Structure of χ3-Borophene Studied by Total-Reflection High-Energy Positron Diffraction (TRHEPD)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Calculated Rocking Curves
2.1.1. One-Beam (OB) Condition
2.1.2. Many-Beam (MB) Condition
2.2. TRHEPD Measurements
2.2.1. OB Measurement
2.2.2. MB Measurement
3. Materials and Methods
3.1. Sample
3.2. TRHEPD Method
3.2.1. Features of TRHEPD
3.2.2. TRHEPD Analysis
3.2.3. Experimental Condition for TRHEPD
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Feng, B.; Sugino, O.; Liu, R.-Y.; Zhang, J.; Yukawa, R.; Kawamura, M.; Iimori, T.; Kim, H.; Hasegawa, Y.; Li, H.; et al. Dirac Fermions in Borophene. Phys. Rev. Lett. 2017, 118, 096401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukaya, Y.; Mochizuki, I.; Maekawa, M.; Wada, K.; Hyodo, T.; Matsuda, I.; Kawasuso, A. Structure of silicene on a Ag(111) surface studied by reflection high-energy positron diffraction. Phys. Rev. B 2013, 88, 205413. [Google Scholar] [CrossRef]
- Yuhara, J.; Shimazu, H.; Ito, K.; Ohta, A.; Araidai, M.; Kurosawa, M.; Nakatake, M.; Le Lay, G. Germanene Epitaxial Growth by Segregation through Ag(111) Thin Films on Ge(111). ACS Nano 2018, 12, 11632–11637. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Experimental Realization of Two-Dimensional Boron Sheets. Nat. Chem. 2016, 8, 563–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannix, A.J.; Zhou, X.-F.; Kiraly, B.; Wood, J.D.; Alducin, D.; Myers, B.D.; Liu, X.; Fisher, B.L.; Santiago, U.; Guest, J.R.; et al. Synthesis of Borophenes: Anisotropic, Two-Dimensional Boron Polymorphs. Science 2015, 350, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Drozdov, I.K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-Area Single-Crystal Sheets of Borophene on Cu(111) Surfaces. Nat. Nanotechnol. 2019, 14, 44–49. [Google Scholar] [CrossRef]
- Vinogradov, N.A.; Lyalin, A.; Taketsugu, T.; Vinogradov, A.S.; Preobrajenski, A. Single-Phase Borophene on Ir(111): Formation, Structure, and Decoupling from the Support. ACS Nano 2019, 13, 14511–14518. [Google Scholar] [CrossRef]
- Li, W.; Kong, L.; Chen, C.; Gou, J.; Sheng, S.; Zhang, W.; Li, H.; Chen, L.; Cheng, P.; Wu, K. Experimental Realization of Honeycomb Borophene. Sci. Bull. 2018, 63, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, I.; Wu, K. 2D Boron: Boraphene, Borophene, Boronene, 1st ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Lu, T.Y.; Wang, H.Q.; Feng, Y.P.; Zheng, J.C. Review of Borophene and Its Potential Applications. Front. Phys. 2019, 14, 33403. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yang, Y.; Gao, G.; Yakobson, B.I. Two-Dimensional Boron Monolayers Mediated by Metal Substrates. Angew. Chem. Int. Ed. 2015, 54, 13022–13026. [Google Scholar] [CrossRef]
- Campbell, G.P.; Mannix, A.J.; Emery, J.D.; Lee, T.-L.; Guisinger, N.P.; Hersam, M.C.; Bedzyk, M.J. Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs. Nano Lett. 2018, 18, 2816–2821. [Google Scholar] [CrossRef]
