Volatiles and Antifungal-Antibacterial-Antiviral Activity of South African Salvia spp. Essential Oils Cultivated in Uniform Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aroma Profile and EO Analyses
2.1.1. Volatile Organ Compound Analysis
2.1.2. Essential Oil Analyses
3. Materials and Methods
3.1. Origin and Cultivation Method of the Plant Material
3.2. Phytochemical Analysis
3.2.1. Volatile Organ Compound and Essential Oil Analyses
3.2.2. GC–MS Analyses
3.3. Antimicrobial Analyses
3.3.1. Evaluation of Antifungal Activity
3.3.2. Antibacterial Activity
Agar Disc Diffusion Method (Kirby–Bauer Technique)
Minimum Inhibitory Concentration
3.4. Antiviral Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Urban:, K.; Chu, S.; Scheufele, C.; Giesey, R.L.; Mehrmal, S.; Uppal, P.; Delost, G.R. The global, regional, and national burden of fungal skin diseases in 195 countries and territories: A cross-sectional analysis from the Global Burden of Disease Study 2017. JAAD Int. 2021, 2, 22–27. [Google Scholar] [CrossRef]
- Vos, T.; Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Humaidan, O.S.; El-Kersh, T.A.; Al-Akeel, R.A. Risk factors of nasal carriage of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus among health care staff in a teaching hospital in central Saudi Arabia. Saudi Med. J. 2015, 36, 1084–1090. [Google Scholar] [CrossRef]
- Lindsay, J.A. Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int. J. Med. Microbiol. 2014, 304, 103–109. [Google Scholar] [CrossRef]
- Peton, V.; Le Loir, Y. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evol. 2014, 21, 602–615. [Google Scholar] [CrossRef]
- Gagetti, P.; Errecalde, L.; Wattam, A.R.; De Belder, D.; Ojeda Saavedra, M.; Corso, A.; Rosato, A.E. Characterization of the First mecA-positive multidrug-resistant Staphylococcus pseudintermedius isolated from an Argentinian patient. Microb. Drug Resist. 2020, 26, 717–721. [Google Scholar] [CrossRef]
- Fetsch, A.; Johler, S. Staphylococcus aureus as a foodborne pathogen. Curr. Clin. Microbiol. Rep. 2018, 5, 88–96. [Google Scholar] [CrossRef]
- Jakobsen, L.; Garneau, P.; Bruant, G.; Harel, J.; Olsen, S.S.; Porsbo, L.J.; Hammerum, A.M.; Frimodt-Møller, N. Is Escherichia coli urinary tract infection a zoonosis? Proof of direct link with production animals and meat. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1121–1129. [Google Scholar] [CrossRef]
- Gemeda, N.; Woldeamanuel, Y.; Asrat, D.; Debella, A. Effect of essential oils on Aspergillus spore germination, growth and mycotoxin production: A potential source of botanical food preservative. Asian Pac. J. Trop. Biomed. 2014, 4, S373–S381. [Google Scholar] [CrossRef] [Green Version]
- Paulussen, C.; Hallsworth, J.E.; Álvarez-Pérez, S.; Nierman, W.C.; Hamill, P.G.; Blain, D.; Rediers, H.; Lievens, B. Ecology of aspergillosis: Insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb. Biotechnol. 2017, 10, 296–322. [Google Scholar] [CrossRef] [Green Version]
- Yin, M.C.; Cheng, W.S. Inhibition of Aspergillus niger and Aspergillus flavus by some herbs and spices. J. Food Prot. 1998, 61, 123–125. [Google Scholar] [CrossRef]
- Milaciu, M.V.; Ciumărnean, L.; Orăşan, O.H.; Para, I.; Alexescu, T.; Negrean, V. Semiology of food poisoning. Hum. Vet. Med. 2016, 8, 108–113. [Google Scholar]
- Reyes-Jurado, F.; Navarro-Cruz, A.R.; Ochoa-Velasco, C.E.; Palou, E.; López-Malo, A.; Ávila-Sosa, R. Essential oils in vapor phase as alternative antimicrobials: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1641–1650. [Google Scholar] [CrossRef]
- Akthar, M.; Degaga, B.; Azam, T. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: A review. Issues Biol. Sci. Pharm. Res. 2014, 2, 1–7. [Google Scholar]
- Chouchan, S.; Sharma, K.; Sanjay, G. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef]
- Ma, L.; Yao, L. Antiviral effects of plant-derived essential oils and their components: An updated review. Molecules 2020, 25, 2627. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; van Zyl, R.L.; Davids, H.; van Heerden, F.R.; Lourens, A.C.U.; Viljoen, A.M. Antimalarial and anticancer activities of selected South African Salvia species and isolated compounds from S. radula. S. Afr. J. Bot. 2008, 74, 238–243. [Google Scholar] [CrossRef] [Green Version]
- Kamatou, G.P.P.; Viljoen, A.M.; Gono-Bwalya, A.B.; van Zyl, R.L.; van Vuuren, S.F.; Lourens, A.C.U.; Başer, K.H.C.; Demirci, B.; Lindsey, K.L.; van Staden, J.; et al. The in vitro pharmacological activities and a chemical investigation of three South African Salvia species. J. Ethnopharmacol. 2005, 102, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Fisher, V.L. Indigenous Salvia species—An investigation of the antimicrobial activity, antioxidant activity and chemical composition of leaf extracts. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2005; pp. 19–79. [Google Scholar]
- Kamatou, G.P.P.; Viljoen, A.M.; van Vuuren, S.F.; van Zyl, R.L. In vitro evidence of antimicrobial synergy between Salvia chamelaeagnea and Leonotis leonurus. S. Afr. J. Bot. 2006, 72, 634–636. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Standards and Technology (NIST). PC Version 1.7 of the NIST/EPA/NIH Mass Spectra Library; Perkin Elmer: Norwalk, CT, USA, 2014. [Google Scholar]
- El-Sayed, A.M. The Pherobase: Database of Pheromones and Semiochemicals. 2019. Available online: http://www.pherobase.com (accessed on 1 April 2021).
