C.A. Anti-inflammatory activity of Ocimum americanum L. essential oil in experimental model of zymosan-induced arthritis. Am. J. Chin. Med. 2013, 41, 913–926. [Google Scholar] [CrossRef]
- Djenane, D.; Aider, M.; Yanguela, J.; Idir, L. Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157:H7 and S. aureus during storage at abuse refrigeration temperature. Meat. Sci. 2012, 92, 667–674. [Google Scholar] [CrossRef]
- Quintans-Junior, L.J.; Barreto, R.S.; Menezes, P.P.; Almeida, J.R. β-Cyclodextrin-complexed (-)-linalool produces antinociceptive effect superior to that of (-)-linalool in experimental pain protocols. Basic Clin. Pharmacol. Toxicol. 2013, 113, 167–172. [Google Scholar] [CrossRef]
- Phillips, C.A.; Gkatzionis, K.; Laird, K.; Score, J. Identification and quantification of the antimicrobial components of a citrus essential oil vapor. Nat. Prod. Commun. 2012, 7, 103–107. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Hancianu, M.; Costacheb, I.I.; Mirona, A. Linalool: A review on a key odorant molecule with valuable biological properties. Flavour Fragr. J. 2014, 29, 193–219. [Google Scholar] [CrossRef]
- Kamatou, G.P.; Viljoen, A.M. Linalool—A review of a biologically active compound of commercial importance. Nat. Prod. Commun. 2008, 3, 1183–1192. [Google Scholar] [CrossRef]
- Lis-Balchin, M. Essential oils and ‘aromatherapy’: Their modern role in healing. J. Royal Soc. Promot. Health 1997, 117, 324–329. [Google Scholar] [CrossRef]
- Lapczynski, A.; Foxenberg, R.J.; Bhatia, S.P.; Letizia, C.S.; Api, A.M. Fragrance material review on nerol. FCT 2008, 46, 241–244. [Google Scholar] [CrossRef]
- Costa Marques, T.H.; Leonildes, B.; Gomes, C.; Branco Marques, M.; dos Santos Lima, D.; Santos Siqueira, H.D.; Damasceno Nogueira Neto, J.; do Socorro Boavista Gomes Castelo Branco, M.; Araújo de Souza, A.; Pergentino de Sousa, D.; et al. Evaluation of the neuropharmacological properties of nerol in mice. World J. Neurosci. 2013, 3, 32–38. [Google Scholar] [CrossRef]
- Ammar, A.H.; Bouajila, J.; Lebrihi, A.; Mathieu, F.; Romdhane, M.; Zagrouba, F. Chemical composition and in vitro antimicrobial and antioxidant activities of Citrus aurantium L. flowers essential oil (Neroli oil). Pak. J. Biol. Sci. 2012, 2, 1034–1040. [Google Scholar] [CrossRef]
- Consolini, A.E.; Berardi, A.; Rosella, M.A.; Volonté, M. Antispasmodic effects of Aloysia polystachya and A. gratissima tinctures and extracts are due to non- competitive inhibition of intestinal contractility induced by acethylcholine and calcium. Rev. Bras. Farmacogn. 2011, 21, 889–900. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Suzuki, H.; Matsumoto, K. Pheromone study on acarid mites. XI. Function of mite body as geometrical isomerization and reduction of citral (the alarm pheromone) Carpoglyphus lactis. Appl. Entomol. Zool. 1983, 18, 30–39. [Google Scholar] [CrossRef]
- Bouzenna, H.; Hfaiedh, N.; Giroux-Metges, M.A.; Elfeki, A.; Talarmin, H. Biological properties of citral and its potential protective effects againstcytotoxicity caused by aspirin in the IEC-6 cells. Biomed. Pharmacother. 2017, 87, 653–660. [Google Scholar] [CrossRef]
- Espina, L.; Daniel, B.; Patricia, A.; García-Gonzalo, D.; Rafael, P. Potential use of carvacrol and citral to inactivate biofilm cells and eliminate biofouling. Food Control 2017, 82, 256–265. [Google Scholar] [CrossRef]
- Yuxiang, Z.; Wei, J.; Chen, H.; Song, Z.; Guo, H.; Yuan, Y.; Yue, T. Antibacterial activity of essential oils against Stenotrophomonas maltophilia and the effect of citral on cell membrane. LWT 2020, 117, 108667–108671. [Google Scholar]
