Supramolecular Control of Singlet Oxygen Generation
Abstract
1. Introduction
2. Singlet Oxygen Background
2.1. Stability, Detection and Quantification of Singlet Oxygen
2.2. Sensitized Singlet Oxygen Generation
2.3. Host–Guest Chemistry and Nano-Containers
3. Supramolecular Approaches to Singlet Oxygen Generation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turro, N.J. Modern Molecular Photochemistry; Addison-Wesley Publishing Co.: Boston, MA, USA, 1978; p. 628. [Google Scholar]
- Ogilby, P.R. Symposium-in-print: Singlet oxygen singlet oxygen-introduction. Photochem. Photobiol. 2006, 82, 1133–1135. [Google Scholar] [CrossRef]
- Wayne, R.P. Singlet molecular oxygen. Advan. Photochem. 1969, 7, 311–371. [Google Scholar]
- Greer, A. Christopher Foote’s Discovery of the Role of Singlet Oxygen [1O2 (1Δg)] in Photosensitized Oxidation Reactions. Acc. Chem. Res. 2006, 39, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Krumova, K.; Cosa, G. Overview of reactive oxygen species. Compr. Ser. Photochem. Photobiol. Sci. 2016, 13, 3–21. [Google Scholar]
- Khan, A.U.; Kasha, M. Singlet molecular oxygen evolution upon simple acidification of aqueous hypochlorite: Application to studies on the deleterious health effects of chlorinated drinking water. Proc. Natl. Acad. Sci. USA 1994, 91, 12362–12364. [Google Scholar] [CrossRef] [PubMed]
- Blazquez-Castro, A. Direct 1O2 optical excitation: A tool for redox biology. Redox Biol. 2017, 13, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R. Photosensitized generation of singlet oxygen. Photochem. Photobiol. 2006, 82, 1161–1177. [Google Scholar] [CrossRef]
- Triantaphylides, C.; Havaux, M. Singlet oxygen in plants: Production, detoxification and signaling. Trends Plant Sci. 2009, 14, 219–228. [Google Scholar] [CrossRef]
- Khan, A.U.; Pitts, J.N.; Smith, E.B. Singlet oxygen in the environmental sciences. Role of singlet molecular oxygen in the production of photochemical air pollution. Environ. Sci. Technol. 1967, 1, 656–657. [Google Scholar] [CrossRef]
- Dmitrieva, V.A.; Tyutereva, E.V.; Voitsekhovskaja, O.V. Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int. J. Mol. Sci. 2020, 21, 3237. [Google Scholar] [CrossRef]
- Stief, T.W. The physiology and pharmacology of singlet oxygen. Med. Hypotheses 2003, 60, 567–572. [Google Scholar] [CrossRef]
- Chilakamarthi, U.; Giribabu, L. Photodynamic Therapy: Past, Present and Future. Chem. Rec. 2017, 17, 775–802. [Google Scholar] [CrossRef]
- Darlenski, R.; Fluhr, J.W. Photodynamic therapy in dermatology: Past, present, and future. J. Biomed. Opt. 2013, 18, 061208. [Google Scholar] [CrossRef]
- Tandon, Y.K.; Yang, M.F.; Baron, E.D. Role of photodynamic therapy in psoriasis: A brief review. Photodermatol. Photoimmunol. Photomed. 2008, 24, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.L.; Bassi da Silva, J.; Rosseto, H.C. Photodynamic Therapy of Psoriasis Using Photosensitizers of Vegetable Origin. Curr. Pharm. Des. 2019, 25, 2279–2291. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA: Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- El-Hussein, A.; Manoto, S.L.; Ombinda-Lemboumba, S.; Alrowaili, Z.A.; Mthunzi-Kufa, P. A Review of Chemotherapy and Photodynamic Therapy for Lung Cancer Treatment. AntiCancer Agents Med. Chem. 2021, 21, 149–161. [Google Scholar] [CrossRef]