- Ascrizzi, R.; Cioni, P.L.; Amadei, L.; Maccioni, S.; Flamini, G. Geographical patterns of in vivo spontaneously emitted volatile organic compounds in Salvia species. Microchem. J. 2017, 133, 13–21. [Google Scholar] [CrossRef]
- Giuliani, C.; Ascrizzi, R.; Tani, C.; Bottoni, M.; Maleci Bini, L.; Flamini, G.; Fico, G. Salvia uliginosa Benth.: Glandular trichomes as bio-factories of volatiles and essential oil. Flora Morphol. Distrib. Funct. Ecol. Plants 2017, 233, 12–21. [Google Scholar] [CrossRef]
- Serrato-Valenti, G.; Bisio, A.; Cornara, L.; Ciarallo, G. Structural and histochemical investigation of the glandular trichomes of Salvia aurea L. leaves, and chemical analysis of the essential oil. Ann. Bot. 1997, 79, 329–336. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; van Zyl, R.L.; van Vuuren, S.F.; Viljoen, A.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Tilney, P.M. Chemical composition, leaf trichome types and biological activities of the essential oils of four related Salvia species indigenous to Southern Africa. J. Essent. Oil Res. 2006, 18, 72–79. [Google Scholar] [CrossRef]
- Van Vuuren, S.; Ramburrun, S.; Kamatou, G.; Viljoen, A. Indigenous South African essential oils as potential antimicrobials to treat foot odour (bromodosis). S. Afr. J. Bot. 2019, 126, 354–361. [Google Scholar] [CrossRef]
- Lim Ah Tock, M.J.; Kamatou, G.P.P.; Combrinck, S.; Sandasi, M.; Viljoen, A.M. A chemometric assessment of essential oil variation of three Salvia species indigenous to South Africa. Phytochemistry 2020, 172, 112249. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Ruffoni, B.; D’Ascenzi, C.; Pistelli, L.; Mancianti, F. Activity of Salvia dolomitica and Salvia somalensis Essential Oils against Bacteria, Molds and Yeasts. Molecules 2018, 23, 396. [Google Scholar] [CrossRef] [Green Version]
- Bisio, A.; Ciarallo, G.; Romussi, G.; Fontana, N.; Mascolo, N.; Capasso, R.; Biscardi, D. Chemical composition of essential oils from some Salvia species. Phyther. Res. 1998, 12, 117–120. [Google Scholar] [CrossRef]
- Russo, A.; Formisano, C.; Rigano, D.; Cardile, V.; Arnold, N.A.; Senatore, F. Comparative phytochemical profile and antiproliferative activity on human melanoma cells of essential oils of three lebanese Salvia species. Ind. Crops Prod. 2016, 83, 492–499. [Google Scholar] [CrossRef]
- Russo, A.; Cardile, V.; Graziano, A.C.E.; Avola, R.; Bruno, M.; Rigano, D. Involvement of Bax and Bcl-2 in induction of apoptosis by essential oils of three Lebanese Salvia species in human prostate cancer cells. Int. J. Mol. Sci. 2018, 19, 292. [Google Scholar] [CrossRef] [Green Version]
- Kamatou, G.; Sandasi, M.; Viljoen, A. An overview of the biological activities and essential-oil composition of three South African Salvia species. Facta Univ. Ser. Phys. Chem. Technol. 2018, 16, 39. [Google Scholar]
- Medjahed, F.; Merouane, A.; Saadi, A.; Bader, A.; Cioni, P.L.; Flamini, G. Chemical profile and antifungal potential of essential oils from leaves and flowers of Salvia algeriensis (Desf.): A comparative study. Chil. J. Agric. Res. 2016, 76, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Gavyar, P.H.H.; Amiri, H. Chemical composition of essential oil and antioxidant activity of, an endemic species from Iran. J. Essent. Oil Bear. Plants 2018, 21, 1138–1145. [Google Scholar] [CrossRef]
- Ben Khedher, M.R.; Ben Khedher, S.; Chaieb, I.; Tounsi, S.; Hammami, M. Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI J. 2017, 16, 160–173. [Google Scholar] [CrossRef]
- Da Silva, N.H.; Paciencia, M.L.B.; Frana, S.A.; Díaz, I.E.C.; Suffredini, I.B. Antibacterial activity of essential oils from leaves of Iryanthera ulei warb. (Myristicaceae): A temporal analysis perspective. J. Essent. Oil Bear. Plants 2020, 23, 890–901. [Google Scholar] [CrossRef]
