Effect of Formic Acid on the Outdiffusion of Ti Interstitials at TiO2 Surfaces: A DFT+U Investigation
Abstract
1. Introduction
2. Results
2.1. Adsorption of Formic Acid at the Undefected Surfaces
2.2. Sites for Excess Ti Atoms at the Rutile Surface
2.3. Adsorption of Formic Acid at the Ti-Rich TiO2(110) Surface
2.4. Sites for Excess Ti Atoms at the Anatase Surface
2.5. Adsorption of Formic Acid at the Ti-Rich a-TiO2(101) Surface
3. Discussion
4. Computational Methods and Models
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wandelt, K. Properties and Influence of Surface Defects. Surf. Sci. 1991, 251–252, 387–395. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Bhattacharya, A.; Stepanova, D.; Mikhaylov, A.; Grilli, M.L.; Khosravy, M.; Senjyu, T. A Systematic Review of Metal Oxide Applications for Energy and Environmental Sustainability. Metals 2020, 10, 1604. [Google Scholar] [CrossRef]
- Kazachenko, A.; Vasilieva, N.; Fetisova, O.; Sychev, V.; Elsuf’ev, E.; Malyar, Y.; Issaoui, N.; Miroshnikova, A.; Borovkova, V.; Kazachenko, A.; et al. New Reactions of Betulin with Sulfamic Acid and Ammonium Sulfamate in the Presence of Solid Catalysts. Biomass Convers. Biorefinery 2022, 1265, 133394. [Google Scholar] [CrossRef]
- Bennett, R.A.; McCavish, N.D. Non-Stoichiometric Oxide Surfaces and Ultra-Thin Films: Characterisation of TiO2. Top. Catal. 2005, 36, 11–19. [Google Scholar] [CrossRef]
- Finazzi, E.; Di Valentin, C.; Pacchioni, G. Nature of Ti Interstitials in Reduced Bulk Anatase and Rutile TiO2. J. Phys. Chem. C 2009, 113, 3382–3385. [Google Scholar] [CrossRef]
- Mulheran, P.A.; Nolan, M.; Browne, C.S.; Basham, M.; Sanvillee, E.; Bennett, R.A. Surface and Interstitial Ti Diffusion at the Rutile TiO2(110) Surface. Phys. Chem. Chem. Phys. 2010, 12, 9763–9771. [Google Scholar] [CrossRef]
- Tanner, A.J.; Wen, B.; Ontaneda, J.; Zhang, Y.; Grau-Crespo, R.; Fielding, H.H.; Selloni, A.; Thornton, G. Polaron-Adsorbate Coupling at the TiO2(110)-Carboxylate Interface. J. Phys. Chem. Lett. 2021, 12, 3571–3576. [Google Scholar] [CrossRef]
- Yoon, Y.; Du, Y.; Garcia, J.C.; Zhu, Z.; Wang, Z.-T.; Petrik, N.G.; Kimmel, G.A.; Dohnalek, Z.; Henderson, M.A.; Rousseau, R.; et al. Anticorrelation between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO2(110). ChemPhysChem 2015, 16, 313–321. [Google Scholar] [CrossRef]
- Xia, G.-J.; Lee, M.-S.; Glezakou, V.-A.; Rousseau, R.; Wang, Y.-G. Diffusion and Surface Segregation of Interstitial Ti Defects Induced by Electronic Metal–Support Interactions on a Au/TiO2 Nanocatalyst. ACS Catal. 2022, 12, 4455–4464. [Google Scholar] [CrossRef]
- Kremer, M.K.; Forrer, D.; Rogero, C.; Floreano, L.; Vittadini, A. Digging Ti Interstitials at the R-TiO2(110) Surface: Mechanism of Porphyrin Ti Sequestration by Iminic N Nucleophilic Attack. Appl. Surf. Sci. 2021, 564, 150403. [Google Scholar] [CrossRef]
- Koebl, J.; Wang, T.; Wang, C.; Drost, M.; Tu, F.; Xu, Q.; Ju, H.; Wechsler, D.; Franke, M.; Pan, H.; et al. Hungry Porphyrins: Protonation and Self-Metalation of Tetraphenylporphyrin on TiO2(110)-1 × 1. ChemistrySelect 2016, 1, 6103–6105. [Google Scholar] [CrossRef]
- Lovat, G.; Forrer, D.; Abadia, M.; Dominguez, M.; Casarin, M.; Rogero, C.; Vittadini, A.; Floreano, L. On-Surface Synthesis of a Pure and Long-Range-Ordered Titanium(IV)-Porphyrin Contact Layer on Titanium Dioxide. J. Phys. Chem. C 2017, 121, 13738–13746. [Google Scholar] [CrossRef]
- Bates, S.P.; Kresse, G.; Gillan, M.J. The Adsorption and Dissociation of ROH Molecules on TiO2(110). Surf. Sci. 1998, 409, 336–349. [Google Scholar] [CrossRef]
- Chambers, S.A.; Henderson, M.A.; Kim, Y.J.; Thevuthasan, S. Chemisorption Geometry, Vibrational Spectra, and Thermal Desorption of Formic Acid on TiO2(110). Surf. Rev. Lett. 1998, 5, 381–385. [Google Scholar] [CrossRef]
- Hayden, B.E.; King, A.; Newton, M.A. Fourier Transform Reflection−Absorption IR Spectroscopy Study of Formate Adsorption on TiO2(110). J. Phys. Chem. B 1999, 103, 203–208. [Google Scholar] [CrossRef]
- Vittadini, A.; Selloni, A.; Rotzinger, F.P.; Grätzel, M. Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations. J. Phys. Chem. B 2000, 104, 1300–1306. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, B.; Dahal, A.; Kimmel, G.A.; Rousseau, R.; Selloni, A.; Petrik, N.G.; Dohnálek, Z. Binding of Formic Acid on Anatase TiO2(101). J. Phys. Chem. C 2020, 124, 20228–20239. [Google Scholar] [CrossRef]
