Research Progress on the Mechanisms of Polysaccharides against Gastric Cancer
Abstract
:1. Introduction
2. Search Strategy
3. Extraction of Polysaccharides
3.1. Ultrasonic Extraction Method
3.2. Microwave Extraction Method
3.3. Enzyme-Assisted Extraction
3.4. Other Extraction Methods
4. Purification of Polysaccharides
5. Structural Characterization of Polysaccharides
6. Polysaccharides with Anti-Gastric Cancer Effect
6.1. Protein-Bound Polysaccharide K (PSK)
6.2. Fungi Polysaccharides
6.3. Algae Polysaccharides
6.4. Astragalus Membranaceus Polysaccharides
6.5. Tea Polysaccharides
6.6. Caulis Dendrobii Polysaccharides
6.7. Other Polysaccharides Extracted from Foods
6.8. Other Chinese Herbal Medicine Polysaccharides
7. Correlation of Structure and Anti-Gastric-Cancer Activities
8. Impacting on the Signaling Pathways and Immune System
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide For 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Y.; Youker, S. Metallic Taste as a Side Effect of Topical Fluorouracil Use. J. Drugs Dermatol. 2011, 10, 1201–1203. [Google Scholar] [PubMed]
- Rösch, S.; Werner, C.; Müller, F.; Walter, P. Photoreceptor Degeneration by Intravitreal Injection of N-methyl-N-nitrosourea (MNU) in rabbits: A pilot Study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 255, 317–331. [Google Scholar] [CrossRef]
- Gallardo, A.C.; Rodríguez, R.M.; Pacheco, C.C.; Satue, C.G.; Servio, L.I. Dermatological Side Effects of Intravesical Mitomycin C: Delayed Hypersensitivity. Arch. Espanoles Urol. 2016, 69, 89–91. [Google Scholar]
- Hong, W.; Kim, K.; Jung, Y.; Kim, J.; Kang, S.; Chun, J.; Chun, M.; Yim, H.; Kang, D.; Kim, T. 432 Comparison of Efficiency and Side Effect of Adriamycin and Doxetaxel and Adriamycin, Cyclophosphamide and Paclitaxel in Patients with Locally Advanced Breast Cancer Receiving Neoadjuvant Chemotherapy. Eur. J. Cancer 2012, 48, S172–S173. [Google Scholar] [CrossRef]
- Doval, D.; Sharma, S.K.; Kumar, M.; Khandelwal, V.; Choudhary, D. Cytarabine Ears—A Side Effect of Cytarabine Therapy. J. Oncol. Pharm. Pract. 2019, 26, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Quinn, M.T. Botanical polysaccharides: Macrophage Immunomodulation and Therapeutic Potential. Int. Immunopharmacol. 2006, 6, 317–333. [Google Scholar] [CrossRef]
- Huh, S.; Lee, S.; Choi, S.J.; Wu, Z.; Cho, J.-H.; Kim, L.; Shin, Y.S.; Kang, B.W.; Kim, J.G.; Liu, K.; et al. Quercetin Synergistically Inhibit EBV-Associated Gastric Carcinoma with Ganoderma lucidum Extracts. Molecules 2019, 24, 3834. [Google Scholar] [CrossRef]
- Nie, X.; Shi, B.; Ding, Y.; Tao, W. Antitumor and Immunomodulatory Effects of Weikangfu Granule Compound in Tumor-Bearing Mice. Curr. Ther. Res. 2006, 67, 138–150. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y.; Qu, H.; Ding, K. Structure Analysis of a Novel Heteroxylan from the Stem of Dendrobium Officinale and Anti-Angiogenesis Activities of Its Sulfated Derivative. Int. J. Biol. Macromol. 2017, 103, 533–542. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, F.; Wang, X.; Liu, X.; Hou, Y.; Zhang, Q. Extraction of the Polysaccharides from Five Algae and Their Potential Antioxidant Activity In Vitro. Carbohydr. Polym. 2010, 82, 118–121. [Google Scholar] [CrossRef]
- Yang, W.; Pei, F.; Shi, Y.; Zhao, L.; Fang, Y.; Hu, Q. Purification, Characterization and Anti-Proliferation Activity of Polysaccharides from Flammulina velutipes. Carbohydr. Polym. 2012, 88, 474–480. [Google Scholar] [CrossRef]
- Wang, J.; Jia, J.; Song, L.; Gong, X.; Xu, J.; Yang, M.; Li, M. Extraction, Structure, and Pharmacological Activities of Astragalus Polysaccharides. Appl. Sci. 2018, 9, 122. [Google Scholar] [CrossRef]
- Rahimi, F.; Tabarsa, M.; Rezaei, M. Ulvan from Green Algaeulva Intestinalis: Optimization of Ultrasound-Assisted Extraction and Antioxidant Activity. J. Appl. Phycol. 2016, 28, 2979–2990. [Google Scholar] [CrossRef]
- Ren, Y.; Bai, Y.; Zhang, Z.; Cai, W.; Del Rio Flores, A. The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development. Molecules 2019, 24, 3122. [Google Scholar] [CrossRef]
- Amanda, D.S.E.S.; Weuller, T.D.M.; Laís, M.M.a.; Maria, V.P.R.; Ana, K.P.B. Microwave-Assisted Extraction of Polysaccharides from Arthrospira (Spirulina) Platensis Using the Concept of Green Chemistry. Algal Res. 2018, 35, 178–184. [Google Scholar] [CrossRef]
- Tsubaki, S.; Oono, K.; Hiraoka, M.; Onda, A.; Mitani, T. Microwave-Assisted Hydrothermal Extraction of Sulfated Polysaccharides from Ulva spp. And Monostroma Latissimum. Food Chem. 2016, 210, 311–316. [Google Scholar] [CrossRef]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-Assisted Extraction of Sulfated Polysaccharides (Fucoidan) from Brown Seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef]
- Xu, S.-Y.; Huang, X.; Cheong, K.-L. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Mar. Drugs 2017, 15, 388. [Google Scholar] [CrossRef]
- Baik, J.H.; Shin, K.-S.; Park, Y.; Yu, K.-W.; Suh, H.J.; Choi, H.-S. Biotransformation of Catechin and Extraction of Active Polysaccharide from Green Tea Leaves Via Simultaneous Treatment with Tannase and Pectinase. J. Sci. Food Agric. 2014, 95, 2337–2344. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Sun, A.-D.; Zhang, B.-L.; Qin, S.-G.; Zhang, Y.-Q. Supercritical CO2 Extraction and Pre-Column Derivatization of Polysaccharides from Artemisia Sphaerocephala Krasch. Seeds Via Gas Chromatography. Ind. Crop. Prod. 2014, 60, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Luo, Y.; Zhang, X.; Zhang, W.; Qu, H.; Mao, G.; Zou, Y.; Wang, W.; Li, Q.; Chen, Y.; et al. Subcritical Water Extraction of Bioactive Compounds from Radix Puerariae and Optimization Study Using Response Surface Methodology. Chem. Eng. Commun. 2019, 206, 1218–1227. [Google Scholar] [CrossRef]
- Martins, M.; Vieira, F.A.; Correia, I.; Ferreira, R.A.S.; Abreu, H.; Coutinho, J.A.P.; Ventura, S.P.M. Recovery of Phycobiliproteins from the Red Macroalga Gracilaria sp. Using Ionic Liquid Aqueous Solutions. Green Chem. 2016, 18, 4287–4296. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, Z.-C.; Wang, H.; Kou, Y.; Wen, Q.-H.; Fu, Z.-F.; Chang, H.-X. Response Surface Optimization and Physicochemical Properties of Polysaccharides from Nelumbo Nucifera Leaves. Int. J. Biol. Macromol. 2015, 74, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Nie, W.; Yu, G.; Li, Y.; Hu, Y.; Lu, J.; Jin, L. Antitumor and Immunomodulatory Activity of Polysaccharides from Sargassum fusiforme. Food Chem. Toxicol. 2012, 50, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.K.; Laroche, C.; Marcati, A.; Ursu, A.V.; Jubeau, S.; Marchal, L.; Petit, E.; Djelveh, G.; Michaud, P. Separation and Fractionation of Exopolysaccharides from Porphyridium cruentum. Bioresour. Technol. 2013, 145, 345–350. [Google Scholar] [CrossRef]