- Gilabert, M.; Marcinkevicius, K.; Andujar, S.; Schiavone, M.; Arena, M.E.; Bardón, A. Sesqui- and triterpenoids from the liverwort Lepidozia chordulifera inhibitors of bacterial biofilm and elastase activity of human pathogenic bacteria. Phytomedicine 2015, 22, 77–85. [Google Scholar] [CrossRef]
- Trevizan, L.N.F.; Nascimento, K.F.D.; Santos, J.A.; Kassuya, C.A.L.; Cardoso, C.A.L.; Vieira, M.d.C.; Moreira, F.M.F.; Croda, J.; Formagio, A.S.N. Anti-inflammatory, antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. J. Ethnopharmacol. 2016, 192, 510–515. [Google Scholar] [CrossRef]
- Miyazawa, M.; Hideyukitougo; Ishihara, M. Inhibition of acetylcholinesterase activity by essential oil of Mentha Species. J. Agric. Food Chem. 1998, 46, 3431–3434. [Google Scholar] [CrossRef]
- Benchabane, O.; Hazzit, M.; Baaliouamer, A.; Mouhouche, F. Analysis and antioxidant activity of the essential oils of Ferula vesceritensis Coss. et Dur. and Thymus munbyanus Desf. J. Essent. Oil Bear. Plants 2012, 15, 774–781. [Google Scholar] [CrossRef]
- Orhan, N.; Aslan, M.; Pekcan, M.; Orhan, D.D.; Bedir, E.; Ergun, F. Identification of hypoglycaemic compounds from berries of Juniperus oxycedrus subsp. oxycedrus through bioactivity guided isolation technique. J. Ethnopharmacol. 2012, 139, 110–118. [Google Scholar] [CrossRef]
- Astani, A.; Schnitzler, P. Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iran. J. Microbiol. 2014, 6, 149–155. [Google Scholar]
- Astani, A.; Reichling, J.; Schnitzler, P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phyther. Res. 2010, 24, 673–679. [Google Scholar] [CrossRef]
- Falang, K.D.; Poyi, C.O.; Ajima, U.; Bukar, B.B.; Amagon, K.I.; Damen, J.G.; Agabi, Y.; Kutshik, R.J.; Longdet, I.Y.; Gomerep, S.S.; et al. Combinatorial evaluation of antiviral activity of some Nigerian medicinal plants on SARS-CoV-2combinatorial evaluation of antiviral activity of some Nigerian Medicinal Plants on SARS-CoV-2. J. Complement. Altern. Med. Res. 2020, 12, 38–50. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Olszowy, M. Does antioxidant properties of the main component of essential oil reflect its antioxidant properties? The comparison of antioxidant properties of essential oils and their main components. Nat. Prod. Res. 2014, 28, 1952–1963. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, J.; Zhang, N.; Yu, W.; Jiang, J.; Dai, G. Insecticidal activities of Salvia hispanica L. essential oil and combinations of their main compounds against the beet armyworm Spodoptera exigua. Ind. Crops Prod. 2021, 162, 113271. [Google Scholar] [CrossRef]
- Schnitzler, P.; Astani, A.; Reichling, J. Screening for antiviral activities of isolated compounds from essential oils. Evid. Based Complement. Alternat. Med. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.F.; Wang, W.; Dai, X.Y.; Wang, Z.Y.; Shen, Z.H.; Ying, H.Z.; Yu, C.H. Chemical compositions and anti-influenza activities of essential oils from Mosla dianthera. J. Ethnopharmacol. 2012, 139, 668–671. [Google Scholar] [CrossRef] [PubMed]
- Dunkić, V.; Vuko, E.; Bezić, N.; Kremer, D.; Ruščić, M. Composition and antiviral activity of the essential oils of Eryngium alpinum and E. amethystinum. Chem. Biodivers. 2013, 10, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Garozzo, A.; Timpanaro, R.; Stivala, A.; Bisignano, G.; Castro, A. Activity of Melaleuca alternifolia (tea tree) oil on Influenza virus A/PR/8: Study on the mechanism of action. Antivir. Res. 2011, 89, 83–88. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Wang, C.; Li, C.W.; Liu, S.H.; Zhang, C.X.; Li, L.W.; Jiang, D.H. Characterization of aroma-active compounds of pu-erh tea by Headspace Solid-Phase Microextraction (HS-SPME) and Simultaneous Distillation-Extraction (SDE) coupled with GC-olfactometry and GC-MS. Food Anal. Methods 2016, 9, 1188–1198. [Google Scholar] [CrossRef]
- Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; Wiley & Sons: New York, NY, USA, 1976; ISBN 047015019X. [Google Scholar]
- Swigar, A.A.; Silverstein, R.M. Monoterpenes; Aldrich Chemical Company: Milwaukee, WI, USA, 1981. [Google Scholar]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada; San Francisco, CA, USA, 1982; Volume 26. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A. 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of essential oil components by gas chromatography/mass spectrometry. Biochem. Syst. Ecol. 2007, 24, 594. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 2nd ed.; CLSI: Wayne, PA, USA, 2008; Volume M38-A2. [Google Scholar]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Rocchigiani, G.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flavour Fragr. J. 2016, 31, 302–309. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests, 11th ed.; CLSI: Wayne, PA, USA, 2012; Volume M02-A11. [Google Scholar]
- National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing; Twelfth International Supplement; NCCLS: Wayne, PA, USA, 2002; pp. M100–M112. [Google Scholar]
- Benvenuti, E. Mille Salvie; EAN: 9788898150014; Maestri di Giardino Associazione Culturale: Cuneo, Italy, 2012. [Google Scholar]
- Sotti, M.L. Salvie; Edagricole: Bologna, Italy, 1997. [Google Scholar]
- Arief, M.M.H.; Abdel, A.; Hussein, F.; Mohammed, A.; ElMwafy, H.M. Chemical and Bioactivity Studies on Salvia Africa-na-Lutea: Cytotoxicity and Apoptosis Induction by Abietane Diterpenes Isolated from Salvia Africana-Lutea. J. Bas. Environ. Sci. 2018, 5, 72–79. [Google Scholar]
- Seaman, T. The Antimicrobial and Antimycobacterial Activity of Plants Used for the Treatment of Respiratory Ailments in South-ErnAfrica and the Isolation of Anacardic Acid from Ozoroa Paniculosa. Master Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2005. [Google Scholar]
- Amabeoku, G.J.; Eagles, P.; Scott, G.; Mayeng, I.; Springfield, E. Analgesic and antipyretic effects of Dodonaea angustifolia and Salvia africana-lutea. J. Ethnopharmacol. 2001, 75, 117–124. [Google Scholar] [CrossRef]
- De Beer, J.J.J.; Van Wyk, B.-E. An ethnobotanical survey of the Agter–Hantam, Northern Cape Province, South Africa. S. Afr. J. Bot. 2011, 77, 741–754. [Google Scholar] [CrossRef] [Green Version]
Flowers | Leaves | |||||||
---|---|---|---|---|---|---|---|---|
Compounds a | Class | L.R.I exp | L.R.I lit | S. dentata | S. scabra | S. dentata | S. s cabra | |
Relative percentage (%) | ||||||||
1 | Tricyclene | mh | 927 | 921 | 0.1 ± 0.1 | 0.5 ± 0.0 | ||
2 | α-Thujene | mh | 930 | 924 | 0.4 ± 0.0 | |||
3 | α-Pinene | mh | 939 | 932 | 10.7 ± 0.2 | 11.8 ± 1.3 | ||
4 | Camphene | mh | 954 | 946 | 15.0 ± 0.7 | 19.8 ± 0.9 | ||
5 | β-Pinene | mh | 979 | 974 | 6.4 ± 0.0 | 4.9 ± 0.1 | ||
6 | Myrcene | mh | 991 | 988 | 1.8 ± 0.2 | 0.2 ± 0.1 | ||
7 | α-Phellandrene | mh | 1003 | 1002 | 0.1 ± 0.1 | |||
8 | p-Mentha-1(7),8-diene | mh | 1004 | 1003 | 0.1 ± 0.1 | |||
9 | (Z)-3-Hexenol acetate | nt | 1005 | 1004 | 0.3 ± 0.1 | |||
10 | p-Cymene | mh | 1025 | 1020 | 0.3 ± 0.1 | 0.1 ± 0.2 | ||
11 | Limonene | mh | 1029 | 1024 | 1.4 ± 0.5 | 0.6 ± 0.2 | ||
12 | 1,8-Cineole | om | 1031 | 1026 | 24.7 ± 0.2 | 14.3 ± 0.6 | 16.3 ± 0.1 | |
13 | δ-3-Carene | mh | 1031 | 1021 * | 4.0 ± 0.2 | 3.8 ± 0.3 | ||
14 | Butyl isovalerate | nt | 1047 | 1048 * | 1.5 ± 0.2 | |||
15 | γ-Terpinene | mh | 1060 | 1054 | 0.8 ± 0.1 | 0.4 ± 0.1 | ||
16 | cis-Sabinene hydrate | om | 1070 | 1065 | 0.4 ± 0.0 | 0.1 ± 0.2 | ||
17 | Terpinolene | mh | 1089 | 1086 | 1.2 ± 0.0 | 0.6 ± 0.1 | ||
18 | trans-Sabinene hydrate | om | 1098 | 1098 | 0.2 ± 0.1 | 0.1 ± 0.2 | ||