- Nseyo, U.O. Photodynamic therapy in the management of bladder cancer. J. Clin. Laser Med. Surg 1996, 14, 271–280. [Google Scholar] [CrossRef]
- van den Bergh, H. Photodynamic therapy of age-related macular degeneration: History and principles. Semin. Ophthalmol. 2001, 16, 181–200. [Google Scholar] [CrossRef]
- Floyd, R.A.; Schneider, J.E.; Dittmer, D.P. Methylene blue photoinactivation of RNA viruses. Antivir. Res. 2004, 61, 141–151. [Google Scholar] [CrossRef]
- Garcia-Fresnadillo, D. Singlet oxygen photosensitizing materials for point-of-use water disinfection with solar reactors. ChemPhotoChem 2018, 2, 512–534. [Google Scholar] [CrossRef]
- Ghogare, A.A.; Greer, A. Using Singlet Oxygen to Synthesize Natural Products and Drugs. Chem. Rev. 2016, 116, 9994–10034. [Google Scholar] [CrossRef]
- Isomura, M. Singlet oxygen for organic syntheses: Novel approaches for scale-up. Yuki Gosei Kagaku Kyokaishi 2010, 68, 262–263. [Google Scholar] [CrossRef]
- Nardello-Rataj, V.; Alsters, P.L.; Aubry, J.-M. Industrial Prospects for the Chemical and Photochemical Singlet Oxygenation of Organic Compounds; Wiley-VCH GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 369–395. [Google Scholar]
- Stephenson, L.M. Recent Experimental Developments in the Singlet Oxygen Ene Reaction with Olefins; Academic Press: Cambridge, MA, USA, 1981; pp. 371–378. [Google Scholar]
- Stephenson, L.M.; Grdina, M.J.; Orfanopoulos, M. Mechanism of the ene reaction between singlet oxygen and olefins. Acc. Chem. Res. 1980, 13, 419–425. [Google Scholar] [CrossRef]
- Adam, W.; Saha-Moller, C.R.; Schambony, S.B.; Schmid, K.S.; Wirth, T. Stereocontrolled photooxygenations-a valuable synthetic tool. Photochem. Photobiol. 1999, 70, 476–483. [Google Scholar] [CrossRef]
- Clennan, E.L. Overview of the chemical reactions of singlet oxygen. Compr. Ser. Photochem. Photobiol. Sci. 2016, 13, 353–367. [Google Scholar]
- Clennan, E.L.; Pace, A. Advances in singlet oxygen chemistry. Tetrahedron 2005, 61, 6665–6691. [Google Scholar] [CrossRef]
- Velez-Pena, E.; Perez-Obando, J.; Pais-Ospina, D.; Marin-Silva, D.A.; Pinotti, A.; Canneva, A.; Donadelli, J.A.; Damonte, L.; Pizzio, L.R.; Osorio-Vargas, P.; et al. Self-cleaning and antimicrobial photo-induced properties under indoor lighting irradiation of chitosan films containing Melon/TiO2 composites. Appl. Surf. Sci. 2020, 508, 144895. [Google Scholar] [CrossRef]
- Sunday, M.O.; Sakugawa, H. A simple, inexpensive method for gas-phase singlet oxygen generation from sensitizer-impregnated filters: Potential application to bacteria/virus inactivation and pollutant degradation. Sci. Total Environ. 2020, 746, 141186. [Google Scholar] [CrossRef]
- Belousova, I.M.; Danilov, O.B.; Kiselev, V.M.; Mak, A.A. Conversion of solar energy to laser beam by fullerene-oxygen-iodine laser. Proc. SPIE 2011, 7822, 78220N/1–78220N/5. [Google Scholar]
- Flors, C.; Griesbeck, A.G.; Vassilikogiannakis, G. Singlet Oxygen: Chemistry, Applications and Challenges Ahead. ChemPhotoChem 2018, 2, 510–511. [Google Scholar] [CrossRef]