- Chen, Z.-G.; Zhang, D.-N.; Zhu, Q.; Yang, Q.-H.; Han, Y.-B. Purification, Preliminary Characterization And In Vitro Immunomodulatory Activity of Tiger Lily Polysaccharide. Carbohydr. Polym. 2014, 106, 217–222. [Google Scholar] [CrossRef]
- Usoltseva, R.V.; Anastyuk, S.D.; Shevchenko, N.M.; Zvyagintseva, T.N.; Ermakova, S.P. The Comparison of Structure and Anticancer Activity In Vitro Of Polysaccharides from Brown Algae Alaria marginata and A. Angusta. Carbohydr. Polym. 2016, 153, 258–265. [Google Scholar] [CrossRef]
- Di, T.; Chen, G.; Sun, Y.; Ou, S.; Zeng, X.; Ye, H. Antioxidant and Immunostimulating Activities In Vitro of Sulfated Polysaccharides Isolated from Gracilaria Rubra. J. Funct. Foods 2017, 28, 64–75. [Google Scholar] [CrossRef]
- Hahn, T.; Zayed, A.; Kovacheva, M.; Stadtmüller, R.; Lang, S.; Muffler, K.; Ulber, R. Dye Affinity Chromatography for Fast and Simple Purification of Fucoidan from Marine Brown Algae. Eng. Life Sci. 2015, 16, 78–87. [Google Scholar] [CrossRef]
- He, X.; Fang, J.; Ruan, Y.; Wang, X.; Sun, Y.; Wu, N.; Zhao, Z.; Chang, Y.; Ning, N.; Guo, H.; et al. Structures, Bioactivities and Future Prospective of Polysaccharides from Morus Alba (White Mulberry): A Review. Food Chem. 2018, 245, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, C.-F.; Feng, X.; Cheng, L.; Ibrahim, S.A.; Wang, C.-T.; Huang, W. Isolation, Characterization and Antioxidant of Polysaccharides from Stropharia Rugosoannulata. Int. J. Biol. Macromol. 2019, 155, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Lin, H.; Li, J.; Wang, Y.; Cui, S.W.; Nie, S.; Xie, M. Structural Characterization of a Highly Branched Polysaccharide from the Seeds of Plantago Asiatica L. Carbohydr. Polym. 2012, 87, 2416–2424. [Google Scholar] [CrossRef]
- Hu, J.-L.; Nie, S.-P.; Wu, Q.-M.; Li, C.; Fu, Z.-H.; Gong, J.; Cui, S.W.; Xie, M.-Y. Polysaccharide from Seeds of Plantago asiatica L. Affects Lipid Metabolism and Colon Microbiota of Mouse. J. Agric. Food Chem. 2013, 62, 229–234. [Google Scholar] [CrossRef]
- Holt, S. The Mushroom Extract Polysaccharide K (PSK) Is a Promising Adjuvant Cancer Therapy. Focus Altern. Complement. Ther. 2015, 20, 166–167. [Google Scholar] [CrossRef]
- Mekata, E.; Murata, S.; Sonoda, H.; Shimizu, T.; Umeda, T.; Shiomi, H.; Naka, S.; Yamamoto, H.; Abe, H.; Edamatsu, T.; et al. Protein-Bound Polysaccharide-K Augments the Anticancer Effect of Fluoropyrimidine Derivatives Possibly by Lowering Dihydropyrimidine Dehydrogenase Expression in Gastrointestinal Cancers. Oncol. Rep. 2013, 30, 2845–2851. [Google Scholar] [CrossRef]
- Habtemariam, S. Trametes versicolor (Synn. Coriolus versicolor) Polysaccharides in Cancer Therapy: Targets and Efficacy. Biomedicines 2020, 8, 135. [Google Scholar] [CrossRef]
- Oba, K.; Teramukai, S.; Kobayashi, M.; Matsui, T.; Kodera, Y.; Sakamoto, J. Efficacy of Adjuvant Immunochemotherapy with Polysaccharide K For Patients with Curative Resections of Gastric Cancer. Cancer Immunol. Immunother. 2006, 56, 905–911. [Google Scholar] [CrossRef]
- Maehara, Y.; Tsujitani, S.; Saeki, H.; Oki, E.; Yoshinaga, K.; Emi, Y.; Morita, M.; Kohnoe, S.; Kakeji, Y.; Yano, T.; et al. biological Mechanism and Clinical Effect of Protein-Bound Polysaccharide K (KRESTIN®): Review of Development and Future Perspectives. Surg. Today 2011, 42, 8–28. [Google Scholar] [CrossRef]
- Iguchi, C.; Nio, Y.; Takeda, H.; Yamasawa, K.; Hirahara, N.; Toga, T.; Itakura, M.; Tamura, K. Plant polysaccharide PSK: Cytostatic Effects on Growth and Invasion; Modulating Effect on The Expression of HLA And Adhesion Molecules on Human Gastric and Colonic Tumor Cell Surface. Anticancer Res. 2001, 21, 1007–1013. [Google Scholar]
- Lu, H.; Yang, Y.; Gad, E.; Wenner, C.A.; Chang, A.; Larson, E.R.; Dang, Y.; Martzen, M.; Standish, L.J.; Disis, M.L. Polysaccharide Krestin Is a Novel TLR2 Agonist that Mediates Inhibition of Tumor Growth via Stimulation of CD8 T Cells and NK Cells. Clin. Cancer Res. 2011, 17, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Quayle, K.; Coy, C.; Standish, L.; Lu, H. The TLR2 Agonist in Polysaccharide-K Is a Structurally Distinct Lipid Which Acts Synergistically with the Protein-Bound Β-Glucan. J. Nat. Med. 2014, 69, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lora, A.; Pedrinaci, S.; Garrido, F. Protein-bound polysaccharide K and interleukin-2 regulate different nuclear transcription factors in the NKL human natural killer cell line. Cancer Immunol. Immunother. 2001, 50, 191–198. [Google Scholar] [CrossRef] [PubMed]
- García-Lora, A.; Martinez, M.; Pedrinaci, S.; Garrido, F. Different Regulation of PKC Isoenzymes and MAPK by PSK and IL-2 in the Proliferative and Cytotoxic Activities of the NKL Human Natural Killer Cell Line. Cancer Immunol. Immunother. 2003, 52, 59–64. [Google Scholar] [CrossRef]
- Okuzawa, M.; Shinohara, H.; Kobayashi, T.; Iwamoto, M.; Toyoda, M.; Tanigawa, N. PSK, a Protein-Bound Polysaccharide, Overcomes Defective Maturation of Dendritic Cells Exposed to Tumor-Derived Factors In Vitro. Int. J. Oncol. 2002, 20, 1189–1195. [Google Scholar] [CrossRef]
- Shinbo, T.; Fushida, S.; Tsukada, T.; Harada, S.; Kinoshita, J.; Oyama, K.; Okamoto, K.; Ninomiya, I.; Takamura, H.; Kitagawa, H.; et al. Protein-Bound Polysaccharide K Suppresses Tumor Fibrosis in Gastric Cancer by Inhibiting the TGF-Β Signaling Pathway. Oncol. Rep. 2014, 33, 553–558. [Google Scholar] [CrossRef]
- Zhang, H.; Morisaki, T.; Matsunaga, H.; Sato, N.; Uchiyama, A.; Hashizume, K.; Nagumo, F.; Tadano, J.; Katano, M. Protein-Bound Polysaccharide PSK Inhibits Tumor Invasiveness by Down-Regulation of TGF-Β1 and Mmps. Clin. Exp. Metastasis 2000, 18, 345–351. [Google Scholar] [CrossRef]
- Yoshihiro, O.; Tetsu, H.; Ayano, K.; Hiroshi, O.; Kazuhiro, M.; Shigeyuki, K.; Minoru, T.; Masahiro, S.; Hiromitsu, J.; Hirotoshi, H. Direct Inhibition of the Transforming Growth Factor-Β Pathway by Protein-Bound Polysaccharide Through Inactivation of Smad2 Signaling. Cancer Sci. 2012, 103, 317–324. [Google Scholar] [CrossRef]
- Yamasaki, A.; Shoda, M.; Iijima, H.; Nagai, S.; Wada, J.; Suzuki, H.; Chikazawa, N.; Tasaka, T.; Kameda, C.; Tanaka, H.; et al. A Protein-Bound Polysaccharide, PSK, Enhances Tumor Suppression Induced by Docetaxel in a Gastric Cancer Xenograft Model. Anticancer Res. 2009, 29, 843–850. [Google Scholar]
