Adsorption and Desorption Properties of Polyethylenimine/Polyvinyl Chloride Cross-Linked Fiber for the Treatment of Azo Dye Reactive Yellow 2
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Influences of Mass Ratio and Cross-Linking Time
2.2. Characterization of the Optimized PEI/PVC-CF
2.3. Effect of pH on Dye Adsorption
2.4. Adsorption Kinetics
2.5. Adsorption Isotherms
2.6. Thermodynamic Analysis
2.7. Desorption, Regeneration, and Reusability
3. Materials and Methods
3.1. Materials
3.2. Preparation of PEI/PVC-CFs
3.3. Analytical Methods
3.4. Adsorption Experiments
3.5. Desorption, Regeneration, and Reuse Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ogugbue, C.J.; Sawidis, T. Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnol. Res. Int. 2011, 2011, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shabbir, S.; Faheem, M.; Ali, N.; Kerr, P.G.; Wu, Y. Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth. Bioresour. Technol. 2017, 225, 395–401. [Google Scholar] [CrossRef]
- Maqbool, Z.; Hussain, S.; Ahmad, T.; Nadeem, H.; Imran, M.; Khalid, A.; Abid, M.; Martin-Laurent, F. Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. Environ. Sci. Pollut. Res. 2016, 23, 11224–11239. [Google Scholar] [CrossRef]
- Cao, J.-S.; Lin, J.-X.; Fang, F.; Zhang, M.-T.; Hu, Z.-R. A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies. Bioresour. Technol. 2014, 163, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Ooi, J.; Lee, L.Y.; Yan, B.; Hiew, Z.; Thangalazhy-Gopakumar, S.; Lim, S.S.; Gan, S. Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies. Bioresour. Technol. 2017, 245, 656–664. [Google Scholar] [CrossRef]
- McMullan, G.; Meehan, C.; Conneely, A.; Kirby, N.; Robinson, T.; Nigam, P.; Banat, I.M.; Marchant, R.; Smyth, W.F. Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 2001, 56, 81–87. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, C.; Hou, B.; Wang, Y.; Hao, C.; Wu, J. Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere 2018, 206, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Monte Blanco, S.P.D.; Scheufele, F.B.; Módenes, A.N.; Espinoza-Quiñones, F.R.; Marin, P.; Kroumov, A.D.; Borba, C.E. Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chem. Eng. J. 2017, 307, 466–475. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut. 2019, 252, 352–365. [Google Scholar] [CrossRef]
- Cao, Y.L.; Pan, Z.H.; Shi, Q.X.; Yu, J.Y. Modification of chitin with high adsorption capacity for methylene blue removal. Int. J. Biol. Macromol. 2018, 114, 392–399. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, L.; Zhou, W.; Lu, R.; Gao, H.; Zhang, S. Superior adsorption capacity of Fe3O4@nSiO2@mSiO2 core-shell microspheres for removal of congo red from aqueous solution. J. Mol. Liq. 2016, 219, 88–94. [Google Scholar] [CrossRef]
- Vijwani, H.; Nadagouda, M.N.; Namboodiri, V.; Mukhopadhyay, S.M. Hierarchical hybrid carbon nano-structures as robust and reusable adsorbents: Kinetic studies with model dye compound. Chem. Eng. J. 2015, 268, 197–207. [Google Scholar] [CrossRef]
- You, L.; Huang, C.; Lu, F.; Wang, A.; Liu, X.; Zhang, Q. Facile synthesis of high performance porous magnetic chitosan–polyethylenimine polymer composite for Congo red removal. Int. J. Biol. Macromol. 2018, 107, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Won, S.W.; Yun, Y.-S. Biosorptive removal of Reactive Yellow 2 using waste biomass from lysine fermentation process. Dyes Pigment. 2008, 76, 502–507. [Google Scholar] [CrossRef]
- Williams, P.T.; Williams, E.A. Interaction of plastics in mixed-plastics pyrolysis. Energy Fuels 1999, 13, 188–196. [Google Scholar] [CrossRef]
- Sørum, L.; Grønli, M.; Hustad, J. Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 2001, 80, 1217–1227. [Google Scholar] [CrossRef]
- Keane, M.A. Catalytic transformation of waste polymers to fuel oil. ChemSusChem 2009, 2, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Sneddon, G.; McGlynn, J.C.; Neumann, M.S.; Aydin, H.M.; Yiu, H.H.P.; Ganin, A.Y. Aminated poly(vinyl chloride) solid state adsorbents with hydrophobic function for post-combustion CO2 capture. J. Mater. Chem. A 2017, 5, 11864–11872. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Wang, Z. A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination. J. Membr. Sci. 2017, 524, 214–224. [Google Scholar] [CrossRef]