- Torring, T.; Helmig, S.; Ogilby, P.R.; Gothelf, K.V. Singlet oxygen in DNA nanotechnology. Acc. Chem. Res. 2014, 47, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Ogilby, P.R. Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 2010, 39, 3181–3209. [Google Scholar] [CrossRef]
- Shen, Y.; Shuhendler, A.J.; Ye, D.; Xu, J.-J.; Chen, H.-Y. Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6725–6741. [Google Scholar] [CrossRef]
- Ogilby, P.R. Solvent effects on the radiative transitions of singlet oxygen. Acc. Chem. Res. 1999, 32, 512–519. [Google Scholar] [CrossRef]
- Bregnhoej, M.; Westberg, M.; Minaev, B.F.; Ogilby, P.R. Singlet Oxygen Photophysics in Liquid Solvents: Converging on a Unified Picture. Acc. Chem. Res. 2017, 50, 1920–1927. [Google Scholar] [CrossRef]
- Wang, K.-K.; Song, S.; Jung, S.-J.; Hwang, J.-W.; Kim, M.-G.; Kim, J.-H.; Sung, J.; Lee, J.-K.; Kim, Y.-R. Lifetime and diffusion distance of singlet oxygen in air under everyday atmospheric conditions. Phys. Chem. Chem. Phys. 2020, 22, 21664–21671. [Google Scholar] [CrossRef]
- You, Y. Chemical tools for the generation and detection of singlet oxygen. Org. Biomol. Chem. 2018, 16, 4044–4060. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, V.; Inoue, Y. (Eds.) Supramolecular Photochemistry: Controlling Photochemical Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; p. 623. [Google Scholar]
- Balzani, V.; Credi, A. Supramolecular photochemistry: Recent advances. Nato. Asi. Ser. 1996, 485, 163–177. [Google Scholar]
- Dodziuk, H. (Ed.) Cyclodextrins and Their Complexes; Wiley-VCH GmbH & Co. KGaA: Weinheim, Germany, 2008; p. 489. [Google Scholar]
- Szejtli, J.; Osa, T. (Eds.) Comprehensive Supramolecular Chemistry. In Cyclodextrins; Pergamon: Oxford, UK, 1996; Volume 3, p. 693. [Google Scholar]
- Kim, K.; Murray, J.; Selvapalam, N.; Ko, Y.H.; Hwang, I. Cucurbiturils: Chemistry, Supramolecular Chemistry and Applications; World Scientific Publishing Europe Ltd.: Singapore, 2018; p. 264. [Google Scholar]
- Nau, W.M.; Scherman, O.A. (Eds.) Cucurbiturils; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; p. 186. [Google Scholar]
- Sliwa, W.; Kozlowski, C. (Eds.) Calixarenes and Resorcinarenes Synthesis, Properties and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; p. 316. [Google Scholar]
- Ramamurthy, V. Photochemistry within a Water-Soluble Organic Capsule. Acc. Chem. Res. 2015, 48, 2904–2917. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Lei, Q.; Zhu, J.Y.; Wang, W.J.; Cheng, Q.; Gao, F.; Sun, Y.X.; Zhang, X.Z. Cucurbit[8]uril Regulated Activatable Supramolecular Photosensitizer for Targeted Cancer Imaging and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2016, 8, 22892–22899. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, Z.; Liu, K.; Kelgtermans, H.; Dehaen, W.; Wang, Z.; Zhang, X. Porphyrin-containing hyperbranched supramolecular polymers: Enhancing 1O2-generation efficiency by supramolecular polymerization. Polym. Chem. 2014, 5, 53–56. [Google Scholar] [CrossRef]