19 | Linalool | om | 1099 | 1095 | 0.1 ± 0.2 | |||
20 | cis-Thujone | om | 1102 | 1101 | 0.2 ± 0.1 | |||
21 | 2-Methylbutyl isovalerate | nt | 1107 | 1103 | 0.4 ± 0.0 | |||
22 | n-Amyl isovalerate | nt | 1108 | 1108 * | 1.9 ± 0.1 | |||
23 | trans-Thujone | om | 1114 | 1112 | 0.2 ± 0.0 | 0.4 ± 0.0 | ||
24 | allo-Ocimene | om | 1132 | 1128 | 0.3 ± 0.0 | 0.4 ± 0.0 | ||
25 | Camphor | om | 1146 | 1141 | 30.4 ± 0.7 | 37.0 ± 0.9 | 22.4 ± 0.7 | 0.5 ± 0.5 |
26 | Borneol | om | 1169 | 1165 | 0.9 ± 0.1 | 0.4 ± 0.0 | ||
27 | 4-Terpineol | om | 1177 | 1174 | 0.2 ± 0.0 | 0.5 ± 0.0 | ||
28 | (Z)-3-Hexenyl butyrate | nt | 1186 | 1184 | 0.4 ± 0.1 | |||
29 | Decanal | nt | 1202 | 1198 | 1.6 ± 0.3 | |||
30 | (Z)-3-Hexenyl isovalerate | nt | 1238 | 1235 * | 0.1 ± 0.0 | |||
31 | Hexyl 3-methylbutanoate | nt | 1244 | 1242 * | 0.2 ± 0.0 | |||
32 | Bornyl acetate | om | 1289 | 1284 | 0.4 ± 0.1 | 1.8 ± 0.4 | 6.8 ± 1.2 | |
33 | 2,2,4,4,6,8,8-Heptamethylnonane | nt | 1322 | 1317 * | 0.7 ± 1.0 | |||
34 | δ-Elemene | sh | 1338 | 1335 | 0.3 ± 0.1 | |||
35 | α-Copaene | sh | 1377 | 1374 | 0.3 ± 0.0 | 13.5 ± 0.8 | ||
36 | β-Patchoulene | sh | 1381 | 1379 | 0.1 ± 0.1 | |||
37 | β-Bourbonene | sh | 1388 | 1387 | 0.8 ± 0.1 | |||
38 | β-Cubebene | sh | 1388 | 1387 | 0.9 ± 0.0 | |||
39 | β-Elemene | sh | 1391 | 1389 | 2.4 ± 0.5 | |||
40 | cis-α-Bergamotene | sh | 1413 | 1411 | 0.1 ± 0.1 | |||
41 | β-Caryophyllene | sh | 1419 | 1417 | 1.5 ± 0.2 | 1.6 ± 0.0 | 18.4 ± 0.3 | |
42 | β-Copaene | sh | 1432 | 1430 | 5.2 ± 0.19 | |||
43 | (+)-α-Barbatene | sh | 1436 | 1437 * | 1.5 ± 0.2 | |||
44 | γ-Elemene | sh | 1437 | 1434 | 6.6 ± 1.5 | |||
45 | 10,10-Dimethyl-2,6-dimethylenebicyclo[7.2.0]undecane | sh | 1440 | 1440 * | 0.1 ±0.1 | 0.1 ± 0.0 | ||
46 | Isogermacrene D | sh | 1448 | 1446 $ | 1. 9± 0.12 | |||
47 | (E)-Geranylacetone | ac | 1455 | 1453 | 1.6 ± 2.0 | |||
48 | α-Humulene | sh | 1455 | 1452 | 0.1 ± 0.0 | |||
49 | allo-Aromadendrene | sh | 1460 | 1458 | 0.1 ± 0.0 | 0.3 ± 0.0 | 0.2 ± 0.0 | |
50 | 9-epi-(E)-Caryophyllene | sh | 1466 | 1464 | 5.5 ± 0.2 | |||
51 | cis-Muurola-4(14),5-diene | sh | 1467 | 1465 | 0.7 ± 0.1 | |||
52 | 1-Dodecanol | nt | 1473 | 1469 | 0.5 ± 0.3 | |||
53 | γ-Muurolene | sh | 1480 | 1478 | 0.1 ± 0.0 | |||
54 | Germacrene D | sh | 1485 | 1484 | 32.8 ± 1.0 | |||
55 | Valencene | sh | 1492 | 1496 | 0.9 ± 0.6 | |||
56 | γ-Amorphene | sh | 1496 | 1495 | 2.2 ± 0.1 | |||
57 | α-Muurolene | sh | 1500 | 1500 | 0.1 ± 0.1 | |||
58 | (E,E)-α-Farnesene | sh | 1508 | 1505 | 1.0 ± 0.1 | |||
59 | α-Chamigrene | sh | 1508 | 1503 | 0.1 ± 0.0 | |||
60 | Tridecanal | nt | 1512 | 1509 | 0.1 ± 0.1 | |||
61 | trans-γ-Cadinene | sh | 1514 | 1513 | 0.1 ± 0.0 | |||
62 | 1,2-Dihydrocuparene | sh | 1521 | 1521 * | 0.1 ± 0.0 | |||
63 | δ-Cadinene | sh | 1523 | 1522 | 1.3 ± 0.1 | |||
64 | (E)-γ-Bisabolene | sh | 1533 | 1529 | 0.8 ± 0.1 | |||
65 | Germacrene B | sh | 1561 | 1559 | 0.2 ± 0.0 | |||
66 | n-Tridecan-1-ol | nt | 1577 | 1570 | 0.5 ± 0.8 | |||
67 | Viridiflorol | os | 1593 | 1592 | 0.8 ± 0.1 | |||
68 | Hedione | nt | 1649 | 1650 * | 1.1 ± 1.5 | |||
69 | 2-Ethylhexyl octanoate | nt | 1688 | 1688 * | 3.2 ± 4.5 | |||
70 | cis-Valeranyl acetate | os | 1817 | 1828 * | 0.8 ± 1.1 | |||
71 | Nuciferol acetate | os | 1837 | 1830 | 13.0 ± 4.0 | |||
72 | Isopimara-9(11),15-diene | dh | 1906 | 1905 | 6.0 ± 1.5 | |||
73 | Cembrene | dh | 1939 | 1937 | 14.4 ± 1.1 | |||
74 | n-Eicosane | nt | 2000 | 2000 | 0.1 ± 0.1 | |||
75 | Isopropyl palmitate | nt | 2026 | 2023 * | 0.5 ± 0.7 | |||
76 | Hexacosane | nt | 2600 | 2600 | 0.7 ± 1.0 | |||
Flowers | Leaves | |||||||
Class of compounds | S. dentata | S. scabra | S. dentata | S. scabra | ||||
Monoterpene hydrocarbons (mh) | 40.4 ± 0.5 | 43.8 ± 3.1 | 0.8 ± 0.1 | |||||
