Photoelectrochemical Properties of Annealed Anodic TiO2 Layers Covered with CuOx
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphology and Composition of CuOx-TiO2 Materials
3.2. Optical Properties
3.3. Semiconducting Properties of CuOx-TiO2 Materials
3.4. Photoelectrochemical Properties of CuOx-TiO2 Photoelectrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Krýsa, J.; Zlamal, M.; Kment, S.; Brunclíková, M.; Hubička, Z. TiO2 and Fe2O3 films for photoelectrochemical water splitting. Molecules 2015, 20, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef]
- Sołtys-Mróz, M.; Syrek, K.; Pięta, Ł.; Małek, K.; Sulka, G.D. Photoelectrochemical performance of nanotubular Fe2O3–TiO2 electrodes under solar radiation. Nanomaterials 2022, 12, 1546. [Google Scholar] [CrossRef]
- Ji, W.; Wang, Y.; Zhang, T.-C.; Ouyang, L.; Yuan, S. Heterostructure Cu2O@TiO2 nanotube array coated titanium anode for efficient photoelectrocatalytic oxidation of As (III) in aqueous solution. Ind. Eng. Chem. Res. 2021, 60, 17545–17555. [Google Scholar] [CrossRef]
- Wang, Q.; Qiao, J.; Xu, X.; Gao, S. Controlled synthesis of Cu nanoparticles on TiO2 nanotube array photoelectrodes and their photoelectrochemical properties. Mater. Lett. 2014, 131, 135–137. [Google Scholar] [CrossRef]
- Kim, S.-H.; Choi, S.-Y. Fabrication of Cu-coated TiO2 nanotubes and enhanced electrochemical performance of lithium ion batteries. J. Electroanal. Chem. 2015, 744, 45–52. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, H.; Li, J.; Chen, H.; Li, D.; Zhou, B.; Cai, W. Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett. 2010, 2, 277–284. [Google Scholar] [CrossRef]
- Luo, S.L.; Li, Y.; Yang, L.X.; Liu, C.B.; Su, F.; Chen, Y. Low-temperature, facile fabrication of ultrafine Cu2O networks by anodization on TiO2 nanotube arrays. Semicond. Sci. Technol. 2012, 27, 105010. Available online: https://iopscience.iop.org/article/10.1088/0268-1242/27/10/105010/meta (accessed on 20 July 2022). [CrossRef]
- Elysabeth, T.; Mulia, K.; Ibadurrohman, M.; Dewi, E.L. A comparative study of CuO deposition methods on titania nanotube arrays for photoelectrocatalytic ammonia degradation and hydrogen production. Int. J. Hydrog. Energy 2021, 46, 26873–26885. [Google Scholar] [CrossRef]
- Momeni, M.M.; Ghayeb, Y.; Ghonchegi, Z. Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram. Int. 2015, 41, 8735–8741. [Google Scholar] [CrossRef]
- de Almeida, J.; Pacheco, M.S.; de Brito, J.F.; de Arruda Rodrigues, C. Contribution of CuxO distribution, shape and ratio on TiO2 nanotubes to improve methanol production from CO2 photoelectroreduction. J. Solid State Electrochem. 2020, 24, 3013–3028. [Google Scholar] [CrossRef]
- Khiavi, N.D.; Katal, R.; Eshkalak, S.K.; Masudy-Panah, S.; Ramakrishna, S.; Jiangyong, H. Visible light driven heterojunction photocatalyst of CuO–Cu2O thin films for photocatalytic degradation of organic pollutants. Nanomaterials 2019, 9, 1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabeen, S.; Sherazi, T.A.; Ullah, R.; Naqvi, S.A.R.; Rasheed, M.A.; Ali, G.; Shah, A.U.; Khan, Y. Electrodeposition-assisted formation of anodized TiO2–CuO heterojunctions for solar water splitting. Appl. Nanosci. 2021, 11, 79–90. [Google Scholar] [CrossRef]
- Assaud, L.; Heresanu, V.; Hanbücken, M.; Santinacci, L. Fabrication of p/n heterojunctions by electrochemical deposition of Cu2O onto TiO2 nanotubes. Comptes Rendus. Chim. 2013, 16, 89–95. [Google Scholar] [CrossRef]
- Masudy-Panah, S.; Moakhar, R.S.; Chua, C.S.; Kushwaha, A.; Wong, T.I.; Dalapat, G.K. Rapid thermal annealing assisted stability and efficiency enhancement in a sputter deposited CuO photocathode. RSC Adv. 2016, 6, 29383–29390. [Google Scholar] [CrossRef] [Green Version]
- Syrek, K.; Sennik-Kubiec, A.; Rodriguez-Lopez, J.; Rutkowska, M.; Żmudzki, P.; Hnida-Gut, K.E.; Grudzień, J.; Chmielarz, L.; Sulka, G.D. Reactive and morphological trends on porous anodic TiO2 substrates obtained at different annealing temperatures. Int. J. Hydrogen Energy 2020, 45, 4376–4389. [Google Scholar] [CrossRef]