- Park, H.N.; Choi, H.A.; Won, S.W. Fibrous polyethylenimine/polyvinyl chloride cross-linked adsorbent for the recovery of Pt(IV) from acidic solution: Adsorption, desorption and reuse performances. J. Clean. Prod. 2018, 176, 360–369. [Google Scholar] [CrossRef]
- Kim, M.H.; Hwang, C.-H.; Kang, S.B.; Kim, S.; Park, S.W.; Yun, Y.-S.; Won, S.W. Removal of hydrolyzed Reactive Black 5 from aqueous solution using a polyethylenimine-polyvinyl chloride composite fiber. Chem. Eng. J. 2015, 280, 18–25. [Google Scholar] [CrossRef]
- Wang, F.; Liu, P.; Nie, T.; Wei, H.; Cui, Z. Characterization of a polyamine microsphere and its adsorption for protein. Int. J. Mol. Sci. 2013, 14, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradian, H.; Fasehee, H.; Keshvari, H.; Faghihi, S. Poly(ethyleneimine) functionalized carbon nanotubes as efficient nano-vector for transfecting mesenchymal stem cells. Colloid Surf. B. Biointerfaces 2014, 122, 115–125. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Fu, J.; Zhang, L.; Luo, C.; Liu, Y. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling. Waste Manag. 2015, 45, 112–117. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, L.; Wang, D.; Yin, R.; Li, X.; An, J.; Yang, X. Preparation, characterization and visible-light photocatalytic performances of composite films prepared from polyvinyl chloride and SnO2 nanoparticles. J. Environ. Chem. Eng. 2015, 3, 622–629. [Google Scholar] [CrossRef]
- Sotomayor, F.; Cychosz, K.A.; Thommes, M. Characterization of micro/mesoporous materials by physisorption: Concepts and case studies. Acc. Mater. Surf. Res. 2018, 3, 34–50. [Google Scholar]
- Demadis, K.D.; Paspalaki, M.; Theodorou, J. Controlled release of bis(phosphonate) pharmaceuticals from cationic biodegradable polymeric matrices. Ind. Eng. Chem. Res. 2011, 50, 5873–5876. [Google Scholar] [CrossRef]
- Sahiner, N.; Demirci, S. Can PEI microgels become biocompatible upon betainization? Mater. Sci. Eng. C 2017, 77, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kang, S.B.; Won, S.W. Selective adsorption of palladium(II) from aqueous solution using epichlorohydrin cross-linked polyethylenimine-chitin adsorbent: Batch and column studies. J. Environ. Chem. Eng. 2021, 9, 105058. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Nabil, G.M.; El-Mallah, N.M.; Bassiouny, H.I.; Kumar, S.; Abdel-Fattah, T.M. Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified Switchgrass Biochar adsorbent. J. Ind. Eng. Chem. 2016, 37, 156–167. [Google Scholar] [CrossRef]
- Jiang, F.; Dinh, D.M.; Lo Hsieh, Y. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels. Carbohydr. Polym. 2017, 173, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Bartczak, P.; Jesionowski, T. Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent. Int. J. Biol. Macromol. 2017, 99, 754–764. [Google Scholar] [CrossRef]
- Haghseresht, F.; Lu, G.Q. Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuels 1998, 12, 1100–1107. [Google Scholar] [CrossRef]
- Jossens, L.; Prausnitz, J.M.; Fritz, M.; Schlünder, E.U.; Myers, A.L. Thermodynamics of multi-solute adsorption from dilute aqueous solutions. Chem. Eng. Sci. 1978, 33, 1097–1106. [Google Scholar] [CrossRef]
- Won, S.W.; Mao, J.; Sankar, G.; Lee, H.-C.; Yun, Y.-S. Adsorptive characteristics of the polyurethane-immobilized Corynebacterium glutamicum biosorbent for removal of Reactive Yellow 2 from aqueous solution. Korean J. Chem. Eng. 2016, 33, 945–951. [Google Scholar] [CrossRef]
- Kim, S.; Won, S.W.; Cho, C.-W.; Yun, Y.-S. Valorization of Escherichia coli waste biomass as a biosorbent for removing reactive dyes from aqueous solutions. Desalin. Water Treat. 2016, 57, 20084–20090. [Google Scholar] [CrossRef]