- Leng, X.; Choi, C.-F.; Luo, H.-B.; Cheng, Y.-K.; Ng, D.K.P. Host-Guest Interactions of 4-Carboxyphenoxy Phthalocyanines and β-Cyclodextrins in Aqueous Media. Org. Lett. 2007, 9, 2497–2500. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Yao, Y.; Yuan, H.; Wang, S.; Wang, Z.; Zhang, X. Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew. Chem. Int. Ed. Engl. 2013, 52, 8285–8289. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, M.; Keser, Y.; Hadi, S.E.; Tuncel, D. A [5]rotaxane-based photosensitizer for photodynamic therapy. Eur. J. Org. Chem. 2019, 2019, 3534–3541. [Google Scholar] [CrossRef]
- Gonzalez-Bejar, M.; Montes-Navajas, P.; Garcia, H.; Scaiano, J.C. Methylene Blue Encapsulation in Cucurbit[7]uril: Laser Flash Photolysis and Near-IR Luminescence Studies of the Interaction with Oxygen. Langmuir 2009, 25, 10490–10494. [Google Scholar] [CrossRef] [PubMed]
- Voskuhl, J.; Kauscher, U.; Gruener, M.; Frisch, H.; Wibbeling, B.; Strassert, C.A.; Ravoo, B.J. A soft supramolecular carrier with enhanced singlet oxygen photosensitizing properties. Soft Matter. 2013, 9, 2453–2457. [Google Scholar] [CrossRef]
- Xiong, H.; Zhou, D.; Zheng, X.; Qi, Y.; Wang, Y.; Jing, X.; Huang, Y. Stable amphiphilic supramolecular self-assembly based on cyclodextrin and carborane for the efficient photodynamic therapy. Chem. Commun. 2017, 53, 3422–3425. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Chen, L.-J.; Dong, F.; Jiang, S.-T.; Yin, G.-Q.; Li, X.; Tian, Y.; Yang, H.-B. Light-Controlled Generation of Singlet Oxygen within a Discrete Dual-Stage Metallacycle for Cancer Therapy. J. Am. Chem. Soc. 2019, 141, 8943–8950. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Xu, X.; Chen, Y.; Wu, X.; Wu, H.; Liu, Y. A highly efficient supramolecular photoswitch for singlet oxygen generation in water. Chem. Commun. 2016, 52, 7966–7969. [Google Scholar] [CrossRef]
- Robinson-Duggon, J.; Perez-Mora, F.; Valverde-Vasquez, L.; Cortes-Arriagada, D.; De la Fuente, J.R.; Gunther, G.; Fuentealba, D. Supramolecular Reversible On-Off Switch for Singlet Oxygen Using Cucurbit[n]uril Inclusion Complexes. J. Phys. Chem. C 2017, 121, 21782–21789. [Google Scholar] [CrossRef]
- Yan, H.; Pan, X.; Chua, M.H.; Wang, X.; Song, J.; Ye, Q.; Zhou, H.; Xuan, A.T.Y.; Liu, Y.; Xu, J. Self-assembled supramolecular nanoparticles mediated by host-guest interactions for photodynamic therapy. RSC Adv. 2014, 4, 10708–10717. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, H.; Wang, H.; Tang, B.; Xu, J.F.; Zhang, X. A Self-Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angew Chem. Int. Ed. 2021, 60, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Naim, K.; Nair, S.T.; Yadav, P.; Shanavas, A.; Neelakandan, P.P. Supramolecular Confinement within Chitosan Nanocomposites Enhances Singlet Oxygen Generation. ChemPlusChem 2018, 83, 418–422. [Google Scholar] [CrossRef]
- Swaminathan, S.; Fowley, C.; Thapaliya, E.R.; McCaughan, B.; Tang, S.; Fraix, A.; Captain, B.; Sortino, S.; Callan, J.F.; Raymo, F.M. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization. Nanoscale 2015, 7, 14071–14079. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, E.; Eserci, H.; Okutan, E. Perylenebisimide-fullerene dyads as heavy atom free triplet photosensitizers with unique singlet oxygen generation efficiencies. J. Photochem. Photobiol. A 2019, 385, 112022. [Google Scholar] [CrossRef]
