Evaluation of Polycyclic Aromatic Hydrocarbons in Smoked Cheeses Made in Poland by HPLC Method
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Cheese Samples
3.2. Chemicals and Reagents
3.3. PAHs Standards
3.4. Determination of PAHs Content
3.4.1. Extraction and Clean-Up
3.4.2. Chromatographic Analysis
3.4.3. Recovery Studies
3.4.4. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boffetta, P.; Jourenkova, N.; Gustavsson, P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997, 8, 444–472. [Google Scholar] [CrossRef] [PubMed]
- IARC (International Agency for Research on Cancer). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 2002; Volume 82. [Google Scholar]
- IARC (International Agency for Research on Cancer). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 2010; Volume 92. [Google Scholar]
- Aygun, F.S.; Kabadayi, F. Determination of benzo[a]pyrene in charcoal grilled meat samples by HPLC with fluorescence detection. Inter. J. Food Sci. Nutr. 2005, 56, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Ciecierska, M.; Obiedzinski, M.W. Polycyclic aromatic hydrocarbons in infant formulae, follow-on formulae and baby foods available in the Polish market. Food Control. 2010, 21, 1166–1172. [Google Scholar] [CrossRef]
- Ishizaki, A.; Saito, K.; Hanioka, N.; Narimatsu, S.; Kataoka, H. Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high-performance liquid chromatography-fluorescence detection. J. Chromatogr. A 2010, 1217, 5555–5563. [Google Scholar] [CrossRef] [PubMed]
- Adeyeye, S.A.O. Polycyclic Aromatic Hydrocarbons in foods: A critical review. Cur. Nutr. Food. Sci. 2020, 16, 866–873. [Google Scholar] [CrossRef]
- Bansal, V.; Kumar, P.; Kwon, E.E.; Kim, K.H. Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products. Crit. Rev. Food Sci. Nutr. 2017, 57, 3297–3312. [Google Scholar] [CrossRef]
- SCF (Scientific Committee on Food); European Commission. Opinion of the Scientific Committee on Food on the Risks to Human Health of Polycyclic Aromatic Hydrocarbons in Food; Report SCF/CS/CNTM/PAH/29 Final 4 December 2002; European Commission: Brussels, Belgium, 4 December 2002.
- Guillén, M.D.; Palencia, G.; Ibargoitia, M.L.; Fresno, M.; Sopela, P. Contamination of cheese by polycyclic aromatic hydrocarbons in traditional smoking. Influence of the position in the smokehouse on the contamination level of smoked cheese. J. Dairy Sci. 2011, 94, 1679–1690. [Google Scholar] [CrossRef]
- EC European Commission. Commission Recommendation 2005/108/EC of 4 February 2005 on the further investigation into the levels of polycyclic aromatic hydrocarbons in certain foods. Off. J. Eur. Union 2005, L34, 43–45. [Google Scholar]
- EC European Commission. Commission Regulation (EC) No 208/2005 of 4 February 2005 amending Regulation (EC) No 466/2001 as regards polycyclic aromatic hydrocarbons. Off. J. Eur. Union 2005, L34, 3–5. [Google Scholar]
- EFSA. European Food Safety Authority. Polycyclic aromatic hydrocarbons in food-scientific opinion of the panel on contaminants in the food chain (Question N° EFSA-Q-2007-136). EFSA J. 2008, 6, 724. [Google Scholar]
- Wu, P.; Zhang, L.; Hu, Z.; Zhang, N.; Wang, L.; Zhao, Y. Contamination of 15+1 European Union polycyclic aromatic hydrocarbons in various types of tea and their infusions purchased on Hangzhou city market in China. Food Addit. Contam. Part A 2020, 37, 1621–1632. [Google Scholar] [CrossRef] [PubMed]