- Kinoshita, J.; Fushida, S.; Harada, S.; Makino, I.; Nakamura, K.; Oyama, K.; Fujita, H.; Ninomiya, I.; Fujimura, T.; Kayahara, M.; et al. PSK Enhances the Efficacy of Docetaxel in Human Gastric Cancer Cells Through Inhibition of Nuclear Factor-Κb Activation and Survivin Expression. Int. J. Oncol. 2010, 36, 593–600. [Google Scholar] [CrossRef]
- Kim, J.W. Complementary Therapies and Cancer Treatment. J. Korean Med. Assoc. 2008, 51, 427–434. [Google Scholar] [CrossRef]
- Fisher, M.; Yang, L.-X. Anticancer Effects and Mechanisms of Polysaccharide-K (PSK): Implications of Cancer Immunotherapy. Anticancer Res. 2002, 22, 1737–1754. [Google Scholar] [PubMed]
- Toge, T.; Yamaguchi, Y. Protein-Bound Polysaccharide Increases Survival in Resected Gastric Cancer Cases Stratified with a Preoperative Granulocyte and Lymphocyte Count. Oncol. Rep. 2000, 7, 1157–1218. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wu, X.; Yu, J.; Zhu, J.; Pen, X.; Meng, X. Can polysaccharide K Improve Therapeutic Efficacy and Safety in Gastrointestinal Cancer? A Systematic Review and Network Meta-Analysis. Oncotarget 2017, 8, 89108–89118. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Fujimura, T.; Kinami, S.; Hirono, Y.; Yamaguchi, A.; Naitoh, H.; Tani, T.; Kaji, M.; Yamagishi, H.; Miwa, K. A Randomized Phase III Trial of Postoperative Adjuvant Therapy with S-1 Alone versus S-1 plus PSK for Stage II/IIIA Gastric Cancer: Hokuriku-Kinki Immunochemo-Therapy Study Group-Gastric Cancer (HKIT-GC). Jpn. J. Clin. Oncol. 2006, 36, 519–522. [Google Scholar] [CrossRef]
- Yamashita, K.; Sakuramoto, S.; Mieno, H.; Nemoto, M.; Shibata, T.; Katada, N.; Ohtsuki, S.; Sakamoto, Y.; Hoshi, K.; Wang, G.; et al. Preoperative Administration of Polysaccharide Kureha and Reduced Plasma Transforming Growth Factor-Β in Patients with Advanced Gastric Cancer: A Randomized Clinical Trial. Mol. Clin. Oncol. 2015, 3, 471–478. [Google Scholar] [CrossRef]
- Choi, J.-H.; Kim, Y.-B.; Lim, H.-Y.; Park, J.S.; Kim, H.C.; Cho, Y.K.; Han, S.W.; Kim, M.W.; Joo, H.J. 5-Fluorouracil, Mitomycin-C, And Polysaccharide-K Adjuvant Chemoimmunotherapy for Locally Advanced Gastric Cancer: The Prognostic Significance of Frequent Perineural Invasion. Hepatogastroenterology 2007, 54, 290–297. [Google Scholar]
- Choi, J.; Kang, S.; Park, J.; Lee, H.; Cho, Y.; Han, S.; Lim, H. A Prospective Randomized Trial Comparing 5-Fluorouracil (5-FU), Mitomycin-C (MMC), And Polysaccharide-K (PSK) Versus UFT And PSK As Adjuvant Chemoimmunotherapy (CITX) For Patients with Locally Advanced Gastric Cancer with Curative Resection. J. Clin. Oncol. 2007, 25 (Suppl. S18), 15074. [Google Scholar] [CrossRef]
- Lee, H.; Choi, J.; Kang, S.; Jeong, S.; Jung, J.; Choi, Y.; Han, S.; Lim, H.; Cho, Y. A Prospective Randomized Trial Comparing 5-Fluorouracil (5-FU), Mitomycin-C (MMC), And Polysaccharide-K (PSK) Versus UFT And PSK As Adjuvant Chemoimmunotherapy (CITX) For Patients with Locally Advanced Gastric Cancer with Curative Resection. J. Clin. Oncol. 2008, 26 (Suppl. 15), 4581. [Google Scholar] [CrossRef]
- Hsu, J.-T.; Hsu, C.-S.; Le, P.-H.; Chen, T.-C.; Chou, W.-C.; Lin, C.-Y.; Yeh, T.-S. Immunochemotherapy Benefits in Gastric Cancer Patients Stratified by Programmed Death-1 Ligand-1. J. Surg. Res. 2016, 211, 30–38. [Google Scholar] [CrossRef]
- Kanazawa, M.; Yoshihara, K.; Abe, H.; Iwadate, M.; Watanabe, K.; Suzuki, S.; Endoh, Y.; Takita, K.-I.; Sekikawa, K.; Takenoshita, S.; et al. Effects of PSK on T and Dendritic Cells Differentiation in Gastric or Colorectal Cancer Patients. Anticancer Res. 2005, 25, 443–449. [Google Scholar] [PubMed]
- Akagi, J.; Baba, H. PSK may suppress CD57+ T Cells to Improve Survival of Advanced Gastric Cancer Patients. Int. J. Clin. Oncol. 2010, 15, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, M.; Mochiki, E.; Ishiguro, T.; Ogura, T.; Sobajima, J.; Kumagai, Y.; Ishibashi, K.; Ishida, H. Improved Efficacy by Addition of Protein-bound Polysaccharide K to Adjuvant Chemotherapy for Advanced Gastric Cancer. Anticancer Res. 2016, 36, 4237–4241. [Google Scholar] [PubMed]
- Namikawa, T.; Fukudome, I.; Ogawa, M.; Munekage, E.; Shiga, M.; Maeda, H.; Kitagawa, H.; Kobayashi, M.; Hanazaki, K. Clinical Efficacy of Protein-Bound Polysaccharide K in Patients with Gastric Cancer Undergoing Chemotherapy with an Oral Fluoropyrimidine (S-1). Eur. J. Surg. Oncol. 2015, 41, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, K.; Shimada, M.; Kurita, N.; Sato, H.; Iwata, T.; Nishioka, M.; Morimoto, S.; Miyatani, T.; Komatsu, M. The Effect of Polysaccharide K With S-1 Based Chemotherapy in Advanced Gastric Cancer. Hepatogastroenterology 2013, 60, 1387–1390. [Google Scholar] [CrossRef]
- Kono, K.; Kawaguchi, Y.; Mizukami, Y.; Mimura, K.; Sugai, H.; Akaike, H.; Fujii, H. Protein-Bound Polysaccharide K Partially Prevents Apoptosis of Circulating T Cells Induced by Anti-Cancer Drug S-1 in Patients with Gastric Cancer. Oncology 2008, 74, 143–149. [Google Scholar] [CrossRef]
- Garrido, F.; Aptsiauri, N. Cancer Immune Escape:Mhcexpression in Primary Tumours Versus Metastases. Immunology 2019, 158, 255–266. [Google Scholar] [CrossRef]
- Gentaro, I.; Hiroaki, T.; Mami, Y.; Takehiro, I.; Kazuya, M.; Kubo, N.; Hisashi, N.; Kenjiro, K.; Ryosuke, A.; Eiji, N.; et al. Abstract 2687: Immunopotentiator, Protein-Bound Polysaccharide K, Is Efficient for Advanced Gastric Cancer with Negative Expression of MHC Class I. Cancer Res. 2011, 71, 2687. [Google Scholar] [CrossRef]
- Tanaka, H.; Ohira, M.; Muguruma, K.; Kubo, N.; Nagahara, H.; Kimura, K.; Amano, R.; Noda, E.; Yamada, N.; Yashiro, M.; et al. Abstract 1796: The Impact of Adjuvant Immunochemotherapy Using Protein-Bound Polysaccharide-K on Overall Survival of Gastric Cancer. Cancer Res. 2011, 71, 1796. [Google Scholar] [CrossRef]
- Ito, G.; Tanaka, H.; Ohira, M.; Yoshii, M.; Muguruma, K.; Kubo, N.; Yashiro, M.; Yamada, N.; Maeda, K.; Sawada, T.; et al. Correlation Between Efficacy of PSK Postoperative Adjuvant Immunochemotherapy for Gastric Cancer and Expression of MHC class I. Exp. Ther. Med. 2012, 3, 925–930. [Google Scholar] [CrossRef]
- Tanaka, H.; Muguruma, K.; Ohira, M.; Kubo, N.; Yamashita, Y.; Maeda, K.; Sawada, T.; Hirakawa, K. Impact of Adjuvant Immunochemotherapy Using Protein-Bound Polysaccharide-K on Overall Survival of Patients with Gastric Cancer. Anticancer Res. 2012, 32, 3427–3433. [Google Scholar] [PubMed]
- Kenji, I.; Takae, K.; Takafumi, A. The Use of Lentinan for Treating Gastric Cancer. Anti-Cancer Agents in Medicinal Chemistry. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem. Anti-Cancer Agents) 2013, 13, 681–688. [Google Scholar]
