Red Orange and Bitter Orange IntegroPectin: Structure and Main Functional Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biophenol-Rich Extract Preparation
2.2. DRIFT Analysis
2.3. HPLC–MS Analysis
2.4. SPME-GC/MS Analysis
3. Results and Discussion
3.1. DRIFT Structural Analysis
3.2. Biophenols
3.3. Volatile Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seisun, D.; Zalesny, N. Strides in food texture and hydrocolloids. Food Hydrocoll. 2021, 117, 106575. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Scurria, A.; Ilharco, L.M.; Pagliaro, M. Pectin: New science and forthcoming applications of the most valued hydrocolloid. Food Hydrocoll. 2022, 127, 107483. [Google Scholar] [CrossRef]
- Albanese, L.; Meneguzzo, F. Hydrodynamic Cavitation Technologies: A Pathway to More Sustainable, Healthier Beverages, and Food Supply Chains, Processing and Sustainability of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: London, UK, 2019; pp. 319–372. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Brunetti, C.; Fidalgo, A.; Ciriminna, R.; Delisi, R.; Albanese, L.; Zabini, F.; Gori, A.; Nascimento, L.B.d.S.; de Carlo, A.; et al. Real-scale integral valorization of waste orange peel via hydrodynamic cavitation. Processes 2019, 7, 581. [Google Scholar] [CrossRef][Green Version]
- Scurria, A.; Sciortino, M.; Presentato, A.; Lino, C.; Piacenza, E.; Albanese, L.; Zabini, F.; Meneguzzo, F.; Nuzzo, D.; Pagliaro, M.; et al. Volatile compounds of lemon and grapefruit IntegroPectin. Molecules 2021, 26, 51. [Google Scholar] [CrossRef] [PubMed]
- Presentato, A.; Piacenza, E.; Scurria, A.; Albanese, L.; Zabini, F.; Meneguzzo, F.; Nuzzo, D.; Pagliaro, M.; Martino, D.C.; Alduina, R.; et al. A new water-soluble bactericidal agent for the treatment of infections caused by Gram-positive and Gram-negative bacterial strains. Antibiotics 2020, 9, 586. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, X.; Chantapakul, T.; Wang, D.; Zhang, S.; Ma, X.; Ding, T.; Ye, X.; Liu, D. Acoustic cavitation assisted extraction of pectin from waste grapefruit peels: A green two-stage approach and its general mechanism. Food Res. Int. 2017, 102, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Ciriminna, R.; Chavarría-Hernández, N.; Hernández, A.R.; Pagliaro, M. Pectin: A new perspective from the biorefinery standpoint. Biofuels Bioprod. Biorefining 2015, 9, 368–377. [Google Scholar] [CrossRef]
- Russo, M.; Bonaccorsi, I.L.; Arigò, A.; Cacciola, F.; de Gara, L.; Dugo, P.; Mondello, L. Blood orange (Citrus sinensis) as a rich source of nutraceuticals: Investigation of bioactive compounds in different parts of the fruit by HPLC-PDA/MS. Nat. Prod. Res. 2021, 35, 4606–4610. [Google Scholar] [CrossRef]
- Karoui, I.J.; Marzouk, B. Characterization of bioactive compounds in Tunisian bitter orange (Citrus aurantium L.) peel and juice and determination of their antioxidant activities. BioMed Res. Int. 2013, 2013, 345415. [Google Scholar] [CrossRef][Green Version]
- Sawalha, S.M.S.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Quantification of main phenolic compounds in sweet and bitter orange peel using CE–MS/MS. Food Chem. 2009, 116, 567–574. [Google Scholar] [CrossRef]
- Stohs, S.J. Safety, efficacy, and mechanistic studies regarding Citrus aurantium (bitter orange) extract and p-synephrine. Phytother. Res. 2017, 31, 1463–1474. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yang, L.; Kruse, B. Revised Kubelka-Munk theory I Theory and application. J. Opt. Soc. Am. A 2004, 21, 1933–1941. [Google Scholar] [CrossRef] [PubMed]
- Fidalgo, A.; Ciriminna, R.; Carnaroglio, D.; Tamburino, A.; Cravotto, G.; Grillo, G.; Ilharco, L.M.; Pagliaro, M. Eco-friendly extraction of pectin and essential oils from orange and lemon peels. ACS Sustain. Chem. Eng. 2016, 4, 2243–2251. [Google Scholar] [CrossRef]
- Filippov, M.P. IR spectra of pectin films. J. Appl. Spectrosc. 1972, 17, 1052–1054. [Google Scholar] [CrossRef]