- Yebra-Pimentel, I.; Fernandez-Gonzalez, R.; Martinez-Carballo, E.; Simal-Gandara, J. A critical review about the health risk assessment of PAHs and their metabolites in foods. Crit. Rev. Food Sci. Nutr. 2015, 55, 1383–1405. [Google Scholar] [CrossRef] [PubMed]
- EC European Commission. Commission Regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Union L 2011, 215, 4–8. [Google Scholar]
- Pluta-Kubica, A.; Filipczak-Fiutak, M.; Domagała, J.; Duda, I.; Migdał, W. Contamination of traditionally smoked cheeses with polycyclic aromatic hydrocarbons and biogenic amines. Food Control. 2020, 112, 107–115. [Google Scholar] [CrossRef]
- Amirdivani, S.; Khorshidian, N.; Ghobadi Dana, M.; Mohammadi, R.; Mortazavian, A.M.; Quiterio de Souza, S.L.; Barbosa Rocha, H.; Raices, R. Polycyclic aromatic hydrocarbons in milk and dairy products. Int. J. Dairy Technol. 2019, 72, 120–131. [Google Scholar] [CrossRef]
- Camargo, M.C.; Toledo, M.C. Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits? Food Control. 2003, 14, 49–53. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, G.; Li, L.; Wang, X.; Li, W.; Li, X. Occurrence, dietary exposure, and health risk estimation of polycyclic aromatic hydrocarbons in grilled and fried meats in Shandong of China. Food Sci. Nutr. 2018, 6, 2431–2439. [Google Scholar] [CrossRef]
- Ledesma, E.; Rendueles, M.; Díaz, M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control. 2016, 60, 64–87. [Google Scholar] [CrossRef]
- Olatunji, O.S.; Fatoki, O.S.; Opeolu, B.O.; Ximba, B.J. Benzo[a]pyrene and Benzo[k]fluoranthene in some processed fish and fish products. Int. J. Environ Res. Public Health 2015, 12, 940–951. [Google Scholar] [CrossRef]
- Li, G.; Wu, S.M.; Wang, L.; Akoh, C.C. Concentration, dietary exposure and health risk estimation of polycyclic aromatic hydrocarbons (PAHs) in youtiao, a Chinese traditional fried food. Food Control. 2016, 59, 328–336. [Google Scholar] [CrossRef]
- Orecchio, S.; Papuzza, V. Levels, fingerprint and daily intake of polycyclic aromatic hydrocarbons (PAHs) in bread baked using wood as fuel. J. Hazard Mater. 2009, 164, 876–883. [Google Scholar] [PubMed]
- Ciecierska, M.; Obiedziński, M.W. Polycyclic aromatic hydrocarbons in vegetable oils from unconventional sources. Food Control. 2013, 30, 556–562. [Google Scholar] [CrossRef]
- Hyunjeong, J.; Byungjoo, K.; Jeongkwon, K.; Song-Yee, B. Development of candidate reference method for accurate determination of four polycyclic aromatic hydrocarbons in olive oil via gas chromatography/high-resolution mass spectrometry using 13C-labeled internal standards. Food Chem. 2020, 309, 125–139. [Google Scholar]
- Rojo Camargo, M.C.; Ramos, A.P.; Vicente, E. Evaluation of polycyclic aromatic hydrocarbons content in different stages of soybean oils processing. Food Chem. 2012, 135, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Tfouni, S.A.V.; Padovani, G.R.; Reis, R.M.; Furlani, R.P.Z.; Camargo, M.C.R. Incidence of polycyclic aromatic hydrocarbons in vegetable oil blends. Food Control. 2014, 46, 539–543. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Gong, G. Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends Food Sci. Technol. 2019, 83, 86–98. [Google Scholar] [CrossRef]