- Del Buono, A.; Di Martino, S.; D’Orta, A.; De Monaco, A.; Simona, D.; Santillo, M.R.; Montanino, C.; De Felice, B. Action of Low Molecular Weight Glucan on Trascriptome of Neoplastic Cell Lines. World Cancer Res. J. 2020, 7, e1460. [Google Scholar]
- Li, Y.; Wang, X.; Ma, X.; Liu, C.; Wu, J.; Sun, C. Natural Polysaccharides and Their Derivates: A Promising Natural Adjuvant for Tumor Immunotherapy. Front. Pharmacol. 2021, 12, 621813. [Google Scholar] [CrossRef]
- Bae, J.-S.; Jang, K.-H.; Jin, H.K. Effects of Natural Polysaccharides on the Growth and Peritoneal Carcinomatosis of Human Gastric Adenocarcinoma in a Nude Mouse Model. Cancer Lett. 2006, 235, 60–68. [Google Scholar] [CrossRef]
- Zan, X.; Cui, F.; Li, Y.; Yang, Y.; Wu, D.; Sun, W.; Ping, L. Hericium Erinaceus Polysaccharide-Protein HEG-5 Inhibits SGC-7901 Cell Growth Via Cell Cycle Arrest and Apoptosis. Int. J. Biol. Macromol. 2015, 76, 242–253. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Xiao, X.; Xu, D.; Gao, Y.; Gao, Q.; Mingxing, W. A Polysaccharide Isolated from Mycelia of the Lion’s Mane Medicinal Mushroom Hericium erinaceus (Agaricomycetes) Induced Apoptosis in Precancerous Human Gastric Cells. Int. J. Med. Mushrooms 2017, 19, 1053–1060. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Xu, C.; Huang, W.; He, P. Characterization and Antiproliferative Effect of Novel Acid Polysaccharides from the Spent Substrate of Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) Cultivation. Int. J. Med. Mushrooms 2017, 19, 395–403. [Google Scholar] [CrossRef]
- Shi, B.J.; Nie, X.-H.; Chen, L.-Z.; Liu, Y.-L.; Tao, W.-Y. Anticancer Activities of a Chemically Sulfated Polysaccharide Obtained from Grifola Frondosa and Its Combination With 5-Fluorouracil Against Human Gastric Carcinoma Cells. Carbohydr. Polym. 2007, 68, 687–692. [Google Scholar] [CrossRef]
- Luo, Z.; Hu, X.; Xiong, H.; Qiu, H.; Yuan, X.; Zhu, F.; Wang, Y.; Zou, Y. A Polysaccharide from Huaier Induced Apoptosis In MCF-7 Breast Cancer Cells Via Down-Regulation of MTDH Protein. Carbohydr. Polym. 2016, 151, 1027–1033. [Google Scholar] [CrossRef]
- Chen, M.; Lu, Y.; Zhang, R.; Bi, T.; Zhou, S. Effects of Huaier Polysaccharide SP1 on Gastric Cancer Cell Proliferation, Apoptosis, Migration, and Invasion by Regulating TGF-β/SMAD Signaling Pathway. Adv. Polym. Technol. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Chen, G.C.; Zhang, P.Y.; Huang, T.T.; Yu, W.Q.; Lin, J.; Li, P.; Chen, K.S. Polysaccharides from Rhizopus Nigricans Mycelia Induced Apoptosis and G2/M Arrest In BGC-823 Cells. Carbohydr. Polym. 2013, 97, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-Y.; Liu, J.-L.; Yang, W.; Hou, X.; Li, Q.-J. Antitumor Activity of Polysaccharide Extracted from Pleurotus Ostreatus Mycelia Against Gastric Cancer In Vitro and In Vivo. Mol. Med. Rep. 2015, 12, 2383–2389. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Zan, X.; Li, Y.; Sun, W.; Yang, Y.; Ping, L. Grifola frondosa Glycoprotein GFG-3a Arrests S phase, Alters Proteome, and Induces Apoptosis in Human Gastric Cancer Cells. Nutr. Cancer 2016, 68, 267–279. [Google Scholar] [CrossRef]
- Hui, T.W. Apoptosis Induced by Ganopoly in Human Gastric Cancer Cell Line SGC-7901 Cells. Afr. J. Biotechnol. 2011, 10, 18279–18284. [Google Scholar] [CrossRef]
- Pan, K.; Jiang, Q.; Liu, G.; Miao, X.; Zhong, D. Optimization Extraction of Ganoderma Lucidum Polysaccharides and Its Immunity and Antioxidant Activities. Int. J. Biol. Macromol. 2013, 55, 301–306. [Google Scholar] [CrossRef]
- Yang, W.; Han, D.; Wu, L.; Huang, Y.; Li, J.; Guo, H.; Liu, Y. Hericium Erinaceus Synergizing with Doxorubicin Induced SGC7901 Cell Apoptosis. Int. J. Clin. Exp. Med. 2016, 9, 1447–1457. [Google Scholar]
- Higashi, D.; Seki, K.; Ishibashi, Y.; Egawa, Y.; Koga, M.; Sasaki, T.; Hirano, K.; Mikami, K.; Futami, K.; Maekawa, T.; et al. The Effect of Lentinan Combination Therapy for Unresectable Advanced Gastric Cancer. Anticancer Res. 2012, 32, 2365–2368. [Google Scholar]
- Men’Shova, R.V.; Ermakova, S.P.; Um, B.H.; Zvyagintseva, T.N. The Composition and Structural Characteristics of Polysaccharides of the Brown Alga Eisenia bicyclis. Russ. J. Mar. Biol. 2013, 39, 208–213. [Google Scholar] [CrossRef]
- Sanjeewa, K.A.; Lee, J.-S.; Kim, W.-S.; Jeon, Y.-J. The Potential of Brown-Algae Polysaccharides for The Development of Anticancer Agents: An Update on Anticancer Effects Reported for Fucoidan and Laminaran. Carbohydr. Polym. 2017, 177, 451–459. [Google Scholar] [CrossRef]
- Yoshimoto, M.; Higaki, K.; Nanba, E.; Ikeguchi, M. Anti-Proliferation Activity of Fucoidan in MKN45 Gastric Cancer Cells and Downregulation of Phosphorylated ASK1, a Cell Cycle-Regulated Kinase. Yonago Acta Med. 2015, 58, 1–7. [Google Scholar] [PubMed]
- Kang, Y.; Wang, Z.-J.; Xie, D.; Sun, X.; Yang, W.; Zhao, X.; Xu, N. Characterization and Potential Antitumor Activity of Polysaccharide from Gracilariopsis lemaneiformis. Mar. Drugs 2017, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.-J.; Nam, T.-J. Porphyran Induces Apoptosis Related Signal Pathway in AGS Gastric Cancer Cell Lines. Life Sci. 2006, 79, 1956–1962. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Fujii, I.; Zhao, J.; Shinohara, M.; Matsukura, M. A novel Polysaccharide Derived from Algae Extract Induces Apoptosis and Cell Cycle Arrest in Human Gastric Carcinoma MKN45 Cells Via ROS/JNK Signaling Pathway. Int. J. Oncol. 2016, 49, 1561–1568. [Google Scholar] [CrossRef]
- Xie, P.; Horio, F.; Fujii, I.; Zhao, J.; Shinohara, M.; Matsukura, M. A Novel Polysaccharide Derived from Algae Extract Inhibits Cancer Progression Via JNK, Not Via the P38 MAPK Signaling Pathway. Int. J. Oncol. 2018, 52, 1380–1390. [Google Scholar] [CrossRef]
- Ji, Y.-B.; Ji, C.-F.; Yue, L. Human Gastric Cancer Cell Line SGC-7901 Apoptosis Induced By SFPS-B2 Via a Mitochondrial-Mediated Pathway. Bio-Medical Mater. Eng. 2014, 24, 1141–1147. [Google Scholar] [CrossRef]
- Kwon, M.-J.; Nam, T.-J. A Polysaccharide of the Marine Alga Capsosiphon Fulvescens Induces Apoptosis in AGS Gastric Cancer Cells Via An IGF-IR-Mediated PI3K/Akt Pathway. Cell Biol. Int. 2007, 31, 768–775. [Google Scholar] [CrossRef]
- Albana, C.; Ushakova, N.A.; Preobrazhenskaya, M.E.; Armida, D.I.; Antonio, P.; Licia, T.; Nicola, T.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I. A Comparative Study of the Anti-Inflammatory, Anticoagulant, Antiangiogenic, and Antiadhesive Activities of Nine Different Fucoidans from Brown Seaweeds. Glycobiology 2007, 17, 541–552. [Google Scholar]