- Synytsya, A.; Čopíková, J.; Matĕjka, P.; Machovič, V. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 2003, 54, 97–106. [Google Scholar] [CrossRef]
- Chatjigakis, K.; Pappas, C.; Proxenia, N.; Kalantzi, O.; Rodis, P.; Polissiou, M. FT-IR spectroscopic determination of the degree of esterification of cell wall pectins from stored peaches and correlation to textural changes. Carbohydr. Polym. 1998, 37, 395–408. [Google Scholar] [CrossRef]
- Assifaoui, A.; Loupiac, C.; Chambin, O.; Cayot, P. Structure of calcium and zinc pectinate films investigated by FTIR spectroscopy. Carbohydr. Res. 2010, 345, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Monsoor, M.A.; Kalapathy, U.; Proctor, A. Improved Method for determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. J. Agric. Food Chem. 2001, 49, 2756–2760. [Google Scholar] [CrossRef]
- Morris, G.A.; Foster, T.J.; Harding, S.E. The effect of the degree of esterification on the hydrodynamic properties of citrus pectin. Food Hydrocoll. 2000, 14, 227–235. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Delisi, R.; Scurria, A.; Carnaroglio, D.; Ilharco, L.M.; Pagliaro, M. Controlling the degree of esterification of citrus pectin for demanding applications by selection of the source. ACS Omega 2017, 2, 7991–7995. [Google Scholar] [CrossRef]
- Jridi, M.; Abdelhedi, O.; Salem, A.; Kechaou, H.; Nasri, M.; Menchari, Y. Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocoll. 2020, 103, 105688. [Google Scholar] [CrossRef]
- Luzio, G.A. Microwave release of pectin from orange peel albedo using a closed vessel reactor system. Proc. Fla. State Hortic. Soc. 2008, 121, 315–319. Available online: https://journals.flvc.org/fshs/article/download/87425/84258 (accessed on 29 March 2022).
- Hosseini, S.S.; Khodaiyan, F.; Yarmand, M.S. Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydr. Polym. 2016, 140, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Chen, X.; Luo, T.; Chen, H.; Fu, X. Relationships between the behavior of three different sources of pectin at the oil-water interface and the stability of the emulsion. Food Hydrocoll. 2022, 128, 107566. [Google Scholar] [CrossRef]
- Golkar, A.; Taghavi, S.M.; Dehnavi, F.A. The emulsifying properties of Persian gum (Amygdalus scoparia Spach) as compared with gum Arabic. Int. J. Food Prop. 2018, 21, 416–436. [Google Scholar] [CrossRef]
- Kanaze, F.; Kokkalu, E.; Niopas, I.; Georgarakis, M.; Stergious, A.; Bikiaris, D. Thermal analysis study of flavonoid solid dispersions having enhanced solubility. J. Therm. Anal. Calorim. 2006, 83, 283–290. [Google Scholar] [CrossRef]
- Farag, M.A.; Abib, B.; Ayad, L.; Khattab, A.R. Sweet and bitter oranges: An updated comparative review of their bioactives, nutrition, food quality, therapeutic merits and biowaste valorization practices. Food Chem. 2020, 331, 127306. [Google Scholar] [CrossRef]
- Scurria, A.; Sciortino, M.; Albanese, L.; Nuzzo, D.; Zabini, F.; Meneguzzo, F.; Alduina, R.V.; Presentato, A.; Pagliaro, M.; Avellone, G.; et al. Flavonoids in lemon and grapefruit IntegroPectin. ChemistryOpen 2021, 10, 1055–1058. [Google Scholar] [CrossRef]
- Peterson, J.J.; Dwyer, J.T.; Beecher, G.R.; Bhagwat, S.A.; Gebhardt, S.E.; Haytowitz, D.B.; Holden, J.M. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: A compilation and review of the data from the analytical literature. J. Food Compos. Anal. 2006, 19, S66–S73. [Google Scholar] [CrossRef]
- Ribeiro, C.B.; Ramos, F.M.; Manthey, J.A.; Cesar, T.B. Effectiveness of Eriomin in managing hyperglycemia and reversal of prediabetes condition: A double-blind, randomized, controlled study. Phytother. Res. 2019, 33, 1921–1933. [Google Scholar] [CrossRef][Green Version]
- Ingredients by Nature Gets Blood Sugar Eriocitrin Formulation Patent, Nutraceutical Business Review. 13 February 2020. Available online: https://nutraceuticalbusinessreview.com/news/article_page/Ingredients_by_Nature_gets_-blood_sugar_eriocitrin_formulation_patent/162344 (accessed on 29 March 2022).