- Guillén, M.D.; Sopelana, P. Occurrence of polycyclic aromatic hydrocarbons in smoked cheese. J. Dairy Sci. 2004, 87, 556–564. [Google Scholar] [CrossRef]
- Guillén, M.D.; Palencia, G.; Sopelana, P.; Ibargoitia, M.L. Occurrence of polycyclic aromatic hydrocarbons in artisanal Palmero cheese smoked with two types of vegetable matter. J. Dairy Sci. 2007, 90, 2717–2725. [Google Scholar] [CrossRef]
- Migdał, W.; Walczycka, M.; Migdał, Ł. The Levels of Polycyclic Aromatic Hydrocarbons in Traditionally Smoked Cheeses in Poland. Polycycl. Aromat. Comp. 2022, 42, 1391–1403. [Google Scholar]
- EC Commission Regulation. No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union. 2006, L364, 5. [Google Scholar]
- EC European Commission. Commission Regulation (EU) No 1933/2015 of 27 October 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in cocoa fibre, banana chips, food supplements, dried herbs and dried spices. Off. J. Eur. Union L 2015, 282, 11–13. [Google Scholar]
- Anastasio, A.; Mercogliano, R.; Vollano, L.; Pepe, T.; Cortesi, M.L. Levels of benzo[a]pyrene (BaP) in “Mozzarella di Bufala Campana” cheese smoked according to different procedures. J. Agric. Food Chem. 2004, 52, 4452–4455. [Google Scholar] [CrossRef] [PubMed]
- Węgrzyn, E.; Grześkiewicz, S.; Popławska, W.; Głód, B.K. Modified analytical method for polycyclic aromatic hydrocarbons, using SEC for sample preparation and RP-HPLC with fluorescence detection. Application to different food samples. Acta Chromatogr. 2006, 17, 233–249. [Google Scholar]
- Garcia Falcon, S.M.; Gonzalez Amigo, S.G.; Lage Yusty, M.A.; Lopez de Alda Villaizan, M.J.; Simal Lozano, J. Enrichment of benzo[a]pyrene in smoked food products and determination by high-performance liquid chromatography-fluorescence detection. J. Chromatogr. A 1996, 753, 207–215. [Google Scholar] [CrossRef]
- Gul, O.; Dervişoğlu, M.; Mortaş, M.; Aydemir, O.; İlhan, E.; Cakiroglu, K. Evaluation of polycyclic aromatic hydrocarbons in Circassian cheese by high-performance liquid chromatography with fluorescence detection. J. Food Compost. Anal. 2015, 37, 82–86. [Google Scholar] [CrossRef]
- Suchanová, M.; Hajšlová, J.; Tomaniová, M.; Kocourek, V.; Babička, L. Polycyclic aromatic hydrocarbons in smoked cheese. J. Sci. Food Agric. 2008, 88, 1307–1317. [Google Scholar] [CrossRef]
- Pagliuca, G.; Gazzotti, T.; Zironi, E.; Serrazanetti, G.P.; Mollica, D.; Rosmini, R. Determination of high molecular mass polycyclic aromatic hydrocarbons in a typical Italian smoked cheese by HPLC-FLD. J. Agric. Food Chem. 2003, 51, 5111–5115. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Inter. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Świt, P.; Orzeł, J.; Maślanka, S. Monitoring of PAHs in simulated natural and artificial fires by HPLC-DAD-FLD with the application of Multi-Component Integrated Calibration Method toimprove quality of analytical results. Measure 2022, 196, 111242. [Google Scholar] [CrossRef]
- De Martin, S.; Matcovich, P.; Nanut, D.; Zulian, S.; Siardi, V. Determination of polycyclic aromatic hydrocarbons (PAH) in smoked foods. Boll. Chim. Igien. Parte Sci. 1998, 49, 177–181. [Google Scholar]
- Michalski, R.; Germuska, R. The content of benzo[a]pyrene in Slovakian smoked cheese. Pol. J. Food Nutr. Sci. 2003, 12, 33–37. [Google Scholar]