- Huang, L.; Yu, X.; Wu, W.; Zhao, J. Styryl Bodipy-C60 Dyads as Efficient Heavy-Atom-Free Organic Triplet Photosensitizers. Org. Lett. 2012, 14, 2594–2597. [Google Scholar] [CrossRef]
- Blacha-Grzechnik, A.; Krzywiecki, M.; Motyka, R.; Czichy, M. Electrochemically polymerized terthiopehene-C60 dyads for the photochemical generation of singlet oxygen. J. Phys. Chem. C 2019, 123, 25915–25924. [Google Scholar] [CrossRef]
- Agazzi, M.L.; Durantini, J.E.; Gsponer, N.S.; Durantini, A.M.; Bertolotti, S.G.; Durantini, E.N. Light-harvesting antenna and proton-activated photodynamic effect of a novel BODIPY-fullerene C60 dyad as potential antimicrobial agent. ChemPhysChem 2019, 20, 1110–1125. [Google Scholar] [CrossRef]
- Meyer, G.J. Antenna molecule drives solar hydrogen generation. Proc. Natl. Acad. Sci. USA 2015, 112, 9146–9147. [Google Scholar] [CrossRef] [PubMed]
- Milanesio, M.E.; Alvarez, M.G.; Rivarola, V.; Silber, J.J.; Durantini, E.N. Porphyrin-fullerene C60 dyads with high ability to form photoinduced charge-separated state as novel sensitizers for photodynamic therapy. Photochem. Photobiol. 2005, 81, 891–897. [Google Scholar] [CrossRef]
- Kamkaew, A.; Lim, S.H.; Lee, H.B.; Kiew, L.V.; Chung, L.Y.; Burgess, K. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 2013, 42, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Cui, X.; Therrien, B.; Zhao, J. Energy-Funneling-Based Broadband Visible-Light-Absorbing Bodipy-C60 Triads and Tetrads as Dual Functional Heavy-Atom-Free Organic Triplet Photosensitizers for Photocatalytic Organic Reactions. Chem. Eur. J. 2013, 19, 17472–17482. [Google Scholar] [CrossRef] [PubMed]
- Ooyama, Y.; Enoki, T.; Ohshita, J.; Kamimura, T.; Ozako, S.; Koide, T.; Tani, F. Singlet oxygen generation properties of an inclusion complex of cyclic free-base porphyrin dimer and fullerene C60. RSC Adv. 2017, 7, 18690–18695. [Google Scholar] [CrossRef]
- Natarajan, A.; Kaanumalle, L.S.; Jockusch, S.; Gibb, C.L.; Gibb, B.C.; Turro, N.J.; Ramamurthy, V. Controlling photoreactions with restricted spaces and weak intermolecular forces: Exquisite selectivity during oxidation of olefins by singlet oxygen. J. Am. Chem. Soc. 2007, 129, 4132–4133. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashyap, A.; Ramasamy, E.; Ramalingam, V.; Pattabiraman, M. Supramolecular Control of Singlet Oxygen Generation. Molecules 2021, 26, 2673. https://doi.org/10.3390/molecules26092673
Kashyap A, Ramasamy E, Ramalingam V, Pattabiraman M. Supramolecular Control of Singlet Oxygen Generation. Molecules. 2021; 26(9):2673. https://doi.org/10.3390/molecules26092673
Chicago/Turabian StyleKashyap, Akshay, Elamparuthi Ramasamy, Vijayakumar Ramalingam, and Mahesh Pattabiraman. 2021. "Supramolecular Control of Singlet Oxygen Generation" Molecules 26, no. 9: 2673. https://doi.org/10.3390/molecules26092673
APA StyleKashyap, A., Ramasamy, E., Ramalingam, V., & Pattabiraman, M. (2021). Supramolecular Control of Singlet Oxygen Generation. Molecules, 26(9), 2673. https://doi.org/10.3390/molecules26092673