- Roohbakhsh, A.; Parhiz, H.; Soltani, F.; Rezaee, R.; Iranshahi, M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015, 124, 64–74. [Google Scholar] [CrossRef]
- Hajialyani, M.; Farzaei, M.H.; Echeverría, J.; Nabavi, S.M.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules 2019, 24, 648. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
- Garg, S.K.; Jain, A. Fermentative production of 2,3-butanediol: A review. Bioresour. Technol. 1995, 51, 103–109. [Google Scholar] [CrossRef]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Piacenza, E.; Presentato, A.; Alduina, R.; Scurria, A.; Pagliaro, M.; Albanese, L.; Meneguzzo, F.; Ciriminna, R.; Martino, D.F.C. Cross-linked natural IntegroPectin films from Citrus biowaste with intrinsic antimicrobial activity. bioRxiv 2022, 1, 478153. [Google Scholar] [CrossRef]
- Zaitseva, O.; Khudyakov, A.; Sergushkina, M.; Solomina, O.; Polezhaeva, T. Pectins as a universal medicine. Fitoterapia 2020, 146, 104676. [Google Scholar] [CrossRef]
- Kumar, V.; Kaur, R.; Aggarwal, P.; Singh, G. Underutilized citrus species: An insight of their nutraceutical potential and importance for the development of functional food. Sci. Hortic. 2022, 296, 110909. [Google Scholar] [CrossRef]
Sample/Matrix: | 0.362 g freeze-dried, ground red orange IntegroPectin; 0.683 g freeze-dried, ground bitter orange IntegroPectin |
SPME fiber: | 50/30 µm DVB/CAR/PDMS |
Sample equilibration: | 24 h, room temperature |
Extraction: | 2 min for red orange IntegroPectin, headspace, room temperature; 20 s for bitter orange IntegroPectin, headspace, room temperature |
Column: | ZB-WAX Phenomenex, L = 30 m × I.D. = 0.25 mm × df = 0.25 µm |
Oven: | 50 °C (0 min), 10 °C/min to 250 °C (5 min) |
Injection T: | 260 °C |
Detector: | Triple quadrupole |
Scan range: | Full scan, m/z 50–500 |
Carrier gas: | He 99.9999%, 1 mL/min constant flow |
Assignment | IP-Bitter | IP-Blood | ||
---|---|---|---|---|
Center/cm−1 | Area | Center/cm−1 | Area | |
ν(C=O)methyl-ester | 1749 | 3.80 | 1754 | 1.16 |
ν(C=O)ester | 1717 | 19.80 | 1731 | 7.09 |
ν(C=O)carboxylic acid | 1641 | 8.45 | 1663 | 9.25 |
νas(COO−) | 1592 | 8.11 | 1603 | 8.10 |
ν(C-O-C)pyranose + ν(C-OH) + ν(C-C) | 1138 | 2.61 | 1145 | 2.48 |
1109 | 1.77 | 1110 | 2.28 | |
1081 | 3.61 | 1076 | 4.02 | |
1054 | 2.49 | 1051 | 0.33 | |
1020 | 4.59 | 1023 | 4.71 | |
989 | 1.53 | 970 | 0.99 | |
DE | 0.59 | DE | 0.32 | |
HG α to | 0.71 | HG α to | 0.63 |
Compound Class | Red Orange IntegroPectin (mg/g) | Bitter Orange IntegroPectin (mg/g) | Bitter Orange IntegroPectin Re-Extracted at 90 °C (mg/g) |