- Kang, S.; Li, X.; Xing, Z.; Liu, X.; Bai, X.; Yang, Y.; Guo, D.; Xia, X.; Zhang, C.; Shi, C. Antibacterial effect of citral on yersinia enterocolitica and its mechanism. Food Control 2022, 35, 108775–108779. [Google Scholar] [CrossRef]
- Cristiane de Bona da, S. Antifungal activity of the lemongrass oil and citral against Candidas. Braz. J. Infect. Dis. 2008, 12, 63–66. [Google Scholar]
- Cai, R.; Hu, M.; Zhang, Y.; Niu, C.; Yue, T.; Yuan, Y.; Wang, Z. Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii. LWT 2019, 106, 50–56. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Approved standard M2-A10; Performance Standards for Antimicrobial Disk Susceptibility Tests; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2009. [Google Scholar]
- Pucci, M.; Raimondo, S.; Zichittella, C.; Tinnirello, V.; Corleone, V.; Aiello, G.; Moschetti, M.; Conigliaro, A.; Fontana, S.; Alessandro, R. Biological properties of a citral-enriched fraction of Citrus limon essential oil. Foods 2020, 9, 1290. [Google Scholar] [CrossRef]
- De Oliveira Lima, M.I.; Araújo de Medeiros, A.C.; Souza Silva, K.V.; Cardoso, G.N.; de Oliveira Lima, E.; de Oliveira Pereira, F. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Méd. 2017, 27, 195–202. [Google Scholar] [CrossRef]
- Özek, T.; Tabanca, N.; Demirci, F.; Wedge, D.E.; Baser, K.H.C. Enantiomeric distribution of some linalool containing essential oils and their biological activities. Rec. Nat. Prod. 2010, 4, 180–192. [Google Scholar]
- Abi-Ayad, M.; Abi-Ayad, F.Z.; Lazzouni, H.A.; Rebiahi, S.A.; Ziani_Cherif, C.; Bessiere, C. Chemical composition and antifungal activity of Aleppo pine essential oil. J. Med. Plant Res. 2011, 5, 5433–5436. [Google Scholar]
Microorganism | Temperature Incubation (°C) | Preculture Media | Culture Media |
---|---|---|---|
Escherichia coli | 37 | Enrich Broth (BioMaxima S. A., Lublin, Poland) | Plate Count Agar (BioMaxima S.A., Poland) |
Staphylococcus epidermidis | 37 | Brain Heart Infusion Broth (BioMaxima S. A., Poland) | Brain Heart Infusion Agar (BioMaxima S.A., Poland) |
Candida albicans Trichophyton rubrum | 30 | Slants on Sabouraud Agar (BTL, Lodz, Poland) | Sabouraud Agar (BTL, Poland) |
Aspergillus niger Penicillium chrysogenum | 25 | Slants on Malt Extract Agar, MEA (Merck, Warsaw, Poland) | Malt Extract Agar, MEA (Merck, Poland) |
Cream Supplemented with: | Bacteria | ||
---|---|---|---|
E.coli | S. epidermidis | ||
Isomerization of s-carvone | |||
S-carvone 0.5% | 18.5 ± 0.2 | 0 ± 0 | |
S-carvone 1.0% | 25.0 ± 1.0 | 0 ± 0 | |
S-carvone 2.0% | 7.0 ± 0.4 poor growth over the entire area of the plate | 0 ± 0 | |
S-carvone 3.0% | >50 mm | 0 ± 0 | |
carvacrol 0.5% | 0 ± 0 | 0 ± 0 | |
carvacrol 1.0% | 0 ± 0 | 0 ± 0 | |
carvacrol 2.0% | poor growth over the entire area of the plate | 0 ± 0 | |
carvacrol 3.0% | >50 mm | 0 ± 0 | |
mixture 0.5% | poor growth over the entire area of the plate >50 mm | 0 ± 0 | |
mixture 1.0% | 0 ± 0 | ||
mixture 2.0% | 0 ± 0 | ||
mixture 3.0% | 0 ± 0 | ||
Isomerization of geraniol | |||
geraniol 0.5% | 0 ± 0 | 0 ± 0 | |
geraniol 1.0% | 0 ± 0 | 0 ± 0 | |
geraniol 2.0% | 0 ± 0 | 0 ± 0 | |
geraniol 3.0% | 0 ± 0 | 0 ± 0 | |
nerol 0.5% | 0 ± 0 | 0 ± 0 | |
nerol 1.0% | 1.3 ± 0.2 | 0.3 ± 0.2 | |
nerol 2.0% | 8.5 ± 0.5 | 0.7 ± 0.3 | |
nerol 3.0% | 23.2 ± 1.3 | 1.8 ± 0.3 | |
linalool 0.5% | 1.0 ± 0.2 | 1.0 ± 0.2 | |
linalool 1.0% | 1.0 ± 0.2 | 1.0 ± 0.2 | |
linalool 2.0% | 1.0 ± 0.2 | 1.0 ± 0.2 | |
linalool 3.0% | 2.0 ± 0.1 | 2.0 ± 0.1 | |