- Naccari, C.; Cristani, M.; Licata, P.; Giofre, F.; Trombetta, D. Levels of benzo[a]pyrene and benzo[a]anthracene in smoked “Provola” cheese from Calabria (Italy). Food Addit. Contam. Part B 2008, 1, 78–84. [Google Scholar] [CrossRef] [PubMed]
- ISO 17034:2016; General Requirements for the Competence of Reference Material Producers. ISO: Geneva, Switzerland, 2016.
- ISO/IEC 17025:2017; General Requiment for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
Sample Code | Sum of PAH5 | Sum of PAH9 | Naph | Ace | Fln | Phe | Ant | Flt | Pyr | B[a]A | Chr | B[b]F | B[k]F | B[a]P | DB[ah]A | B[ghi]P | I[1,2,3-cd]P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UC-1 | ND | 9.9 | 9.1 | 0.3 | 1.2 | 2.1 | <LOD | <LOD | 0.5 | ND | ND | <LOD | <LOD | <LOD | ND | ND | ND |
UC-2 | ND | 19.4 | 8.8 | 0.7 | 1.1 | 3.2 | <LOD | <LOD | 0.4 | ND | ND | <LOD | <LOD | <LOD | ND | ND | ND |
UC-3 | ND | 13.1 | 11.9 | 0.5 | 1.6 | 4.1 | <LOD | <LOD | 0.7 | ND | ND | <LOD | <LOD | <LOD | ND | ND | ND |
UC-4 | ND | 10.7 | 10.2 | 0.2 | 2.1 | 3.6 | <LOD | <LOD | 0.3 | ND | ND | <LOD | <LOD | <LOD | ND | ND | ND |
UC-5 | ND | 13.4 | 12.3 | 0.5 | 1.1 | 4.2 | <LOD | <LOD | 0.4 | ND | ND | <LOD | <LOD | <LOD | ND | ND | ND |
SC-1 | 0.7 | 8.9 | 2.1 | 1.2 | 5.6 | 15.4 | 1.1 | 2.2 | 1.1 | 0.1 | 0.2 | ND | ND | 0.6 | ND | ND | ND |
SC-2 | 0.9 | 10.6 | 3.7 | 1.1 | 5.0 | 11.7 | 4.3 | 3.1 | 1.3 | 0.2 | 0.1 | ND | ND | 0.7 | ND | ND | ND |
SC-3 | 0.7 | 21.9 | 11.3 | 5.6 | 5.3 | 17.3 | 3.7 | 1.3 | 1.2 | 0.1 | 0.3 | ND | ND | 0.6 | ND | ND | ND |
SC-4 | 0.7 | 11.8 | 5.1 | 3.7 | 10.1 | 8.6 | 1.2 | 1.7 | 1.7 | 0.1 | 0.1 | ND | ND | 0.6 | ND | ND | ND |
SC-5 | 1.3 | 15.1 | 9.4 | 2.3 | 4.8 | 8.8 | 1.7 | 1.3 | 1.4 | 0.2 | 0.1 | ND | ND | 0.9 | ND | ND | ND |
SC-6 | 1.8 | 25.8 | 8.5 | 8.6 | 1.1 | 4.1 | 4.6 | 3.7 | 2.8 | 1.3 | 0.5 | ND | ND | 0.5 | ND | ND | ND |
SC-7 | 1.4 | 19.0 | 2.1 | 8.7 | 1.1 | 18.2 | 5.8 | 3.1 | 1.3 | 1.1 | 0.9 | ND | ND | 0.3 | ND | ND | ND |
SC-8 | 2.2 | 14.6 | 1.5 | 2.7 | 1.2 | 7.3 | 5.6 | 4.2 | 3.1 | 1.7 | 0.5 | ND | ND | 0.5 | ND | ND | ND |
SC-9 | 2.8 | 21.2 | 3.8 | 2.1 | 11.8 | 4.1 | 8.4 | 3.4 | 2.6 | 2.1 | 0.5 | ND | ND | 0.7 | ND | ND | ND |
SC-10 | 2.9 | 16.8 | 2.9 | 7.1 | 4.9 | 24.5 | 1.2 | 5.7 | 3.4 | 2.2 | 0.7 | ND | ND | 0.7 | ND | ND | ND |
Mean-UC ±SD | 10.5 a ±0.53 | 0.4 a ±0.11 | 1.4 a ±0.13 | 3.4 a ±0.21 | - | - | 0.5 a ±0.11 | - | - | - | - | - | - | - | - | ||
min. | 8.8 | 0.2 | 1.1 | 2.1 | - | - | 0.3 | - | - | - | - | - | - | - | - | ||
max. | 12.3 | 0.7 | 2.1 | 4.3 | - | - | 0.7 | - | - | - | - | - | - | - | - | ||
Mean-SC ±SD | 5.0 b ±0.54 | 4.3 b ±0.25 | 5.1 ±0.56 | 12.0 b ±0.64 | 3.8 ±0.67 | 3.0 ±0.51 | 3.2 b ±0.63 | 0.9 ±0.11 | 0.4 ±0.10 | - | - | 0.6 ±0.13 | - | - | - | ||
min. | 1.5 | 1.1 | 1.1 | 4.1 | 1.1 | 1.3 | 1.1 | 0.1 | 0.1 | - | - | 0.3 | - | - | - | ||
max. | 11.3 | 8.7 | 11.8 | 24.5 | 8.4 | 5.7 | 3.4 | 2.2 | 0.9 | - | - | 0.9 | - | - | - |
Analyte | Recovery (%) | CV (%) | LOD (μg/kg) | LOQ (μg/kg) | Linearity R2 | |
---|---|---|---|---|---|---|
Level I (5.0 μg/kg) | Level II (50.0 μg/kg) | |||||
Naph | 82.50 | 90.40 | 0.7 | 0.06 | 0.15 | 0.9998 |
Ace | 93.40 | 83.80 | 0.8 | 0.06 | 0.15 | 0.9997 |
Fln | 85.20 | 85.10 | 0.7 | 0.06 | 0.15 | 0.9996 |
Phe | 90.50 | 80.20 | 0.6 | 0.10 | 0.15 | 0.9995 |
Ant | 93.30 | 88.30 | 0.7 | 0.08 | 0.15 | 0.9998 |