- Park, H.S.; Kim, G.-Y.; Nam, T.-J.; Kim, N.D.; Choi, Y.H. Antiproliferative Activity of Fucoidan Was Associated with the Induction of Apoptosis and Autophagy in AGS Human Gastric Cancer Cells. J. Food Sci. 2011, 76, T77–T83. [Google Scholar] [CrossRef]
- Desamero, M.J.; Kakuta, S.; Chambers, J.K.; Uchida, K.; Hachimura, S.; Takamoto, M.; Nakayama, J.; Nakayama, H.; Kyuwa, S. Orally Administered Brown Seaweed-Derived Β-Glucan Effectively Restrained Development of Gastric Dysplasia in A4gnt KO Mice That Spontaneously Develop Gastric Adenocarcinoma. Int. Immunopharmacol. 2018, 60, 211–220. [Google Scholar] [CrossRef]
- Han, M.; Sun, P.; Li, Y.; Wu, G.; Nie, J. Structural Characterization of a Polysaccharide from Sargassum Henslowianum, and Its Immunomodulatory Effect on Gastric Cancer Rat. Int. J. Biol. Macromol. 2018, 108, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Xie, S.R.; Zhao, S.; Zhang, G.X.; Liu, Z.W.; Zheng, K.; Chao, Y.; Shi, R.H.; Sun, W.H. Effects of Astragalus Polysaccharides on Proliferation and Apoptosis of Gastric Cancer Cell. J. Gastroenterol. Hepatol. 2007, 22, 176. [Google Scholar]
- Yu, J.; Ji, H.; Dong, X.; Feng, Y.; Liu, A. Apoptosis of Human Gastric Carcinoma MGC-803 Cells Induced by a Novel Astragalus Membranaceus Polysaccharide Via Intrinsic Mitochondrial Pathways. Int. J. Biol. Macromol. 2018, 126, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Peng, L. IDDF2019-ABS-0248 Astragalus polysaccharide Promotes Adriamycin-Induced Apoptosis in Gastric Cancer Cells. Gut 2019, 68, A25–A26. [Google Scholar] [CrossRef]
- Liu, X.-N.; Zhang, C.-Y.; Jin, X.-D.; Li, Y.-Z.; Zheng, X.-Z.; Li, L. Inhibitory Effect of Schisandrin B on Gastric Cancer Cells In Vitro. World J. Gastroenterol. 2007, 13, 6506–6511. [Google Scholar] [CrossRef]
- Wu, J.; Yu, J.; Wang, J.; Zhang, C.; Shang, K.; Yao, X.; Cao, B. Astragalus Polysaccharide Enhanced Antitumor Effects of Apatinib in Gastric Cancer AGS Cells by Inhibiting AKT Signalling Pathway. Biomed. Pharmacother. 2018, 100, 176–183. [Google Scholar] [CrossRef]
- Li, R.; Chen, W.-C.; Wang, W.-P.; Tian, W.-Y.; Zhang, X.-G. Extraction, Characterization of Astragalus Polysaccharides and Its Immune Modulating Activities in Rats with Gastric Cancer. Carbohydr. Polym. 2009, 78, 738–742. [Google Scholar] [CrossRef]
- Wang, J.-C.; Tian, J.-H.; Ge, L.; Gan, Y.-H.; Yang, K.-H. Which is the Best Chinese Herb Injection Based on the FOLFOX Regimen for Gastric Cancer? A Network Meta-analysis of Randomized Controlled Trials. Asian Pac. J. Cancer Prev. 2014, 15, 4795–4800. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, J.; Ni, M.; Wu, J.; Wang, K.; Duan, X.; Zhang, X.; Zhang, B. Comparative Efficacy and Safety of Chinese Herbal Injections Combined with the FOLFOX Regimen for Treating Gastric Cancer in China: A Network Meta-Analysis. Oncotarget 2017, 8, 68873–68889. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, M.; Zhao, L.; Ge, Y.-K.; Sheng, J.; Shi, W. Changes of Constituents and Activity to Apoptosis and Cell Cycle During Fermentation of Tea. Int. J. Mol. Sci. 2011, 12, 1862–1875. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chen, Y.; Huang, Y.; Zhang, L.; Yang, J.; Xu, X.; Liu, Q. Study on the Anti-Tumor Ability of Niaowangzhong Green Tea. J. Food Biochem. 2016, 41, 1–13. [Google Scholar] [CrossRef]
- Shao, P.; Zhu, Y.Q.; Liu, Q.; Zhang, T.T.; Sun, P.L. Isolation, Antioxidant and Antitumor In Vitro Activities of Cold Pressed Green Tea Seed Cake Polysaccharide. Curr. Top. Nutraceutical Res. 2015, 13, 189–196. [Google Scholar]
- Xu, R.; Ye, H.; Sun, Y.; Tu, Y.; Zeng, X. Preparation, Preliminary Characterization, Antioxidant, Hepatoprotective and Antitumor Activities of Polysaccharides from the Flower of Tea Plant (Camellia sinensis). Food Chem. Toxicol. 2011, 50, 2473–2480. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, B.; Gu, Y. Pharmacological Evaluation of Tea Polysaccharides with Antioxidant Activity in Gastric Cancer Mice. Carbohydr. Polym. 2012, 90, 943–947. [Google Scholar] [CrossRef]
- Yue, H.; Zeng, H.; Ding, K. A Review of Isolation Methods, Structure Features and Bioactivities of Polysaccharides from Dendrobium Species. Chin. J. Nat. Med. 2020, 18, 1–27. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Wang, G.; Ge, S.; Lan, X.; Xu, G.; Liu, H. Dendrobium Officinale Polysaccharides Inhibit 1-Methyl-2-Nitro-1-Nitrosoguanidine Induced Precancerous Lesions of Gastric Cancer in Rats through Regulating Wnt/β-Catenin Pathway and Altering Serum Endogenous Metabolites. Molecules 2019, 24, 2660. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.; Wang, G.; Ge, S.; Liu, H. Dendrobium Officinale Polysaccharides Protect against MNNG-Induced PLGC in Rats via Activating the NRF2 and Antioxidant Enzymes HO-1 and NQO-1. Oxidative Med. Cell. Longev. 2019, 2019, 9310245. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Ren, X. Inhibitory Effect of Dendrobium Officinale Polysaccharide on Human Gastric Cancer Cell Xenografts in Nude Mice. Food Sci. Technol. 2017, 38, 78–83. [Google Scholar] [CrossRef]
- Liu, B.; Shang, Z.-Z.; Li, Q.-M.; Zha, X.-Q.; Wu, D.-L.; Yu, N.-J.; Han, L.; Peng, D.-Y.; Luo, J.-P. Structural Features and Anti-Gastric Cancer Activity of Polysaccharides from Stem, Root, Leaf and Flower of Cultivated Dendrobium Huoshanense. Int. J. Biol. Macromol. 2019, 143, 651–664. [Google Scholar] [CrossRef]
- Yao, X.; Smolka, A.J. Gastric Parietal Cell Physiology and Helicobacter pylori–Induced Disease. Gastroenterology 2019, 156, 2158–2173. [Google Scholar] [CrossRef]
- Peng, Z.; Cheng, S.; Kou, Y.; Wang, Z.; Jin, R.; Hu, H.; Zhang, X.; Gong, J.-F.; Li, J.; Lu, M.; et al. The Gut Microbiome Is Associated with Clinical Response to Anti–PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunol. Res. 2020, 8, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yue, H.; Wang, Y.; Guo, C.; Du, Z.; Jin, C.; Ding, K. Intestinal Microbes Derived Butyrate Is Related to the Immunomodulatory Activities of Dendrobium Officinale Polysaccharide. Int. J. Biol. Macromol. 2020, 149, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Liao, N.; Chen, S.; Ye, X.; Zhong, J.; Wu, N.; Dong, S.; Yang, B.; Liu, D. Antioxidant and Anti-Tumor Activity of a Polysaccharide from Freshwater Clam, Corbicula Fluminea. Food Funct. 2013, 4, 539–548. [Google Scholar] [CrossRef]