Oxygenated monoterpenes (om) | 57.9 ± 0.1 | 53.1 ± 0.7 | 47.5 ± 2.2 | 0.5 ± 0.5 | ||||
Sesquiterpene hydrocarbons (sh) | 1.7 ± 0.3 | 2.4 ± 0.0 | 97.8 ± 0.7 | |||||
Oxygenated sesquiterpenes (os) | 13.8 ± 5.1 | 0.8 ± 0.1 | ||||||
Diterpene hydrocarbons (dh) | 20.4 ± 2.7 | |||||||
Apocarotenoids (ac) | 1.6 ± 2.0 | |||||||
Non-terpene derivatives (nt) | 8.2 ± 6.3 | 5.3 ± 0.7 | 0.3 ± 0.1 | |||||
Total Identified | 100.0 ± 0.0 | 97.1 ± 3.0 | 99.8 ± 0.2 | 99.4 ± 0.6 |
Compounds a | Classe | L.R.I exp | L.R.I lit | S. aurea | S. dentata | S. scabra | |
---|---|---|---|---|---|---|---|
Relative Percentage (%) | |||||||
1 | Tricyclene | mh | 927 | 921 | 0.5 ± 0.2 | ||
2 | α-Thujene | mh | 930 | 924 | 0.2 ± 0.0 | ||
3 | α-Pinene | mh | 939 | 932 | 1.3 ± 0.4 | 10.2 ± 1.9 | 0.8 ± 0.2 |
4 | Camphene | mh | 954 | 946 | 0.1 ± 0.1 | 10.0 ± 2.1 | |
5 | 3,7,7-Trimethyl-1,3,5-cycloheptatriene | nt | 971 | 970 * | 0.2 ± 0.1 | ||
6 | Sabinene | mh | 975 | 969 | 0.2 ± 0.0 | ||
7 | β-Pinene | mh | 979 | 974 | 0.4 ± 0.1 | 3.2 ± 0.7 | 0.6 ± 0.1 |
8 | Myrcene | mh | 991 | 988 | 1.0 ± 0.3 | 0.5 ± 0.1 | 0.6 ± 0.1 |
9 | α-Phellandrene | mh | 1003 | 1002 | 0.6 ± 0.2 | 0.3 ± 0.1 | |
10 | α-Terpinene | mh | 1017 | 1014 | 0.1 ± 0.2 | 0.5 ± 0.1 | |
11 | p-Cymene | mh | 1025 | 1020 | 0.2 ± 0.1 | 0.6 ± 0.1 | 0.1 ± 0.1 |
12 | Sylvestrene | mh | 1028 | 1025 | 1.5 ± 0.4 | ||
13 | Limonene | mh | 1029 | 1024 | 2.9 ± 0.7 | 2.6 ± 0.5 | 1.5 ± 0.2 |
14 | δ-3-Carene | mh | 1031 | 1021 * | 7.8 ± 1.7 | 1.7 ± 0.3 | 0.2 ± 0.0 |
15 | 1,8-Cineole | om | 1031 | 1026 | 2.8 ± 0.7 | 4.1 ± 0.9 | 0.4 ± 0.2 |
16 | (Z)-β-Ocimene | mh | 1037 | 1032 | 0.4 ± 0.1 | 0.1 ± 0.1 | |
17 | Benzene acetaldehyde | nt | 1042 | 1036 | 0.1 ± 0.1 | ||
18 | Butyl isovalerate | nt | 1047 | 1048 * | 0.2 ± 0.0 | ||
19 | (E)-β-Ocimene | mh | 1050 | 1044 | 0.1 ± 0.1 | 0.3 ± 0.0 | |
20 | γ-Terpinene | mh | 1060 | 1054 | 0.4 ± 0.1 | 1.1 ± 0.2 | |
21 | cis-Sabinene hydrate | om | 1070 | 1065 | 0.2 ± 0.1 | ||
22 | p-Mentha-2,4(8)-diene | mh | 1086 | 1085 | 0.3±0.1 | ||
23 | Terpinolene | mh | 1089 | 1086 | 0.3 ± 0.0 | 0.5 ± 0.1 | 0.1 ± 0.1 |
24 | trans-Sabinene hydrate | om | 1098 | 1098 | 0.2 ± 0.1 | ||
25 | Linalool | om | 1099 | 1095 | 1.1 ± 0.3 | 0.2 ± 0.0 | |
26 | Nonanal | nt | 1101 | 1100 | 0.1 ± 0.1 | ||
27 | cis-Thujone | om | 1102 | 1101 | 0.3 ± 0.1 | 0.1 ± 0.1 | |
28 | 2-Methylbutyl 2-methylbutanoate | nt | 1105 | 1106 * | 0.1 ± 0.1 | ||
29 | 2-Methylbutyl isovalerate | nt | 1107 | 1103 | 0.4 ± 0.1 | ||
30 | trans-Thujone | om | 1114 | 1112 | 0.2 ± 0.0 | ||
31 | neo-allo-Ocimene | mh | 1131 | 1128 | 0.1 ± 0.1 | ||
32 | Camphor | om | 1146 | 1141 | 0.2 ± 0.0 | 23.0 ± 2.4 | 0.2 ± 0.1 |
33 | Borneol | om | 1169 | 1165 | 0.5 ± 0.1 | ||
34 | p-Mentha-1,5-dien-8-ol | om | 1170 | 1166 | 0.2 ± 0.0 | ||
35 | 4-Terpineol | om | 1177 | 1174 | 0.2 ± 0.0 | 1.1 ± 0.1 | |
36 | p-Cymen-8-ol | om | 1183 | 1179 | 0.2 ± 0.0 | ||
37 | α-Terpineol | om | 1189 | 1186 | 0.2 ± 0.0 | ||
38 | Verbenone | om | 1205 | 1204 | 0.3 ± 0.1 | ||
39 | β-Cyclocitral | ac | 1220 | 1217 | 0.1 ± 0.1 | ||
40 | (Z)-3-Hexenyl isovalerate | nt | 1238 | 1235 * | 0.1 ± 0.0 | ||
41 | Eucarvone | om | 1243 | 1146 | 0.1 ± 0.1 | ||
42 | Piperitone | om | 1253 | 1249 | 0.1 ± 0.1 | ||
43 | Bornyl acetate | om | 1289 | 1284 | 5.4 ± 0.2 | 0.1 ± 0.2 | |
44 | α-Cubebene | sh | 1351 | 1345 | 1.1 ± 0.0 | 0.1 ± 0.1 | |
45 | Isoledene | sh | 1375 | 1374 | 0.2 ± 0.0 | ||
46 | α-Copaene | sh | 1377 | 1374 | 2.9 ± 0.1 | 0.2 ± 0.0 | 6.5 ± 1.5 |
47 | β-Bourbonene | sh | 1388 | 1387 | 2.0 ± 1.3 | ||
48 | β-Cubebene | sh | 1388 | 1387 | 0.1 ± 0.0 | 0.5 ± 0.0 | |
49 | β-Elemene | sh | 1391 | 1389 | 0.5 ± 0.3 | ||
50 | (Z)-Jasmone | nt | 1393 | 1392 | 0.2 ± 0.0 | 0.2 ± 0.1 | |
51 | α-Gurjunene | sh | 1410 | 1409 | 2.2 ± 0.1 | ||
52 | (±)-β-Isocomene | sh | 1412 | 1412 * | 0.4 ± 0.1 | ||