---|---|---|---|
Flavonoids | |||
Rutin | 0.131 | - | - |
Naringin | 2.004 | 47.164 | 9.494 |
Naringenin | - | 0.169 | - |
Hesperidin | 15.087 | 56.811 | 7.961 |
Hesperetin | - | 0.173 | - |
Eriocitrin | - | 14.765 | 1.690 |
Diosmin | - | 0.286 | 0.055 |
Phenolic acids | |||
Caffeic acid | - | 0.236 | 0.016 |
Gallic acid | 0.015 | - | - |
Biophenols (total) | 17.24 | 119.60 | 19.22 |
Volatile Compound (Bitter Orange IntegroPectin) | Molecular Weight | Fragment Ions (m/z) |
---|---|---|
α-pinene | 136 | 69; 77; 79; 91 |
1-pentanol | 88 | 57; 56; 70; 93 |
trans-linalool oxide | 170 | 59; 81; 93; 136 |
2,3-butanediol | 90 | 55; 71; 72; 75 |
α-linalool | 154 | 69; 80; 93; 121 |
1,3-butanediol | 90 | 55; 71; 72; 75 |
α-terpineol | 154 | 81; 93; 121; 136 |
Volatile compound (red orange IntegroPectin) | ||
d-limonene | 136 | 67; 79; 93; 94 |
1,3-bis(1,1-dimethylethyl)-benzene | 190 | 57; 176; 147; 190 |
Compound | Area (%) |
---|---|
α-pinene | 1.45 |
1-pentanol | 1.33 |
trans-linalool oxide | 1.07 |
2,3-butanediol | 5.16 |
α-linalool | 1.17 |
1,3 butanediol | 7.26 |
α-terpineol | 82.56 |
Compound in trace | |
4-hydroxy-2-butanone | - |
d-limonene | - |
1-hexanol | - |
3-hexen-1-ol | - |
terpinen-4-ol | - |
phenylethyl alcohol | - |
p-menthane-1,8-diol | - |
Compound | Area (%) |
---|---|
d-limonene | 90.71 |
1,3-bis(1,1-dimethylethyl)-benzene | 2.49 |
2,3-butaniedol | 0.32 |
α-linalool | 1.05 |
1,3 butaniedol | 5.43 |
Compound in trace | |
2,6-dimethyl-nonanol | - |
terpinen-4-ol | - |
phenylethyl alcohol | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scurria, A.; Sciortino, M.; Garcia, A.R.; Pagliaro, M.; Avellone, G.; Fidalgo, A.; Albanese, L.; Meneguzzo, F.; Ciriminna, R.; Ilharco, L.M. Red Orange and Bitter Orange IntegroPectin: Structure and Main Functional Compounds. Molecules 2022, 27, 3243. https://doi.org/10.3390/molecules27103243
Scurria A, Sciortino M, Garcia AR, Pagliaro M, Avellone G, Fidalgo A, Albanese L, Meneguzzo F, Ciriminna R, Ilharco LM. Red Orange and Bitter Orange IntegroPectin: Structure and Main Functional Compounds. Molecules. 2022; 27(10):3243. https://doi.org/10.3390/molecules27103243
Chicago/Turabian StyleScurria, Antonino, Marzia Sciortino, Ana Rosa Garcia, Mario Pagliaro, Giuseppe Avellone, Alexandra Fidalgo, Lorenzo Albanese, Francesco Meneguzzo, Rosaria Ciriminna, and Laura M. Ilharco. 2022. "Red Orange and Bitter Orange IntegroPectin: Structure and Main Functional Compounds" Molecules 27, no. 10: 3243. https://doi.org/10.3390/molecules27103243