- Ji, Y.-B.; Dong, F.; Lang, L.; Zhang, L.-W.; Miao, J.; Liu, Z.-F.; Jin, L.-N.; Hao, Y. Optimization of Synthesis, Characterization and Cytotoxic Activity of Seleno-Capparis spionosa L. Polysaccharide. Int. J. Mol. Sci. 2012, 13, 17275–17289. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Huang, X.-Y.; Zhong, Z.-T.; Huang, F.; Li, S.-Y.; Wang, L.-M.; Min, T.; Wang, H.-X. Structural and Biological Properties of Polysaccharides from Lotus Root. Int. J. Biol. Macromol. 2019, 130, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Xiao, B.; Jiang, Z.; Guo, Y.; Mao, F.; Zhao, J.; Huang, X.; Guo, J. Growth Inhibition and Cell-Cycle Arrest of Human Gastric Cancer Cells by Lycium Barbarum Polysaccharide. Med. Oncol. 2009, 27, 785–790. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, R.; Jiang, D.; Liu, W.; Jia, Z. Lycium Barbarum Polysaccharide Inhibits Gastric Cancer Cell Proliferation, Migration and Invasion by Down-Regulation of Mmps and Suppressing Epithelial-Mesenchymal Transition. Int. J. Clin. Exp. Pathol. 2017, 10, 7369–7374. [Google Scholar]
- Xu, A.-H.; Chen, H.-S.; Sun, B.-C.; Xiang, X.-R.; Chu, Y.-F.; Zhai, F.; Jia, L.-C. Therapeutic Mechanism of Ginkgo Biloba Exocarp Polysaccharides on Gastric Cancer. World J. Gastroenterol. 2003, 9, 2424–2427. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Z.; Li, S.; Wang, L.; Lv, J.; Li, J.; Ma, X.; Fan, L.; Qian, F. Identification and Characterization of a Cytotoxic Polysaccharide from the Flower of Abelmoschus manihot. Int. J. Biol. Macromol. 2016, 82, 284–290. [Google Scholar] [CrossRef]
- He, L.; Ji, P.; Gong, X.; Li, W.; Cheng, J.; Qian, H.; Song, X. Physico-Chemical Characterization, Antioxidant and Anticancer Activities In Vitro Of a Novel Polysaccharide from Melia toosendan Sieb. Et Zucc fruit. Int. J. Biol. Macromol. 2011, 49, 422–427. [Google Scholar] [CrossRef]
- Huang, D.; Li, Y.; Cui, F.; Chen, J.; Sun, J. Purification and Characterization of a Novel Polysaccharide–Peptide Complex from Clinacanthus Nutans Lindau Leaves. Carbohydr. Polym. 2016, 137, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-F.; Zhang, Q.; Liu, X.-M.; Ma, L.; Lai, F. Extraction of Polysaccharides and Its Antitumor Activity on Magnolia Kwangsiensis Figlar & Noot. Carbohydr. Polym. 2016, 142, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Zhou, Y.; Sun, B.; Hu, J.; Kong, L.; Duan, S. Inhibitory Effect of Saponins and Polysaccharides from Radix Ranunculit Ternate on Human Gastric Cancer BGC823 Cells. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 561–566–6. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-G.; Wang, D.-G.; Tian, W.; Wang, X.-X.; Zhao, J.-X.; Liu, Z.; Chen, R. Characterization and Anti-Tumor Activity of a Polysaccharide from Hedysarum Polybotrys Hand-Mazz. Carbohydr. Polym. 2008, 73, 344–350. [Google Scholar] [CrossRef]
- Xie, J.-H.; Liu, X.; Shen, M.-Y.; Nie, S.-P.; Zhang, H.; Li, C.; Gong, D.-M.; Xie, M.-Y. Purification, Physicochemical Characterisation and Anticancer Activity of a Polysaccharide from Cyclocarya Paliurus Leaves. Food Chem. 2012, 136, 1453–1460. [Google Scholar] [CrossRef]
- Li, C.; Fu, X.; Huang, Q.; Luo, F.; You, L. Ultrasonic Extraction and Structural Identification of Polysaccharides from Prunella Vulgaris and Its Antioxidant and Antiproliferative Activities. Eur. Food Res. Technol. 2014, 240, 49–60. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.; Xie, E.; Yang, X.; Wang, H.; Wang, X.; Li, W.; Song, Z.; Mu, Q.; Zhan, W.; et al. Functional Characterization of a Potent Anti-Tumor Polysaccharide in a Mouse Model of Gastric Cancer. Life Sci. 2019, 219, 11–19. [Google Scholar] [CrossRef]
- Wang, N.; Yang, J.; Lu, J.; Qiao, Q.; Wu, T.; Du, X.; Bao, G.; He, X. A Polysaccharide from Salvia Miltiorrhiza Bunge Improves Immune Function in Gastric Cancer Rats. Carbohydr. Polym. 2014, 111, 47–55. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Shi, S.; Jiang, L. Evaluation of Antioxidant and Immuno-Enhancing Activities of Purslane Polysaccharides in Gastric Cancer Rats. Int. J. Biol. Macromol. 2014, 68, 113–116. [Google Scholar] [CrossRef]
- Li, C.; Cai, J.; Geng, J.; Li, Y.; Wang, Z.; Li, R. Purification, Characterization and Anticancer Activity of a Polysaccharide from Panax Ginseng. Int. J. Biol. Macromol. 2012, 51, 968–973. [Google Scholar] [CrossRef]
- Cai, J.-P.; Wu, Y.-J.; Li, C.; Feng, M.-Y.; Shi, Q.-T.; Li, R.; Wang, Z.-Y.; Geng, J.-S. Panax Ginseng Polysaccharide Suppresses Metastasis Via Modulating Twist Expression in Gastric Cancer. Int. J. Biol. Macromol. 2013, 57, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tian, Z.-N.; Cai, J.-P.; Chen, K.-X.; Zhang, B.; Feng, M.-Y.; Shi, Q.-T.; Li, R.; Qin, Y.; Geng, J.-S. Panax Ginseng Polysaccharide Induces Apoptosis by Targeting Twist/AKR1C2/NF-1 Pathway in Human Gastric Cancer. Carbohydr. Polym. 2013, 102, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Su, M.; Li, Y.; Zeng, L.; Liu, X.; Li, J.; Zheng, B.; Wang, S. Effect of Acanthopanax Giraldii Harms Var. Hispidus Hoo Polysaccharides on the Human Gastric Cancer Cell Line SGC-7901 And Its Possible Mechanism. Chin. Med. J. 2002, 115, 716–721. [Google Scholar] [PubMed]
- Zhang, Y.; Wang, Q.; Wang, T.; Zhang, H.; Tian, Y.; Luo, H.; Yang, S.; Wang, Y.; Huang, X. Inhibition of Human Gastric Carcinoma Cell Growth In Vitro by a Polysaccharide from Aster tataricus. Int. J. Biol. Macromol. 2012, 51, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Peng, Q.; Yuan, Y.; Shen, J.; Xie, X.; Wang, M. Isolation, Structures and Bioactivities of the Polysaccharides from Jujube Fruit (Ziziphus Jujuba Mill.): A Review. Food Chem. 2017, 227, 349–357. [Google Scholar] [CrossRef]
- Xie, J.-H.; Jin, M.-L.; Morris, G.A.; Zha, X.-Q.; Chen, H.-Q.; Yi, Y.; Li, J.-E.; Wang, Z.-J.; Gao, J.; Nie, S.-P.; et al. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit. Rev. Food Sci. Nutr. 2016, 56, S60–S84. [Google Scholar] [CrossRef]
- Noguera-Ortega, E.; Guallar-Garrido, S.; Julián, E. Mycobacteria-Based Vaccines as Immunotherapy for Non-urological Cancers. Cancers 2020, 12, 1802. [Google Scholar] [CrossRef]
- Wang, R.; Klegerman, M.E.; Marsden, I.; Sinnott, M.; Groves, M.J. An Anti-Neoplastic Glycan Isolated from Mycobacterium Bovis (BCG Vaccine). Biochem. J. 1995, 311, 867–872. [Google Scholar] [CrossRef]
- Klegerman, M.E.; Devadoss, P.O.; Garrido, J.L.; Reyes, H.R.; Groves, M.J. Chemical and Ultrastructural Investigations Ofmycobacterium Bovisbcg: Implications for the Molecular Structure of the Mycobacterial Cell Envelope. FEMS Immunol. Med. Microbiol. 1996, 15, 213–222. [Google Scholar] [CrossRef]
- Garrido, J.L.; Klegerman, M.E.; Reyes, H.R.; Groves, M.J. Antineoplastic Activity of BCG: Location of Antineoplastic Glycans in the Cellular Integument of Mycobacterium Bovis, BCG Vaccine, Connaught Substrain. Cytobios 1997, 90, 47–65. [Google Scholar]
- Sun, C.; Rosendahl, A.; Wang, X.; Wu, D.; Andersson, R. Polysaccharide-K (PSK) in Cancer--Old Story, New Possibilities? Curr. Med. Chem. 2012, 19, 757–762. [Google Scholar] [CrossRef] [PubMed]