citral 0.5% | poor growth over the entire area of the plate >50 mm | 0 ± 0 | |
citral 1.0% | 0 ± 0 | ||
citral 2.0% | 0 ± 0 | ||
citral 3.0% | 0 ± 0 | ||
control | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Cream Supplemented with: | Fungi | |||
---|---|---|---|---|
C. albicans | T. rubrum | A. niger | P. chrysognum | |
Isomerization of S-carvone | ||||
S-carvone 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
S-carvone 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
S-carvone 2.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
S-carvone 3.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
carvacrol 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
carvacrol 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
carvacrol 2.0% | 1.0 ± 0.1 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
carvacrol 3.0% | 8.6 ± 1.4 | 5.4 ± 0.4 | 1.4 ± 0.3 | 1.3 ± 0.2 |
mixture 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
mixture 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
mixture 2.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
mixture 3.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Isomerization of geraniol | ||||
geraniol 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
geraniol 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
geraniol 2.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
geraniol 3.0% | 1.0 ± 0.1 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
nerol 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
nerol 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
nerol 2.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
nerol 3.0% | 1.3 ± 0.2 | 1.0 ± 0.1 | 0 ± 0 | 0 ± 0 |
linalool 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
linalool 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
linalool 2.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
linalool 3.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
citral 0.5% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
citral 1.0% | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
citral 2.0% | 2.0 ± 0.2 | 1.3 ± 0.2 | 0 ± 0 | 0 ± 0 |
citral 3.0% | 7.6 ± 0.5 | 2.3 ± 0.6 | 1.2 ± 0.1 | 1.2 ± 0.2 |
control | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewska, A.; Fajdek-Bieda, A.; Markowska-Szczupak, A.; Radkowska, M. Preliminary Microbiological Tests of S-Carvone and Geraniol and Selected Derivatives of These Compounds That May Be Formed in the Processes of Isomerization and Oxidation. Molecules 2022, 27, 7012. https://doi.org/10.3390/molecules27207012
Wróblewska A, Fajdek-Bieda A, Markowska-Szczupak A, Radkowska M. Preliminary Microbiological Tests of S-Carvone and Geraniol and Selected Derivatives of These Compounds That May Be Formed in the Processes of Isomerization and Oxidation. Molecules. 2022; 27(20):7012. https://doi.org/10.3390/molecules27207012
Chicago/Turabian StyleWróblewska, Agnieszka, Anna Fajdek-Bieda, Agata Markowska-Szczupak, and Monika Radkowska. 2022. "Preliminary Microbiological Tests of S-Carvone and Geraniol and Selected Derivatives of These Compounds That May Be Formed in the Processes of Isomerization and Oxidation" Molecules 27, no. 20: 7012. https://doi.org/10.3390/molecules27207012
APA StyleWróblewska, A., Fajdek-Bieda, A., Markowska-Szczupak, A., & Radkowska, M. (2022). Preliminary Microbiological Tests of S-Carvone and Geraniol and Selected Derivatives of These Compounds That May Be Formed in the Processes of Isomerization and Oxidation. Molecules, 27(20), 7012. https://doi.org/10.3390/molecules27207012