53 | β-Caryophyllene | sh | 1419 | 1417 | 12.5 ± 0.4 | 1.1 ± 0.3 | 8.4 ± 1.3 |
54 | β-Copaene | sh | 1432 | 1430 | 0.5±0.0 | 0.5 ± 0.2 | |
55 | (+)-α-Barbatene | sh | 1436 | 1437 * | 1.5 ± 0.3 | ||
56 | γ-Elemene | sh | 1437 | 1434 | 0.3 ± 0.1 | ||
57 | Aromadendrene | sh | 1441 | 1439 | 0.2 ± 0.0 | 0.2 ± 0.0 | |
58 | Isogermacrene D | sh | 1448 | 1446 $ | 0.1 ± 0.0 | ||
59 | cis-Muurola-3,5-diene | sh | 1450 | 1448 | 0.2 ± 0.0 | ||
60 | α-Humulene | sh | 1455 | 1452 | 1.7 ± 0.1 | 0.1 ± 0.1 | 3.2 ± 0.3 |
61 | Cadina-3,5-diene | sh | 1458 | 1454 * | 0.3 ± 0.0 | ||
62 | allo-Aromadendrene | sh | 1460 | 1458 | 0.2 ± 0.1 | 0.1 ± 0.1 | |
63 | cis-Muurola-4(14),5-diene | sh | 1467 | 1465 | 0.6 ± 0.0 | ||
64 | trans-Cadina-1(6),4-diene | sh | 1477 | 1475 | 0.5 ± 0.0 | ||
65 | γ-Muurolene | sh | 1480 | 1478 | 0.8 ± 0.0 | 0.6 ± 0.5 | |
66 | Germacrene D | sh | 1485 | 1484 | 0.5 ± 0.1 | 32.7 ± 4.2 | |
67 | β-Selinene | sh | 1490 | 1489 | 0.4 ± 0.0 | 0.2 ± 0.1 | |
68 | Valencene | sh | 1492 | 1496 | 1.5 ± 0.1 | 0.7 ± 0.0 | |
69 | cis-β-Guaiene | sh | 1493 | 1492 | 0.4 ± 0.0 | ||
70 | Bicyclogermacrene | sh | 1495 | 1500 | 0.3 ± 0.0 | ||
71 | γ-Amorphene | sh | 1496 | 1495 | 0.1 ± 0.1 | ||
72 | Viridiflorene | sh | 1497 | 1496 | 0.2 ± 0.1 | ||
73 | α-Muurolene | sh | 1500 | 1500 | 1.2 ± 0.1 | 0.4 ± 0.4 | |
74 | Cuparene | sh | 1505 | 1504 | 2.5 ± 0.1 | ||
75 | (E,E)-α-Farnesene | sh | 1508 | 1505 | 1.2 ± 0.1 | ||
76 | α-Chamigrene | sh | 1508 | 1503 | 0.1 ± 0.1 | ||
77 | trans-γ-Cadinene | sh | 1514 | 1513 | 4.5 ±0 .3 | 0.6 ± 0.0 | |
78 | δ-Cadinene | sh | 1524 | 1522 | 7.8 ± 0.6 | 0.2 ± 0.1 | 2.5 ± 1.1 |
79 | cis-γ-Bisabolene | sh | 1534 | 1529 | 0.6 ± 0.1 | ||
80 | trans-Cadina-1(2),4-diene | sh | 1535 | 1537 * | 0.5 ± 0.0 | ||
81 | α-Cadinene | sh | 1539 | 1537 | 0.4 ± 0.0 | 0.1 ± 0.0 | |
82 | α-Calacorene | sh | 1546 | 1544 | 0.4 ± 0.0 | 0.1 ± 0.2 | |
83 | Selina-3,7(11)-diene | sh | 1547 | 1545 | 0.2 ± 0.0 | ||
84 | Germacrene B | sh | 1561 | 1559 | 7.8 ± 1.9 | ||
85 | (E)-Nerolidol | os | 1563 | 1561 | 1.6 ± 0.6 | 2.1 ± 0.4 | |
86 | Norbourbonone | os | 1563 | 1561 | 0.2 ± 0.0 | ||
87 | β-Calacorene | sh | 1566 | 1564 | 0.1 ± 0.1 | ||
88 | Palustrol | os | 1568 | 1567 | 0.4 ± 0.1 | ||
89 | Germacrene D-4-ol | os | 1576 | 1574 | 1.0 ± 0.1 | 0.2 ± 0.2 | |
90 | Spathulenol | os | 1578 | 1577 | 0.2 ± 0.0 | ||
91 | Caryophyllene oxide | os | 1583 | 1582 | 3.6 ± 0.2 | 0.2 ± 0.1 | 3.4 ± 0.6 |
92 | Gleenol | os | 1587 | 1586 | 0.1 ± 0.1 | ||
93 | Viridiflorol | os | 1591 | 1592 | 0.3 ± 0.0 | 27.7 ± 9.0 | 0.7 ± 0.1 |
94 | Salvial-4(14)-en-1-one | os | 1595 | 1594 | 0.2 ± 0.0 | ||
95 | Ledol | os | 1599 | 1602 | 1.0 ± 0.1 | ||
96 | β-Atlantol | os | 1608 | 1608 * | 0.5 ± 0.1 | ||
97 | Humulene epoxide II | os | 1608 | 1608 | 0.3 ± 0.0 | 1.0 ± 0.1 | |
98 | Junenol | os | 1617 | 1586 | 1.3 ± 0.2 | 0.2 ± 0.0 | |
99 | 1,10-di-epi-Cubenol | os | 1619 | 1618 | 0.6 ± 0.1 | ||
100 | Humulane-1,6-dien-3-ol | os | 1619 | 1619 * | 0.6 ± 0.4 | ||
101 | 1-epi-cubenol | os | 1629 | 1626 | 3.7 ± 0.4 | 0.4 ± 0.0 | |
102 | γ-Eudesmol | os | 1631 | 1630 | 0.2 ± 0.0 | ||
103 | Caryophylla-4(12),8,(13)-dien-5-α-ol | os | 1637 | 1639 | 0.2 ± 0.0 | ||
104 | epi-α-Cadinol | os | 1640 | 1638 | 10.2 ± 1.0 | 0.8 ± 0.0 | |
105 | Cubenol | os | 1642 | 1645 | 0.5 ± 0.1 | ||
106 | 10,10-Dimethyl-2,6-dimethylenebicyclo[7.2.0]undecan-5β-ol | os | 1644 | 1644 * | 0.6 ± 0.1 | ||
107 | α-Muurolol | os | 1646 | 1644 | 0.5 ± 0.1 | ||
108 | β-Eudesmol | os | 1649 | 1649 | 0.3 ± 0.1 | ||
109 | α-Eudesmol | os | 1653 | 1652 | 1.0 ± 0.5 | ||
110 | α-Cadinol | os | 1654 | 1652 | 2.2 ± 0.3 | 0.6 ± 0.2 | |
111 | Aromadendrene oxide-(2) | os | 1678 | 1678 | 0.3 ± 0.1 | 0.3 ± 0.0 | |
112 | Khusimyl methyl ether | os | 1680 | 1662 * | 2.1 ± 0.3 | ||