Detailed Mechanism of Action | Cell Lines/Model | Refs. |
---|---|---|
Increase the expression of HLA-ABC, HLA-A2/A28, HLA-DR, HLA-B27, and β2-microglobulin. | KATO-3 cells | [40] |
Prevent functional inhibition of dendritic cells caused by tumor-derived factors | MKN-45P cells | [45] |
Inhibit the TGF-β-induced overexpression of α-SMA | Mouse fibrotic tumor model | [46] |
Down-regulate TGF-β1, uPA, MMP-2, and MMP-9 expression | MK-1P3 cells | [47] |
Decrease the expression of several TGF-β pathway target genes | MKN45 cells | [48] |
Enhance effect of docetaxel’s induction of apoptosis and growth inhibition and reduce docetaxel-induced invasion | MK-1 cells and xenograft mice | [49,50] |
Induce blood mononuclear cells to express IFN-α | MKN45 cells | [36] |
Stage | No. of Patients | Treatment | The Effect of Adding PSK | Refs. |
---|---|---|---|---|
IIIA/IIIB | 560 | 5-FU or tegafur/uraci | Improve prolonged patient survival (P = 0.031), especially for the PD-L1 (-) subgroup (P = 0.033) | [59] |
380 | PSK and 5-FU or tegafur/uraci | |||
Unknown | 14 | PSK and tegafur/uraci | Th1 and DC1 were dominance, and IL-10 production decreased from 559.36 ± 147.08 pg/mL to 422.14 ± 219.29 pg/mL(P = 0.015) | [60] |
6 (Healthy person) | PSK and tegafur/uraci | |||
III/IV | 14 | No treatment | Inhibite plasma TGF-β (from 21.6 to 4.5 ng/mL, on average) and thereby antagonize immune evasion | [55] |
17 | PSK | |||
IB, II, IIIA, IIIB, IV | 207 | 5-FU, MMC and PSK | Improve the 5-year survival rate | [56,57,58] |
103 | 5-FU and MMC | |||
III | 11 | UFT | Decrease CD57(+) T cells significantly (P = 0.0486) | [61] |
10 | UFT and PSK | |||
II | 138 | Fluorouracil | Increase overall survival for patients with early tumor recurrence (P = 0.023) and median overall survival for patients with pN3 lymph node metastasis (P = 0.032) | [70] |
115 | Fluorouracil and PSK | |||
II and III | 61 | S-1 adjuvant chemotherapy | Prolong the treatment cycles (S-1 plus PSK was significantly higher than that of S-1 alone (P < 0.01); (P = 0.041) to reduce the recurrence rate | [62,71] |
75 | S-1 adjuvant chemotherapy and PSK | |||
II and III | 225 | Fluoropyrimidine agents | Reduce tumor recurrence rate (the negative patients of the 3-year recurrence-free survival was 62%) through up-regulating the expression of MHC class I | [67] |
124 | Fluoropyrimidine agents and PSK | |||
II | 138 | Antimetabolites | Increase the overall survival for patients with pN3 and early tumor recurrence | [68] |
115 | Antimetabolites and PSK |
Sources | Name | Monosaccharides Composition | Mw/kDa | Effects | Refs. |
---|---|---|---|---|---|
Tea | TF-1 | Glucose:mannose:xylose = 1:3.2:1.4 | 231.5 | Protect gastric cancer mice from oxidative stress damage and regulate immune response | [114] |
TF-2 | Glucose:xylose = 1:1.7 | 46.2 | |||
TF-3 | Glucose:xylose:arabinose = 1:2.5:0.9 | 7.2 | |||
TFPS-1 | Arabinose:fucose:xylose:mannose:glucose:galactose = 14.84:2.64:12.16:6.87:45.39:18.08 | - | Inhibit the proliferation of human gastric cancer BGC-823 cells | [113] | |
TFPS-2 | Rhamnose:arabinose:galactose = 11.19:55.16:33.65 | - | |||
TFPS-3 | Rhamnose:arabinose:galactose =20.95:53.34:25.71 | - | |||
TSCR, TSCP-1and TSCP-2 | - | - | Induce apoptosis of MKN45 gastric cancer cells | [112] | |
Coriolus Versicolor mushroom | PSK | Glucose:mannose:xylose:galactose:fucose = 56:11.6:3.6:2.0:1.8 | 100 | Inhibit the expression of immunosuppressive factors such as TGF-β, activate the immune response such as promoting maturation of dendritic cells, and correct imbalance of Th1/Th2, and enhance the activity of anticancer drugs | [39,151] |
Hericium erinaceus | HEG-5 and HEP-1 | - | - | Cause cell cycle arrest and induce expression of apoptotic proteins | [76,77] |
HEP | 1,3-branched-β-1,6-glucan with a triple helix conformation | 13 | Promote the anticancer activity of doxorubicin | [87] | |
Rhizopus nigricans | RPS | Mannose:rhamnose:glucuronic acid:glucose:galactose:fucose = 5.1:1.0:1.6:92.2:1.3:2.3 | - | Activate caspase-9 and caspase-3 expression and cause cell cycle arrest | [82] |
Trametes robiniophila Murr | SP1 | a backbone consisting of 1,4-linked-β-D-Galp and 1,3,6-linked-β-D-Galp residues, which was terminated with 1-linked-α-D-Glcp and 1-linked-α-L-Araf terminal at O-3 position of 1,3,6-linked-β-D-Galp unit along the main chain in the ratio of 1.1:2.0:1.1:1.1 | 56 | Inhibit the proliferation, migration, and invasion of gastric cancer MGC-803 cells and induce apoptosis | [81] |
Grifola frondosa | GFG-3a | - | - | Cause cell cycle arrest and induce expression of apoptotic proteins | [84] |
S-GAP-P | - | 28 | Inhibit the proliferation of SGC-7901 cells and induce apoptosis | [79] | |
Flammulina velutipes | FVP-1 | Glucose:fucose:mannose:galactose = 81.3:3.0:3.6:12.1 | 28 | - Inhibit the proliferation of gastric cancer BGC-823 cells | [12] |
FVP-2 | Glucose:fucose:xylose:mannose:galactose = 57.9:5.5:9.5:15.1:12.0 | 268 | |||
Ganoderma lucidum | Polysaccharides fraction | - | - | Inhibit the proliferation and induce apoptosis on gastric cancer SGC-7901 cells | [85] |
Polysaccharides fraction | - | - | Enhance immunity and antioxidant activity of gastric cancer rats | [86] | |
Pleurotus ostreatus | POMP2 | - | 29 | Reduce the weight and volume of the tumor in BGC-823 cells xenograft-bearing mice | [83] |
Lentinula edodes | Lentinan | (1→3)-β-D-glucan having two (1→6)-β-glucopyranoside branches for every five (1→3)-β-glucopyranoside linear linkages | 304–1832 | Improve patients’ side effects caused by S-1 treatment | [88] |
LSMS-1 | - | 6842 | Inhibit the growth of SGC7901 gastric cancer cells | [78] | |
LSMS-2 | - | 2154 | |||
Phellinus gilvus Algae | Polysaccharides fraction | - | - | Inhibit the growth of tumor tissue in gastric cancer mice | [75] |
- | - | 11.68 | Inhibit proliferation and induce apoptosis of gastric cancer MKN45 cells | [94,95] | |
Algae p Polysaccharides fraction | - | - | Activate the Fas/FasL signaling pathway | [92] | |
Laminaran | a glucan with β-(1→6) side chains linked to a β-(1→3) backbone with relatively few branch points, and the ratio of the β-(1→3) and β-(1→6) linkages was 1.5:1 | 5 | Improve gastric dysplasia development and inhibit the increased induction in cell proliferation and angiogenesis in A4gnt KO mice | [89,100] | |
SHPPB2 | - | - | Promote the proliferation of spleen cells and increase the secretion of anti-inflammatory cytokines in gastric cancer mice | [101] | |
Cf-PS | xylose:mannose = 17:3 | - | Inhibit the proliferation and apoptosis of AGS gastric cancer cells | [97] | |