- Sołtys-Mróz, M.; Syrek, K.; Pierzchała, J.; Wiercigroch, E.; Malek, K.; Sulka, G.D. Band gap engineering of nanotubular Fe2O3-TiO2 photoanodes by wet impregnation. Appl. Surf. Sci. 2020, 517, 146195. [Google Scholar] [CrossRef]
- Sołtys-Mróz, M.; Syrek, K.; Wiercigroch, E.; Małek, K.; Rokosz, K.; Raaen, S.; Sulka, G.D. Enhanced visible light photoelectrochemical water splitting using nanotubular FeOx-TiO2 annealed at different temperatures. J. Power Sources 2021, 507, 230274. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Obstarczyk, A.; Mańkowska, E.; Mazur, M.; Kaczmarek, D.; Zakrzewska, K.; Mazur, P.; Domaradzki, J. Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films. Mater. Res. Bull. 2022, 147, 111646. [Google Scholar] [CrossRef]
- Torrent, J.; Barrón, V. Diffuse Reflectance Spectroscopy. In Methods of Soil Analysis Part 5—Mineralogical Methods; Ulery, A.L., Drees, L.R., Eds.; Soil Science Society of America, 2008. [Google Scholar] [CrossRef]
- Choudhury, B.; Dey, M.; Choudhury, A. Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 2013, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Sahu, M.; Biswas, P. Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res. Lett. 2011, 6, 441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mika, K.; Syrek, K.; Uchacz, T.; Sulka, G.D.; Zaraska, L. Dark nanostructured ZnO films formed by anodic oxidation as photoanodes in photoelectrochemical water splitting. Electrochimica Acta 2022, 414, 140176. [Google Scholar] [CrossRef]
- Iguchi, S.; Kikkawa, S.; Teramura, K.; Hosokawa, S.; Tanaka, T. Investigation of the electrochemical and photoelectrochemical properties of Ni–Al LDH photocatalysts. Phys. Chem. Chem. Phys. 2016, 18, 13811–13819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Novet, T.; Thorne, J.E.; Parkinson, B.A. Photosensitization of ZnO single crystal electrodes with PbS quantum dots. Phys. Status Solidi A 2014, 211, 1954–1959. [Google Scholar] [CrossRef]
Method | Final Material | Optical Properties | Ref. |
---|---|---|---|
Electrochemical deposition | Cu2O-TiO2 | Eg~2.17 eV | [4] |
SILAR | Cu NPs-TiO2 | absorption peak at ~570 nm | [5] |
Electroplating | Cu-TiO2 | - | [6] |
Sonoelectrochemical | TiO2-Cu2O | enhanced absorption in the visible range | [7] |
Electrodeposition followed by anodization | Cu2O-TiO2 | absorption peak at ~620 nm | [8] |
SILAR | CuO-TiO2 | Eg~2.44 eV | [9] |
In-situ anodization | CuO-TiO2 | Eg~2.65 eV | [10] |
Dip-coating followed by calcination | CuO/Cu2O/Cu-TiO2 | adsorption edge at ~650 nm | [11] |
Concentration of (CH3COO)2Cu | Annealing Temperature/°C | 200 Hz | 500 Hz | 1000 Hz |
---|---|---|---|---|
10 | 400 | −0.62 | −0.62 | −0.60 |
25 | 400 | −0.70 | −0.63 | −0.66 |
50 | 400 | −0.78 | −0.76 | −0.83 |
100 | 400 | −0.80 | −0.80 | −0.85 |
100 | 500 | −0.70 | −0.74 | −0.75 |
100 | 600 | −0.66 | −0.65 | −0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrek, K.; Sołtys-Mróz, M.; Pawlik, K.; Gurgul, M.; Sulka, G.D. Photoelectrochemical Properties of Annealed Anodic TiO2 Layers Covered with CuOx. Molecules 2022, 27, 4789. https://doi.org/10.3390/molecules27154789
Syrek K, Sołtys-Mróz M, Pawlik K, Gurgul M, Sulka GD. Photoelectrochemical Properties of Annealed Anodic TiO2 Layers Covered with CuOx. Molecules. 2022; 27(15):4789. https://doi.org/10.3390/molecules27154789
Chicago/Turabian StyleSyrek, Karolina, Monika Sołtys-Mróz, Kinga Pawlik, Magdalena Gurgul, and Grzegorz D. Sulka. 2022. "Photoelectrochemical Properties of Annealed Anodic TiO2 Layers Covered with CuOx" Molecules 27, no. 15: 4789. https://doi.org/10.3390/molecules27154789
APA StyleSyrek, K., Sołtys-Mróz, M., Pawlik, K., Gurgul, M., & Sulka, G. D. (2022). Photoelectrochemical Properties of Annealed Anodic TiO2 Layers Covered with CuOx. Molecules, 27(15), 4789. https://doi.org/10.3390/molecules27154789