Flt | 86.40 | 87.60 | 0.8 | 0.06 | 0.15 | 0.9997 |
Pyr | 92.60 | 88.50 | 0.7 | 0.10 | 0.15 | 0.0006 |
B[a]A | 87.50 | 90.10 | 0.7 | 0.06 | 0.15 | 0.9997 |
Chr | 80.30 | 92.50 | 0.6 | 0.05 | 0.15 | 0.9996 |
B[b]F | 81.60 | 82.10 | 0.9 | 0.08 | 0.15 | 0.9996 |
B[k]F | 92.70 | 84.80 | 0.6 | 0.05 | 0.15 | 0.9995 |
B[a]P | 90.10 | 91.50 | 0.8 | 0.05 | 0.15 | 0.9997 |
DB[ah]A | 88.20 | 90.80 | 0.7 | 0.05 | 0.15 | 0.9998 |
B[ghi]P | 90.60 | 85.10 | 0.6 | 0.04 | 0.15 | 0.9998 |
I[1,2,3-cd]P | 84.20 | 87.60 | 0.7 | 0.07 | 0.15 | 0.9996 |
Sample Code 1 | Category of Cheese Producer/Source | Cheese Commercial Name | Weight Of Single Cheese Package (g) |
---|---|---|---|
UC-1 | Samples collected from retailed market | Gouda | 250 |
UC-2 | Edam | 250 | |
UC-3 | Gouda | 150 | |
UC-4 | Gouda | 150 | |
UC-5 | Ser królewski | 230 | |
SC-1 | Industrial | Gouda wędzona | 1500 |
SC-2 | Industrial | Salami wędzone | 1000 |
SC-3 | Industrial | Rolada ustrzycka | 500 |
SC-4 | Industrial | Salami królewskie | 500 |
SC-5 | Samples collected from retailed market | Gouda wędzona | 250 |
SC-6 | Zakopiańskie specjały–mini gołka zakopiańska | 160 | |
SC-7 | Rolada ustrzycka | 300 | |
SC-8 | Radamer wędzony | 250 | |
SC-9 | Włoszczowski wędzony | 250 | |
SC-10 | Ser królewski wędzony | 200 |
Chromatografic Condition | |
---|---|
Parameter | Value |
Analytical column | Supelcosil® LC-PAH (250 mm × 4.6 mm i.d.; 5 µm) column with the guard column Supelcosil® LC-18 (20 mm × 4.0 mm i.d., 5 µm; Supelco) |
Mobile phase/Gradient | (A) Water; (B) Acetonitrile; |
0 min—55% B at 1 mL/min 5 min–55% B20 min–100% B 30 min–100% B 30.1 min–55% B | |
Injection volume | 50 µL, needle washed for 3 s with acetonitrile |
Temperature of the column | 35 °C |
Diode Array Detector (DAD) | 254 nm, band width 4 nm, reference 400 nm, reference band width 100 nm, 10 Hz |
Fluorescence Detector (FLD) | Multisignal acquisition, T1 = 216/336 for 7.1–10.7 min (Naph); T2 = 240/320 for 10.7–11.1 min (Ace, Fln); T3 = 248/368 for 11.1–12.2 min (Phe); T4 = 248/404 for 12.2–13.2 min (Ant); T5 = 232/448 for 13.2– 14.3 min (Flt); T6 = 270/388 for 14.3–16.0 min (Pyr); T7 = 270/388 for 16.0–19.3 min (B[a]A, Chr); T8 = 250/430 for 19.3–23.6 min (B[b]F, B[k]F, B[a]P); T9 = 295/405 for 23.6– 25.8 min (DB[ah]A, B[ghi]P); T10 = 248/484 for 25.8–30.5 min (I [1,2,3-cd]P;19.45 Hz; PMT 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polak-Śliwińska, M.; Paszczyk, B.; Śliwiński, M. Evaluation of Polycyclic Aromatic Hydrocarbons in Smoked Cheeses Made in Poland by HPLC Method. Molecules 2022, 27, 6909. https://doi.org/10.3390/molecules27206909
Polak-Śliwińska M, Paszczyk B, Śliwiński M. Evaluation of Polycyclic Aromatic Hydrocarbons in Smoked Cheeses Made in Poland by HPLC Method. Molecules. 2022; 27(20):6909. https://doi.org/10.3390/molecules27206909
Chicago/Turabian StylePolak-Śliwińska, Magdalena, Beata Paszczyk, and Mariusz Śliwiński. 2022. "Evaluation of Polycyclic Aromatic Hydrocarbons in Smoked Cheeses Made in Poland by HPLC Method" Molecules 27, no. 20: 6909. https://doi.org/10.3390/molecules27206909
APA StylePolak-Śliwińska, M., Paszczyk, B., & Śliwiński, M. (2022). Evaluation of Polycyclic Aromatic Hydrocarbons in Smoked Cheeses Made in Poland by HPLC Method. Molecules, 27(20), 6909. https://doi.org/10.3390/molecules27206909