113 | Mustakone | os | 1687 | 1676 | 0.3 ± 0.1 | ||
114 | 6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-2-naphtalenol | os | 1690 | 1690 * | 0.2 ± 0.2 | ||
115 | ent-Germacra-4(15),5,10(14)-trien-1β-ol | os | 1695 | 1686 * | 0.4 ± 0.1 | 0.9 ± 0.4 | |
116 | Shyobunol | os | 1701 | 1688 | 4.7 ± 0.4 | ||
117 | Valerenol | os | 1736 | 1736 * | 0.2 ± 0.1 | ||
118 | Mint sulfide | sh | 1744 | 1740 | 1.6 ± 0.9 | ||
119 | 15-Hydroxy-α-muurolene | os | 1777 | 1767 | 0.1 ± 0.1 | ||
120 | α-Costol | os | 1778 | 1773 | 0.6 ± 0.3 | ||
121 | Hexahydrofarnesyl acetone | ac | 1844 | 1845 * | 0.5 ± 0.4 | ||
122 | Hexadecanol | nt | 1880 | 1874 | 0.1 ± 0.1 | ||
123 | Farnesyl acetone | os | 1919 | 1913 | 0.1 ± 0.1 | ||
124 | epi-13-Manool | od | 2056 | 2059 | 0.1 ± 0.1 | ||
125 | Pentacosane | nt | 2500 | 2500 | 0.1 ± 0.2 | 0.1 ± 0.1 | 0.1 ± 0.1 |
EO Yield (w/w) | 1.01 ± 0.2 | 1.53 ± 0.4 | 0.10 ± 0.0 | ||||
Class of compounds | S. aurea | S. dentata | S. scabra | ||||
Monoterpene hydrocarbons (mh) | 17.0 ± 4.6 | 32.4 ± 6.6 | 4.5 ± 1.0 | ||||
Oxygenated monoterpenes (om) | 5.5 ± 1.5 | 35.1 ± 3.8 | 0.8 ± 0.7 | ||||
Sesquiterpene hydrocarbons (sh) | 41.5 ± 2.0 | 2.0 ± 0.7 | 76.6 ± 2.1 | ||||
Oxygenated sesquiterpenes (os) | 33.5 ± 3.6 | 29.5 ± 9.7 | 15.8 ± 3.9 | ||||
Oxygenated diterpenes (od) | 0.1 ± 0.1 | ||||||
Apocarotenoids (ac) | 0.1 ± 0.1 | 0.5 ± 0.4 | |||||
Non-terpene derivatives (nt) | 0.5 ± 0.1 | 1.0 ± 0.1 | 0.5 ± 0.1 | ||||
Total identified | 98.1 ± 1.9 | 100.0 ± 0.0 | 98.8 ± 2.2 |
EOs | Microsporum canis | Trichophyton mentagrophytes | Aspergillus flavus | Aspergillus niger | Fusarium solani |
---|---|---|---|---|---|
Salvia aurea (v/v) | 2% | 2% | >5% | >5% | >5% |
Salvia dentata (v/v) | 0.5% | 1% | >5% | >5% | >5% |
Itraconazole (mg/mL) | 0.125 | 32 | 16 | 16 | − |
Amphotericin B (μg/mL) | − | − | − | − | 8 |
EOs | Staphylococcus aureus | Staphylococcus pseudointermedius | Escherichia coli | |||
---|---|---|---|---|---|---|
MIC | Disc (mm) | MIC | Disc (mm) | MIC | Disc (mm) | |
Salvia aurea (v/v) | >10% | 0 | >10% | 0 | >10% | 0 |
Salvia dentata (v/v) | >10% | 0 | 10% | 7 | >10% | 0 |
Chloramphenicol (μg/mL) | 8 | 19 | 7 | 20 | 8 | 20 |
Inhibition of H1N1 at Indicated EO % Concentration a | ||
---|---|---|
Essential Oils | 0.001 | 0.0001 |
Salvia aurea | <10% | <10% |
Salvia dentata | 93% ± 1.3% | 94% ± 1.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najar, B.; Mecacci, G.; Nardi, V.; Cervelli, C.; Nardoni, S.; Mancianti, F.; Ebani, V.V.; Giannecchini, S.; Pistelli, L. Volatiles and Antifungal-Antibacterial-Antiviral Activity of South African Salvia spp. Essential Oils Cultivated in Uniform Conditions. Molecules 2021, 26, 2826. https://doi.org/10.3390/molecules26092826
Najar B, Mecacci G, Nardi V, Cervelli C, Nardoni S, Mancianti F, Ebani VV, Giannecchini S, Pistelli L. Volatiles and Antifungal-Antibacterial-Antiviral Activity of South African Salvia spp. Essential Oils Cultivated in Uniform Conditions. Molecules. 2021; 26(9):2826. https://doi.org/10.3390/molecules26092826
Chicago/Turabian StyleNajar, Basma, Giulia Mecacci, Valeria Nardi, Claudio Cervelli, Simona Nardoni, Francesca Mancianti, Valentina Virginia Ebani, Simone Giannecchini, and Luisa Pistelli. 2021. "Volatiles and Antifungal-Antibacterial-Antiviral Activity of South African Salvia spp. Essential Oils Cultivated in Uniform Conditions" Molecules 26, no. 9: 2826. https://doi.org/10.3390/molecules26092826
APA StyleNajar, B., Mecacci, G., Nardi, V., Cervelli, C., Nardoni, S., Mancianti, F., Ebani, V. V., Giannecchini, S., & Pistelli, L. (2021). Volatiles and Antifungal-Antibacterial-Antiviral Activity of South African Salvia spp. Essential Oils Cultivated in Uniform Conditions. Molecules, 26(9), 2826. https://doi.org/10.3390/molecules26092826