- Kwon, S.; Lin, T.C.; Iglesia, E. Elementary Steps and Site Requirements in Formic Acid Dehydration Reactions on Anatase and Rutile TiO2 Surfaces. J. Catal. 2020, 383, 60–76. [Google Scholar] [CrossRef]
- Tabacchi, G.; Fabbiani, M.; Mino, L.; Martra, G.; Fois, E. The Case of Formic Acid on Anatase TiO2(101): Where Is the Acid Proton? Angew. Chem. Int. Ed. 2019, 58, 12431–12434. [Google Scholar] [CrossRef]
- Hu, S.; Bopp, P.A.; Österlund, L.; Broqvist, P.; Hermansson, K. Formic Acid on TiO2–x (110): Dissociation, Motion, and Vacancy Healing. J. Phys. Chem. C 2014, 118, 14876–14887. [Google Scholar] [CrossRef]
- Mattsson, A.; Hu, S.; Hermansson, K.; Österlund, L. Adsorption of Formic Acid on Rutile TiO2 (110) Revisited: An Infrared Reflection-Absorption Spectroscopy and Density Functional Theory Study. J. Chem. Phys. 2014, 140, 34705. [Google Scholar] [CrossRef]
- Cheng, H.; Selloni, A. Energetics and Diffusion of Intrinsic Surface and Subsurface Defects on Anatase TiO2(101). J. Chem. Phys. 2009, 131, 54703. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Noei, H.; Buchholz, M.; Muhler, M.; Wöll, C.; Wang, Y. Dissociation of Formic Acid on Anatase TiO2(101) Probed by Vibrational Spectroscopy. Catal. Today 2012, 182, 12–15. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced Capabilities for Materials Modelling with QUANTUM ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A. Role and Effective Treatment of Dispersive Forces in Materials: Polyethylene and Graphite Crystals as Test Cases. J. Comput. Chem. 2009, 30, 934–939. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Aryasetiawan, F.; Lichtenstein, A.I. First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: The LDA + U Method. J. Phys. Condens. Matter 1997, 9, 767–808. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band Theory and Mott Insulators: Hubbard U Instead of Stoner I. Phys. Rev. B 1991, 44, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Himmetoglu, B.; Floris, A.; de Gironcoli, S.; Cococcioni, M. Hubbard-Corrected DFT Energy Functionals: The LDA+U Description of Correlated Systems. Int. J. Quantum Chem. 2014, 114, 14–49. [Google Scholar] [CrossRef]
- Stausholm-Møller, J.; Kristoffersen, H.; Hinnemann, B.; Madsen, G.; Hammer, B. DFT+U Study of Defects in Bulk Rutile TiO2. J. Chem. Phys. 2010, 133, 144708. [Google Scholar] [CrossRef]
- Nolan, M.; Elliott, S.D.; Mulley, J.S.; Bennett, R.A.; Basham, M.; Mulheran, P. Electronic Structure of Point Defects in Controlled Self-Doping of the TiO2 Surface: Combined Photoemission Spectroscopy and Density Functional Theory Study. Phys. Rev. B 2008, 77, 235424. [Google Scholar] [CrossRef]
- Morita, K.; Shibuya, T.; Yasuoka, K. Stability of Excess Electrons Introduced by Ti Interstitial in Rutile TiO2(110) Surface. J. Phys. Chem. C 2017, 121, 1602–1607. [Google Scholar] [CrossRef]
- Lutfalla, S.; Shapovalov, V.; Bell, A.T. Calibration of the DFT/GGA+U Method for Determination of Reduction Energies for Transition and Rare Earth Metal Oxides of Ti, V, Mo, and Ce. J. Chem. Theory Comput. 2011, 7, 2218–2223. [Google Scholar] [CrossRef]
- Forrer, D.; Vittadini, A. 2D vs. 3D Titanium Dioxide: Role of Dispersion Interactions. Chem. Phys. Lett. 2011, 516, 72–75. [Google Scholar] [CrossRef]
- Bredow, T.; Giordano, L.; Cinquini, F.; Pacchioni, G. Electronic Properties of Rutile TiO2 Ultrathin Films: Odd-Even Oscillations with the Number of Layers. Phys. Rev. B 2004, 70, 35419. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forrer, D.; Vittadini, A. Effect of Formic Acid on the Outdiffusion of Ti Interstitials at TiO2 Surfaces: A DFT+U Investigation. Molecules 2022, 27, 6538. https://doi.org/10.3390/molecules27196538
Forrer D, Vittadini A. Effect of Formic Acid on the Outdiffusion of Ti Interstitials at TiO2 Surfaces: A DFT+U Investigation. Molecules. 2022; 27(19):6538. https://doi.org/10.3390/molecules27196538
Chicago/Turabian StyleForrer, Daniel, and Andrea Vittadini. 2022. "Effect of Formic Acid on the Outdiffusion of Ti Interstitials at TiO2 Surfaces: A DFT+U Investigation" Molecules 27, no. 19: 6538. https://doi.org/10.3390/molecules27196538
APA StyleForrer, D., & Vittadini, A. (2022). Effect of Formic Acid on the Outdiffusion of Ti Interstitials at TiO2 Surfaces: A DFT+U Investigation. Molecules, 27(19), 6538. https://doi.org/10.3390/molecules27196538