fucoidan | 2-O-α-D-glucuronopyranosyl branches in the linear (1→3)-linked poly-α-fucopyranoside chain | 400 | Inhibit ASK1/p38 signaling pathway in MKN45 cells and induce apoptosis and autophagy of AGS gastric cells | [91,98,99] | |
Astragalus membranaceus | Polysaccharides fraction | - | - | Inhibit proliferation and induce apoptosis of gastric cancer AGS and SCG-7901 cells | [105,106] |
Polysaccharides fraction | - | - | Reduce gastrointestinal reactions induced by FOLFOX | [108,109] | |
APS4 | - | - | Induce apoptosis of MGC-803 cells by increasing the expression of pro-apoptotic proteins | [103] | |
- | α-(1→4)-d-glucan with α-(1→6)-linked branches attached to the O-6 of branch points | - | Promote proliferation of spleen cells and expression of immune factors in gastric cancer mice | [107] | |
APS | α-(1→4)-D-glucan, with a single α-D-glucose at the C-6 position every nine residue | 36 | Induce apoptosis of SGC-7901 and adriamycin-resistant SGC-7901 cells by activating MAPK signaling pathway | [104] | |
Caulis Dendrobii | Polysaccharides fraction | - | - | Inhibit 1-Methyl-2-nitro-1-nitrosoguanidine induced precancerous lesions of gastric cancer in rats | [116,117] |
Polysaccharides fraction | - | - | Suppress the growth of SGC-7901 cell xenografts in nude mice | [118] | |
cDHPS | →4)-β-D-Glcp-(1→, →4)-β-D-Manp-(1→, →4)-3-O-acetyl-β-D-Manp-(1→, and mannose:glucose = 3.04:1.00 | 259 | By up-regulating the expression of the p53 gene and downregulating the expression of c-myc gene, cDHPS, cDHPR, cDHPL, and cDHPF could induce apoptosis of MFC cells | [119] | |
cDHPR | →3,5)-α-L-Araf-(1→, →4)-β-D-Glcp-(1→, →4)-β-D-Manp-(1→, →4,6)-β-D-Manp-(1→, →6)-α-D-Galp-(1→ and terminal β-L-Araf, and mannose:glucose:galactose:arabinose = 2.38:1.00:8.49:5.23 | 14.1 | |||
cDHPL | →4)-β-D-Glcp-(1→, →4)-β-D-Manp-(1→, →4)-3-O-acetyl-β-D-Manp-(1→, →3,6)-β-D-Manp-(1→ and terminal α-D-Galp, and mannose:glucose:galactose = 19.15:1.32:1.00 | 209 | |||
cDHPF | →4)-β-D-Glcp-(1→, →4)-β-D-Manp-(1→, →3,6)-β-D-Manp-(1→ and terminal α-D-Galp, and mannose:glucose:galactose = 9.68:3.26:1.00 | 478 | |||
clam Corbicula fluminea | CFPS-2 | Glucosamine:galactosamine:glucose:galactose:fucose = 0.22:0.15:0.68:0.25:0.86 | 22 | Inhibit the growth inhibition of gastric cancer SGC7901 cells | [123] |
Lycium barbarum | polysaccharide fraction | - | - | Inhibit the proliferation of gastric cancer MGC-803 and SGC-7901 cells and suppress migration and invasion of SGC-7901 cells | [126,127] |
lotus seeds | LRPs | Glc-(1→, →6)-Glc-(1→, →6)-Gal-(1→, →4,6)-Gal-(1→ and →3,6)-Glc-(1→ at a molar ratio of 1.00:4.33:0.83:0.13:1.14 and mannose:rhamnose:galactose:glucose:galactose:arabinose at = 0.19:0.14:0.17:6.49:1.00:0.16 | 1.33–5.30 | Inhibit proliferation of gastric cancer SGC7901 cells | [125] |
Ginkgo biloba exocarp | Polysaccharides fraction | - | - | Induce apoptosis and differentiation in 30 gastric cancer patients | [128] |
Abelmoschus manihot (Linn.) Medicus | AMPS-a | contained a backbone composed of repeating units of →6)α-D-Galp-(1→6)α-D-Manp-(1→6)α-D-Galp-(1→ with β-D-Glcp (1→3)α-Fucp-(1→ branching at O-3 of mannose, and glucose:mannose:galactose:fucose = 1.00:0.91:2.14:1.09 | 8.8 | Inhibit the proliferation of gastric cancer MGC-803, MKN-45 cells | [129] |
Bamboo shaving | Polysaccharides fraction | - | - | Inhibit the proliferation of 6 gastric cancer cell lines and regulate the immune activity of gastric cancer mice | [137] |
Melia toosendan Sieb. Et Zucc | pMTPS-3 | Arabinose:glucose:mannose:galactose = 17.3:28.3:41.6:12.6 | 26.1 | Inhibit the growth of gastric cancer BGC-823 cells | [130] |
Acanthopanax giraldii Harms Var. Hispidus Hoo | Polysaccharides fraction | - | - | Inhibit the proliferation, the colony forming ability and function of SGC-7901 gastric cancer cells | [143] |
Salvia miltiorrhiza | SMPA | galactose:glucose:rhamnose:mannose:galacturonic acid = 2.14:1.42:1.16:2.15:1 | 43 | Suppress inflammation and activate immune response in Gastric cancer mice | [138] |
Clinacanthus nutans Lindau | CNP-1-2 | a backbone consisting of 1,4-linked Glcp, 1,3-linked Glcp, 1,3-linked Manp, 1,4-linked Galp, 1,2,6-linked Galp and 1,2,6-linked Galp, and rhamnose:arabinose:mannose:glucose:galactose = 1.30:1.00:2.56:4.95:5.09 | 91.7 | Inhibit the growth inhibition of gastric cancer cell SGC-7901 | [131] |
Magnolia kwangsiensis Figlar & Noot | P-3 | Xylose:rhamnose = 1:4 | 7.8 | Inhibit the growth of SGC7901 cells | [132] |
Radix ranunculi ternati | Polysaccharides fraction | - | - | Inhibit growth and colony formation of gastric cancer BGC823 cells | [133] |
Portulaca oleracea L. | Polysaccharides fraction | - | - | Increase peripheral white blood cells count, thymus and spleen indexes and production of serum cytokines | [139] |
Hedysarum polybotrys Hand.-Mazz | HPS-1 | α-D-glucose at the C-6 position every nine residues, on average | 94 | Inhibit the proliferation of gastric cancer MGC-803 cells | [134] |
Cyclocarya paliurus (Batal.) Iljinskaja | CPP | Glucose, rhamnose, arabinose, xylose, mannose and galactose with molar percentages of 32.7%, 9.33%, 30.6%, 3.48%, 10.4%, and 13.5% | 900 | Inhibit the proliferation of gastric cancer MGC-803 cells | [135] |
Panax ginseng | PGPW1 | Glucose:galactose:mannose:arabinose = 3.3:1.2:0.5:1.1 | 350 | Inhibit the invasion and metastasis of gastric cancer HGC-27 cells | [140,141] |
PGP2a | Galactose:arabinose:glucose:galacturonic acid = 3.7:1.6:0.5:5.4 | 32 | Inhibit the proliferation, migration and invasion of HGC-27 cells | [142] | |
Prunella vulgaris | PVP | Rhamnose:arabinose:xylose:mannose:glucose:galactose = 2.8:28.2:38.5:11.0:3.0:16.5 | - | Inhibit the growth of gastric cancer SGC 901 cells | [136] |
Aster tataricus | WATP | Galactose:glucose:fucose:rhamnose:arabinose:mannose = 2.1:1.3:0.9:0.5:0.3:0.6 | 63 | Induces apoptosis of human gastric cancer SGC-7901 cells | [144] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; He, C.; Zhou, M.; Long, J.; Li, L. Research Progress on the Mechanisms of Polysaccharides against Gastric Cancer. Molecules 2022, 27, 5828. https://doi.org/10.3390/molecules27185828
Chen L, He C, Zhou M, Long J, Li L. Research Progress on the Mechanisms of Polysaccharides against Gastric Cancer. Molecules. 2022; 27(18):5828. https://doi.org/10.3390/molecules27185828
Chicago/Turabian StyleChen, Liping, Chunrong He, Min Zhou, Jiaying Long, and Ling Li. 2022. "Research Progress on the Mechanisms of Polysaccharides against Gastric Cancer" Molecules 27, no. 18: 5828. https://doi.org/10.3390/molecules27185828