- Fukaya, Y.; Entani, S.; Sakai, S.; Mochizuki, I.; Wada, K.; Hyodo, T.; Shamoto, S. Spacing between Graphene and Metal Substrates Studied with Total-Reflection High-Energy Positron Diffraction. Carbon 2016, 103, 1–4. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.; Liu, X.; Xuan, X.; Yakobson, B.I.; Hersam, M.C.; Guo, W. Borophene Concentric Superlattices via Self-Assembly of Twin Boundaries. Nano Lett. 2020, 20, 1315–1321. [Google Scholar] [CrossRef]
- Fukaya, Y.; Kawasuso, A.; Ichimiya, A.; Hyodo, T. Total-Reflection High-Energy Positron Diffraction (TRHEPD) for Structure Determination of the Topmost and Immediate Sub-Surface Atomic Layers. J. Phys. D Appl. Phys. 2018, 52, 013002. [Google Scholar] [CrossRef]
- Fukaya, Y.; Shigeta, Y.; Maki, K. Dynamic Change in the Surface and Layer Structures during Epitaxial Growth of Si on a Si(111) 7 × 7 Surface. Phys. Rev. B 2000, 61, 13000–13004. [Google Scholar] [CrossRef]
- Ichimiya, A. Numerical Convergence of Dynamical Calculations of Reflection High-Energy Electron Diffraction Intensities. Surf. Sci. 1990, 235, 75–83. [Google Scholar] [CrossRef]
- Ichimiya, A. Rheed Intensity Analysis of Si(111)7×7 at One-Beam Condition. Surf. Sci. 1987, 192, L893–L898. [Google Scholar] [CrossRef]
- Ichimiya, A. Reflection High-Energy Positron Diffraction (RHEPD). Solid State Phenom. 1992, 28–29, 143–148. [Google Scholar] [CrossRef]
- Hugenschmidt, C. Positrons in Surface Physics. Surf. Sci. Rep. 2016, 71, 547–594. [Google Scholar] [CrossRef] [Green Version]
- Motoyama, Y.; Yoshimi, K.; Iwamoto, H.; Ichinose, H.; Hoshi, T. Data-analysis software framework 2DMAT and its application to experimental measurements for two-dimensional material structures. arXiv 2022, arXiv:2204.04484. [Google Scholar] [CrossRef]
- Hanada, T.; Daimon, H.; Ino, S. Rocking-curve analysis of reflection high-energy electron diffraction from the Si(111)-(√3×√3) R30°-Al, -Ga, and -In surfaces. Phys. Rev. B 1995, 51, 13320–13325. [Google Scholar] [CrossRef]
- Hanada, T.; Motoyama, Y.; Yoshimi, K.; Hoshi, T. sim-trhepd-rheed—Open-source simulator of total-reflection high-energy positron diffraction (TRHEPD) and reflection high-energy electron diffraction (RHEED). Comput. Phys. Commun. 2022, 277, 108371. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsujikawa, Y.; Shoji, M.; Hamada, M.; Takeda, T.; Mochizuki, I.; Hyodo, T.; Matsuda, I.; Takayama, A. Structure of χ3-Borophene Studied by Total-Reflection High-Energy Positron Diffraction (TRHEPD). Molecules 2022, 27, 4219. https://doi.org/10.3390/molecules27134219
Tsujikawa Y, Shoji M, Hamada M, Takeda T, Mochizuki I, Hyodo T, Matsuda I, Takayama A. Structure of χ3-Borophene Studied by Total-Reflection High-Energy Positron Diffraction (TRHEPD). Molecules. 2022; 27(13):4219. https://doi.org/10.3390/molecules27134219
Chicago/Turabian StyleTsujikawa, Yuki, Makoto Shoji, Masashi Hamada, Tomoya Takeda, Izumi Mochizuki, Toshio Hyodo, Iwao Matsuda, and Akari Takayama. 2022. "Structure of χ3-Borophene Studied by Total-Reflection High-Energy Positron Diffraction (TRHEPD)" Molecules 27, no. 13: 4219. https://doi.org/10.3390/molecules27134219
APA StyleTsujikawa, Y., Shoji, M., Hamada, M., Takeda, T., Mochizuki, I., Hyodo, T., Matsuda, I., & Takayama, A. (2022). Structure of χ3-Borophene Studied by Total-Reflection High-Energy Positron Diffraction (TRHEPD). Molecules, 27(13), 4219. https://doi.org/10.3390/molecules27134219