- Aksu, Z. Biosorption of reactive dyes by dried activated sludge: Equilibrium and kinetic modelling. Biochem. Eng. J. 2001, 7, 79–84. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, D.; Wang, Y. Study on electrospun-membrane-based filter to rapidly remove Reactive Yellow 2 from wastewater. Adv. Mater. Res. 2013, 726–731, 707–711. [Google Scholar] [CrossRef]
- Ijagbemi, C.O.; Baek, M.-H.; Kim, D.-S. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J. Hazard. Mater. 2009, 166, 538–546. [Google Scholar] [CrossRef]
- Tang, H.; Zhou, W.; Zhang, L. Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J. Hazard. Mater. 2012, 209–210, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Staroń, P.; Chwastowski, J.; Banach, M. Sorption and desorption studies on silver ions from aqueous solution by coconut fiber. J. Clean. Prod. 2017, 149, 290–301. [Google Scholar] [CrossRef]
- Da Fontoura, J.T.; Rolim, G.S.; Mella, B.; Farenzena, M.; Gutterres, M. Defatted microalgal biomass as biosorbent for the removal of Acid Blue 161 dye from tannery effluent. J. Environ. Chem. Eng. 2017, 5, 5076–5084. [Google Scholar] [CrossRef]
- Choi, H.A.; Park, H.N.; Won, S.W. A reusable adsorbent polyethylenimine/polyvinyl chloride cross-linked fiber for Pd(II) recovery from acidic solutions. J. Environ. Manag. 2017, 204, 200–206. [Google Scholar] [CrossRef] [PubMed]
pH | Pseudo-First-Order Kinetics | Pseudo-Second-Order Kinetics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
qexp (mg/g) | q1 (mg/g) | k1 (L/min) | R2 | ε (%) | q2(mg/g) | k2∙10−4 (g/mg min) | h (mg/g min) | R2 | ε (%) | |
2 | 155.27 | 145.05 | 0.011 | 0.917 | 6.58 | 160.97 | 0.985 | 2.55 | 0.965 | 3.67 |
5 | 153.30 | 143.59 | 0.009 | 0.929 | 5.03 | 160.87 | 0.819 | 2.12 | 0.976 | 4.94 |
7 | 153.26 | 141.97 | 0.008 | 0.923 | 7.37 | 158.53 | 0.759 | 1.91 | 0.969 | 3.63 |
pH | Langmuir | Freundlich | Redlich-Peterson | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
qmax (mg/g) | KL (L/mg) | R2 | ε (%) | KF (L/g) | 1/n | R2 | ε (%) | KRP (L/g) | α (L/mg) | β | R2 | |
2 | 820.6 | 0.224 | 0.950 | 1.26 | 234.0 | 0.220 | 0.809 | 25.26 | 166.8 | 0.160 | 1.045 | 0.953 |
5 | 636.0 | 0.107 | 0.990 | 0.03 | 158.0 | 0.238 | 0.917 | 9.19 | 84.4 | 0.178 | 0.948 | 0.994 |
7 | 574.6 | 0.089 | 0.982 | 1.07 | 137.1 | 0.243 | 0.939 | 6.26 | 77.3 | 0.224 | 0.912 | 0.993 |
Sorbent | qmax (mg/g) | Condition | Ref. |
---|---|---|---|
C. glutamicum biomass | 154.3 | pH 2.0, 25 °C | [14] |
polyurethane-immobilized C. glutamicum | 116.5 | pH 2.0, 25 °C | [36] |
E. coli biomass | 196.9 | pH 3.0, 25 °C | [37] |
Esterified E. coli biomass | 335.2 | pH 3.0, 25 °C | [37] |
Amberjet 4200 | 40.4 | pH 3.0, 25 °C | [37] |
Dried activated sludge | 333.3 | pH 5.0, 25 °C | [38] |
Aminated mesoporous silica nanofiber | 371.7 | pH 3.0, 30 °C | [39] |
PEI/PVC-CF | 820.6 | pH 2.0, 25 °C | This work |
Temp. (K) | ΔG° (kJ/mol) | ΔH° (kJ/mol) | ΔS° (J/mol K) |
---|---|---|---|
298.15 | −30.19 | ||
308.15 | −31.23 | 1.21 | 105.35 |
318.15 | −32.29 |
Color Index No. | 18972 | Molecular Structure | |
Molecular formula | C25H15Cl3N9Na3O10S3 | ||
Molecular weight | 872.97 | ||
Dye content (%) | 60–70 | ||
λmax (nm) | 404 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Park, H.N.; Won, S.W. Adsorption and Desorption Properties of Polyethylenimine/Polyvinyl Chloride Cross-Linked Fiber for the Treatment of Azo Dye Reactive Yellow 2. Molecules 2021, 26, 1519. https://doi.org/10.3390/molecules26061519
Wang Z, Park HN, Won SW. Adsorption and Desorption Properties of Polyethylenimine/Polyvinyl Chloride Cross-Linked Fiber for the Treatment of Azo Dye Reactive Yellow 2. Molecules. 2021; 26(6):1519. https://doi.org/10.3390/molecules26061519
Chicago/Turabian StyleWang, Zhuo, Ha Neul Park, and Sung Wook Won. 2021. "Adsorption and Desorption Properties of Polyethylenimine/Polyvinyl Chloride Cross-Linked Fiber for the Treatment of Azo Dye Reactive Yellow 2" Molecules 26, no. 6: 1519. https://doi.org/10.3390/molecules26061519
APA StyleWang, Z., Park, H. N., & Won, S. W. (2021). Adsorption and Desorption Properties of Polyethylenimine/Polyvinyl Chloride Cross-Linked Fiber for the Treatment of Azo Dye Reactive Yellow 2. Molecules, 26(6), 1519. https://doi.org/10.3390/molecules26061519